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Abstract

Modeling interactions between features im-
proves the performance of machine learning so-
lutions in many domains (e.g. recommender sys-
tems or sentiment analysis). In this paper, we
introduce Exponential Machines (ExM), a pre-
dictor that models all interactions of every or-
der. The key idea is to represent an exponentially
large tensor of parameters in a factorized for-
mat called Tensor Train (TT). The Tensor Train
format regularizes the model and lets you con-
trol the number of underlying parameters. To
train the model, we develop a stochastic version
of Riemannian optimization, which allows us to
fit tensors with 230 entries. We show that the
model achieves state-of-the-art performance on
synthetic data with high-order interactions.

1. Introduction

Machine learning problems with categorical data require
modeling interactions between the features to solve them.
As an example, consider a sentiment analysis problem —
detecting whether a review is positive or negative — and the
following dataset: ‘I liked it’, ‘I did not like it’, ‘I’'m not
sure’. Judging by the presence of the word ‘like’ or the
word ‘not’ alone, it is hard to understand the tone of the
review. But the presence of the pair of words ‘not’ and
‘like’ strongly indicates a negative opinion.

If the dictionary has d words, modeling pairwise interac-
tions requires O(d?) parameters and will probably overfit
to the data. Taking into account all interactions (all pairs,
triplets, etc. of words) requires impractical 2¢ parameters.

In this paper, we show a scalable way to account for all

interactions. Our contributions are:

e We propose a predictor that models all 2% interactions
of d-dimensional data by representing the exponen-
tially large tensor of parameters in a compact multilin-
ear format — Tensor Train (TT-format) (Sec. 3). Repre-
senting the tensor of parameters in the TT-format leads
to better generalization, a linear number of underlying
parameters O(d), and linear inference time (Sec. 5).

e We develop a stochastic Riemannian optimization
learning algorithm (Sec. 7). It significantly outper-
forms a stochastic gradient descent baseline (Sec. 8.1)
that is often used for models parametrized by a ten-
sor decomposition (see related works, Sec. 9). To the
best of our knowledge, this paper is the first to use
Riemannian optimization in the stochastic regime.

e We show that the proposed method outperforms other
machine learning algorithms on synthetic data with
high-order interactions (Sec. 8.2).

2. Linear model

In this section, we describe a generalization of a class of
machine learning algorithms — the linear model. Let us fix
a training dataset of pairs {(z(/), y(f))}}vzl, where (/) is
a d-dimensional feature vector of f-th object, and y(/) is
the corresponding target variable. Also fix a loss function
{(y,y) : R? — R, which takes as input the predicted value
y and the ground truth value y. We call a model linear,
if the prediction of the model depends on the features x
only via the dot product between the features x and a d-
dimensional vector of parameters w:

i/\linear(w) = <£B, w> +b, (1
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where b € R is the bias parameter.

Learning the parameters w, b of the models corresponds to
minimizing the following loss
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where ) is the regularization parameter.

A few machine learning algorithms can be viewed as a spe-
cial case of the linear model with an appropriate choice of
the loss function ¢(y, y): least squares regression (squared
loss), Support Vector Machine (hinge loss), and logistic re-
gression (logistic loss).

3. Our model

Before introducing our model equation in the general case,
consider a 3-dimensional example. The equation includes
one term per each subset of features (each interaction)

y(x) = Wooo + Wieo 1 + Woio 2 + Woo1 3
+ Wi ziz2 + Wior 123 + Woir 2223 (3)
+ W111 X1X2X3.

In the general case, we enumerate the subsets of features
with a binary vector (i1, ...,144), where i, = 1 if the k-th
feature belongs to the subset. The model equation looks as
follows

1 1
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Here we assume that 0° = 1 for simplicity of the notation.
The model is parametrized by a d-dimensional tensor W,
which consist of 2¢ elements.

The model equation (4) is linear with respect to the weight
tensor WW. To emphasize this fact and simplify the notation
we rewrite the model equation (4) as a tensor dot product
y(x) = (X, W), where the tensor X is defined as follows

d
Xy g = [ 2 5)
k=1

Note that there is no need in a separate bias term, since it is
already included in the model as the weight tensor element
Wo...0 (see the model equation example (3)).

The key idea of our method is to compactly represent the
exponentially large tensor of parameters WV in the Tensor
Train format (Oseledets, 2011).

4. Tensor Train

A d-dimensional tensor A is said to be represented in the
Tensor Train (TT) format (Oseledets, 2011), if each of its
elements can be computed as the following product of d —2
matrices and 2 vectors

-Ail...id = Gl[il] - Gd[id], (6)

where for any £ = 2,...,d — 1 and for any value of iy,
Gglig] is an r x r matrix, G1[i1] is a 1 x r vector and
Gglig] is an r x 1 vector. We refer to the collection of
matrices G, corresponding to the same dimension k (tech-
nically, a 3-dimensional array) as the k-th TT-core, where
k = 1,...,d. The size r of the slices Gy[ix] controls
the trade-off between the representational power of the TT-
format and computational efficiency of working with the
tensor. We call r the TT-rank of the tensor \A.

Any tensor A can be robustly approximated in the TT-
format with a given TT-rank r. Another attractive property
is the ability to efficiently perform algebraic operations on
tensors without materializing them, i.e. by working with
the TT-cores instead of the tensors themselves. TT-format
supports computing the norm of a tensor and the dot prod-
uct between tensors; element-wise sum and multiplication
of two tensors (the result is a tensor in the TT-format with
increased TT-rank), and some others (Oseledets, 2011).

5. Inference

In this section, we show how to compute the model equa-
tion (4) in linear time. To avoid the exponential complex-
ity, we represent the weight tensor WV and the data tensor
X (5) in the TT-format. The TT-ranks of these tensors de-
termine the efficiency of the scheme. During the learning,
we initialize and optimize the tensor W in the TT-format
and explicitly control its TT-rank. The tensor X has low
TT-rank:

Theorem 1. For any d-dimensional vector x, the TT-rank
of the corresponding tensor X defined as (5) equals 1.

Proof. The following cores give the exact representation of
the tensor X

Gilix) =2 e R k=1,....d (7)

The k-th core G [ix] is a 1 x 1 matrix for any value of iy, €
{0, 1}, hence the TT-rank of the tensor X" equals 1. O

Now that we have a TT-representations of tensors VW and
X, we can compute the model response y(x) = (X, W)
in the linear time with respect to the number of features d.

Theorem 2. The model response y(x) can be computed in
O(r%d), where r is the TT-rank of the weight tensor W.



Tensor Train polynomial models via Riemannian optimization
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where the matrices Ay for k = 1,...,d are defined as fol-
lows: A, =3, 23 Gylix] = G1[0] + 21, Gy [1]. The final
value y(x) can be computed via d — 1 matrix-by-vector
multiplications and 1 vector-by-vector multiplication. [

The proof of theorem 2 is constructive and corresponds to
an implementation of the inference algorithm.

The TT-rank of the weight tensor W is a hyper-parameter
of our method and it controls the efficiency vs. flexibility
trade-off. A small TT-rank regularizes the model and yields
fast learning and inference but restricts the possible values
of the tensor YWW. A large TT-rank allows any value of the
tensor WV and effectively leaves us with the full polynomial
model without any advantages of the TT-format.

6. Learning

Learning the parameters of the proposed model corre-
sponds to minimizing the loss under the TT-rank constraint:

minimize L(W),
W )
subject to  TT-rank(W) = ro,

where the loss is defined as follows

N
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We consider two approaches to solving problem (8). In a
baseline approach, we optimize the objective L(W) with
stochastic gradient descent applied to the underlying pa-
rameters of the TT-format of the tensor V.

To improve upon the baseline, we exploit the geometry of
the set of tensors that satisfy the TT-rank constraint (8) to

build a Riemannian optimization procedure (Sec. 7). We
experimentally show the advantage of this approach over
the baseline in Sec. 8.1.

7. Riemannian optimization

The set of all d-dimensional tensors with fixed TT-rank r

) =7}

forms a Riemannian manifold (Holtz et al., 2012). This
observation allows us to use Riemannian optimization to
solve problem (8). A typical Riemannian optimization pro-
cedure consists of repeating the following steps until con-
vergence: project the gradient t%Lv on the tangent space of
M, taken at a point WV to get the direction G; follow along
G with some step « (this operation increases the TT-rank);
and retract back to the manifold M,. (decrease the TT-rank
to 7). In the following few paragraphs, we describe how to
implement each of the steps outlined above.

M, = {W € R¥*>*2: TT-rank(W

The complexity of projecting a tensor Z on a tangent space
of M, at a point W is O(dr?(r + TT-rank(Z)?)) (Lu-
bich et al., 2015). We denote this projection operator as
Pry, m,.(Z). The TT-rank of the projection is less than 2r:
TT-rank(Pr,m, (2)) < 2TT-rank(W) = 2r.

Let us consider the gradient of the loss function (9)

aL_ ot

)
Gy a — XY+ AW. (10)

Using the fact that Pr,, a4, (W)
tion is a linear operator we get

= WV and that the projec-

oL ) or

Proom, (aw 5 — Proom, (X)) 0w, (1)

We can project all data tensors X () in parallel. Since the
TT-rank of each of them equals to 1 (Theorem 1), all IV
projections cost O(dr?(r + N)). The TT-rank of the pro-
jected gradient equals 2r regardless of the dataset size.

To choose the step size o, we use the generalization of
Armijo rule for Riemannian optimization (Sato & Iwai,
2015). As a retraction — a way to return back to the man-
ifold M,. — we use the TT-rounding procedure (Oseledets,
2011). For a given tensor YV and rank r the TT-rounding
procedure returns a tensor W = TT-round(W, r) such
that its TT-rank equals r and the Frobenius norm of the
residual |[W — W)|| is as small as possible.

Since we aim for big datasets, we use a stochastic version
of the Riemannian gradient descent: on each iteration we
sample a random batch of objects from the dataset, com-
pute the stochastic gradient for this batch, make a step
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Algorithm 1 Riemannian optimization

Input: Dataset {(x(/), y(1)) ;Vzl, desired TT-rank g,
number of iterations 7', batch size M, 0 < ¢; < 0.5,
O<p<l,B>1
Output: W that approximately minimizes (8)
Train a linear model (2) and get the parameters w and b
Initialize YW with a rank rq tensor built from w and b
Initialize ag = 1
fort:=1to T do

ay = Bagq

Sample M indices hq,...,hypr ~U{1,...,N})

D, = Z;Vi1 %X(hj) + AWy

Gi = Pry, m, (Dy) (11)

W; := TT-round(W;_1 — a: Gy, 10)

while L(W;) > L(W;_1) — c10+||G¢||% do

Qi 1= POy
W; := TT-round(W;—1 — 4Gy, 10)
end while
end for

along the projection of the stochastic gradient, and retract
back to the manifold (Alg. 1).

8. Experiments

We implemented the proposed algorithm in Python' and
used the following parameters: p = 0.5, ¢; = 0.1, § =
1.2 for Algorithm 1. For the operations related to the TT-
format, we used a Python version of the TT-Toolbox>.

8.1. Riemannian optimization

In this experiment, we compared two approaches to learn-
ing the model: Riemannian optimization (Sec. 7) vs. the
baseline (Sec. 6). We experimented on the Car dataset from
UCI repository (Lichman, 2013), which is a binary classi-
fication problem with 1728 objects and 21 binary features
(after one-hot encoding). We report that Riemannian op-
timization converges faster and achieves better final point
than the baseline (Fig. 1).

8.2. Synthetic data

In this experiment, we tested our method on a dataset
with high-order interactions. We generated 100000 train
and 100000 test objects with 30 features. Each entry
of the data matrix X was independatly sampled from
{—1, 41} with equal probabilities 0.5. We also uniformly
sampled 20 subsets of features (interactions) of order 6:

gt g 3000330 ~ U{1,...,30}. We set the

'https://github.com/bihago/exp-machines
https://github.com/oseledets/ttpy
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Figure 1. Compare Riemannian optimization with SGD applied to
the underlying parameters of the TT-format (the baseline). Num-
bers in the legend stand for the batch size. All methods were
initialized from the solution of ordinary linear logistic regression.

Method Test AUC ~ Lraining  Inference
time (s) time (s)
Log. reg. 0.50 £ 0.0 0.4 0.0
RF 0.55+ 0.0 21.4 1.3
SVM RBF 0.50 £ 0.0 2262.6 1076.1
SVM poly. 2 0.50 + 0.0 1152.6 852.0
SVM poly. 6 0.56 £ 0.0 4090.9 754.8
2-nd order FM  0.50 + 0.0 638.2 0.1
6-th order FM  0.57 + 0.05 1412.0 0.2
ExM rank 2 0.54 + 0.05 198.4 0.1
ExM rank 4 0.69 + 0.02 443.0 0.1
EXM rank 8 0.75 £ 0.02 998.3 0.2

Table 1. A comparison between models on synthetic data with
high-order interactions (Sec. 8.2). We trained each model 5 times
and report the mean and standard deviation AUC across the runs.

ground truth target variable to a deterministic function of
the input: y(w) = Ziil €2 H?L:l Tz, whe.re the weights
of the interactions were sampled from a uniform distribu-

tion: €1,...,890 ~U(—1,1).

We used scikit-learn implementation (Pedregosa et al.,
2011) of logistic regression, random forest, and kernel
SVM; FastFM implementation (Bayer, 2015) of 2-nd order
Factorization Machine; and our implementation of Expo-
nential Machine (our method) and high-order Factorization
Machine®. To improve the generalization of our method,
we used the dropout technique (Srivastava et al., 2014). We
evaluated the performance based on the Area Under the
Curve (AUC) metric since it is applicable to all methods
and is robust to unbalanced labels (Table 1).

9. Related work

Kernel SVM translates into many non-linear predictors and
in particular SVM with a polynomial kernel can model in-

teractions (Boser et al., 1992). As a downside, it scales

3https ://github.com/geffy/tffm
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at least quadratically with the dataset size (Bordes et al.,
2005) and overfits on highly sparse data.

With this in mind, (Rendle, 2010) developed Factorization
Machine (FM), a general predictor that models pairwise
interactions. To overcome the problems of SVM, FM re-
stricts the rank of the weight matrix, which leads to a lin-
ear number of parameters and generalizes better on sparse
data. FM running time is linear with respect to the number
of nonzero elements in the data, which allows scaling to
billions of training entries.

The main difference between our approach and high-order
FM is the choice of the decomposition: we use TT-
decomposition, while FM uses CP-decomposition (Caroll
& Chang, 1970; Harshman, 1970), which does not allow
for Riemannian optimization. We found Riemnannian op-
timization superior to the baseline (Sec. 6) that was used
in several other models parametrized by a tensor factoriza-
tion (Rendle, 2010; Lebedev et al., 2014; Novikov et al.,
2015).

Another block of related works uses tensor decomposi-
tions to parametrize neural networks (Lebedev et al., 2014;
Novikov et al., 2015) and to recover parameters of models,
e.g. latent variable models (Anandkumar et al., 2014) and
neural networks (Janzamin et al., 2015).

10. Discussion

We presented a predictor that models all interactions of ev-
ery order. To regularize the model and to make the learn-
ing and inference feasible, we represented the exponen-
tially large tensor of parameters in the Tensor Train for-
mat. We found that the proposed model outperforms other
machine learning algorithms on synthetic data with high-
order interaction. The model, however, does not support
sparse data, so it cannot scale to hundreds of thousands of
features. To train the model, we used Riemannian opti-
mization in the stochastic regime and report that it outper-
forms a popular baseline based on the stochastic gradient
descent. The stochastic Riemannian optimization may suit
other machine learning models parametrized by tensors in
the TT-format.
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