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Abstract

We provide sharp error bounds for the difference between the transition densities of some multidimen-
sional Continuous Time Markov Chains (CTMC) and the fundamental solutions of some fractional in time
Partial (Integro) Differential Equations (P(I)DEs). Namely, we consider equations involving a time frac-
tional derivative of Caputo type and a spatial operator corresponding to the generator of a non degenerate
Brownian or stable driven Stochastic Differential Equation (SDE).
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

We are interested in the probabilistic approximation of P(I)DEs of the following type:
∂
β
t u(t, x) = Lu(t, x), (t, x) ∈ R∗

+ × Rd ,

u(0, x) = f (x), x ∈ Rd ,
(1.1)
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where ∂βt , β ∈ (0, 1), stands for the Caputo–Dzherbashyan derivative and L is the generator
of a Brownian or stable driven non degenerate SDE (see Eqs. (2.9), (2.10) for the respective
definitions of the Caputo–Dzherbashyan derivative and the spatial operators considered). Equa-
tions of the previous type appear in many applicative fields from natural sciences to finance, see,
e.g., Meerschaert et al., [28,29] and references therein.

Under suitable assumptions, the solution of (1.1) can be represented as u(t, x) := E[ f (X0,x

Zβt
)]

where (X0,x
s )s≥0 solves the SDE with generator L and (Zβt )t≥0 is the inverse of a stable

subordinator of index β ∈ (0, 1) independent from X0,x . This therefore extends the “usual”
Feynman–Kac representation, corresponding to β = 1, to the fractional case β ∈ (0, 1).

Many probabilistic numerical approximations of u(t, x) have been considered when β = 1.
We can for instance mention the works of Konakov et al. (see [19–21] in the non degenerate
diffusive case or [22] for SDEs driven by symmetric stable processes) that investigate the Euler
scheme or, more generally, the Markov Chain approximation of the spatial motions in terms of
Edgeworth expansions or Local Limit Theorems (LLTs). We can also refer to the works of Bally
and Talay for the Euler scheme of some hypoelliptic diffusions [2,3] or [23] for associated LLTs.

In the current (strictly) fractional framework two additional difficulties appear. Firstly, it is
known that the fundamental solutions to (1.1) exhibit, additionally to the usual time singularity
in short time, a diagonal spatial singularity, see e.g. Eı̆delman and Kochubeı̆ [11] for the current
case or Kochubeı̆ [16] for extensions to higher order fractional derivatives β ∈ (1, 2). Secondly,
the inverse of the subordinator leads to consider random integration times that might be either
very small or very long. The analysis of the discretization error in the previously mentioned
works was always performed for a fixed final time horizon T and the constants controlling the
error estimates depend explosively on T for small and large times. We must therefore carefully
control these explosions. In short time we must handle the spatial singularity of the fractional
heat kernel whereas in long time, the explosion is compensated by the fast decay of the density
of the inverse subordinator. Let us mention that those difficulties may deteriorate the “usual”
convergence rate for the weak error even for the Euler approximation. We establish error bounds
for the Euler scheme and the Markov Chain approximation of a diffusive SDE, Theorem 3.1, and
for the Euler scheme of a stable driven SDE, Theorem 3.2. We emphasize that Kolokoltsov [18]
also considered probabilistic schemes to approximate equations of type (1.1) in a more general
setting, namely considering a fractional like time derivative that could depend on space as well.
He establishes convergence of the schemes towards the expected solution but since the approach
relies on semigroup techniques, no convergence rates are provided.

The article is organized as follows. We first recall in Section 2 which are the probabilistic
tools needed to give representations and approximations of the solution to Eq. (1.1). We then
state our main results in Section 3. The proofs are given in Section 4 which is the technical
core of the work. Some perspectives are considered in Section 5. Technical results concerning
the parametrix expansions, which are needed to establish the short and long time behavior of
the involved spatial densities, are collected in Appendix A. As a by-product of our analysis, we
obtain two-sided heat kernel estimates for the fundamental solution of (1.1) in Appendix B.

2. Probabilistic objects associated with Cauchy problems with time fractional derivatives

We first recall how a probabilistic representation for the solution of (1.1) can be derived
considering the special case of L being associated with a d-dimensional symmetric stable process
of index α ∈ (0, 2], thus including the Brownian motion. We write for φ ∈ C2

0(R
d ,R) (space of
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twice continuously differentiable functions with compact support), Lφ(x) =
1
2∆φ(x) for α = 2

whereas for α ∈ (0, 2):

Lφ(x) =


Rd

{φ(x + y)− φ(x)− ∇φ(x) · yI|y|≤1}µ(dy)

=


R+×Sd−1

{φ(x + |y|ȳ)− φ(x)− ∇φ(x) · |y|ȳI|y|≤1}|y|
−(1+α)d|y|ν(d ȳ), (2.1)

where ν is the spherical part of µ and is assumed to be non degenerate, i.e. there exists

Λ ≥ 1, ∀ξ ∈ Rd , Λ−1
|ξ |α ≤


Sd−1

|⟨ξ, η⟩|αν(dη) ≤ Λ|ξ |α. (2.2)

Observe that if (Sαu )u≥0 is a stable process with generator L then

∀t ≥ 0, ∀ξ ∈ Rd , ϕSαt (ξ) := E[exp(i⟨ξ, Sαt ⟩)] := exp


−tCα


Sd−1

|⟨ξ, η⟩|αν(dη)


,

where the explicit value of Cα can be found in Sato [36].
Let us now discuss heuristically how some suitable scaling limits of Continuous Time Random

Walks (CTRWs) actually give a probabilistic interpretation of the solution to (1.1). A rigorous
connection between CTRWs and the solution to (1.1) can be found in Section 5 of the work by
Meerschaert and Scheffler [27], when the spatial motion is α-stable. These objects thus provide
a natural approximation scheme to (1.1). Basically, CTRWs are random walks that wait a certain
amount of time between their jumps. In the i.i.d. case, the mechanism can be described as follows:
let (Ti , Yi )i∈N∗ be a sequence of R+

×Rd -valued i.i.d pairs of random variables defined on some
probability space (Ω ,F ,P). For all t ≥ 0 one defines:

Γt :=

Nt
i=0

Yi , Nt := max


m ∈ N :

m
i=1

Ti ≤ t


.

If the (Ti )i∈N∗ are exponentially distributed and independent of the (Yi )i∈N∗ the process (Γt )t≥0
is easily shown to be Markovian. This property clearly fails in the general case. Of particular
interest is the case when the (Ti )i∈N∗ and the (Yi )i∈N∗ are independent and respectively belong
to the domain of attraction of a β-stable and α-stable law with β ∈ (0, 1) and α ∈ (0, 2]. This
property indeed yields that:

n−1/β
⌊nu⌋
i=1

Ti


u≥0

⇒ (Sβ,+u )u≥0, and


n−1/α

⌊nu⌋
i=1

Yi


u≥0

⇒ (Sαu )u≥0, (2.3)

up to some possible additional multiplicative slowly varying function in the normalized constants
n−1/β , n−1/α , which we omit here for simplicity. Above, ⌊·⌋ stands for the integer part and we
use the convention that

0
i=1 = 0. Also, Sβ,+ is a β-stable subordinator, i.e. a Lévy process with

positive jumps and Laplace transform ψ
Sβ,+u

(λ) = E[exp(−λSβ,+u )] = exp(−uλβ), λ ≥ 0. On

the other hand, we will assume that Sα is a symmetric Rd -valued stable process with generator
as in (2.1).

In the above equation, the symbol ⇒ stands for the usual convergence in law for processes,
in the respective Skorokhod spaces of càdlàg functions D(R+,R+) and D(R+,Rd), for the
J1-topology. The second identity in (2.3) follows from Theorem 4.1 in Meerschaert and



1148 M. Kelbert et al. / Stochastic Processes and their Applications 126 (2016) 1145–1183

Scheffler [27]. On the other hand, equation (2.5) in [27] gives the convergence in distribution
over all finite dimensional marginals for the first identity. Convergence in D(R+,R+) can then
be established following the arguments of the proof of Corollary 3.4 of the same reference.

Now, the rescaled process associated with the number of jumps (Nt )t≥0 also has a limit,
namely Corollary 3.4 in [27] yields (n−βNnt )t≥0 ⇒ (Zβt )t≥0 in D(R+,R+) for the J1-topology,
where Zβt := inf{s ≥ 0 : Sβ,+s > t} which is the inverse process of a β-stable subordinator.
Since Sβ,+s is increasing in s, Zβt also corresponds to the first passage time of Sβ,+ above the
level t . Thus, one formally has:


n−β/αΓnt


t≥0 =


(nβ)−1/α

Nnt
i=1

Yi


t≥0

=

(nβ)−1/α
nβ (n−βNnt )

i=1

Yi


t≥0

⇒


Sα

Zβt


t≥0

.

The above convergence has been first rigorously established in D(R+,Rd) for the M1-topology
in Theorem 4.2 of [27] whereas the convergence in the J1-topology follows from Theorem 3.6
of Straka and Henry [39]. From the independence of Sα and Zβ , the limit random variable Sα

Zβt
has, for any t > 0, an explicit density that writes:

q(t, x) =


+∞

0
pSα (u, x)pZβ (t, u)du, (2.4)

where pSα (u, x) =
1

(2π)d


Rd exp(−i⟨x, λ⟩)ϕSαu (λ)dλ and pZβ (t, u) stands for the density of Zβt
at point u. We refer to Corollary 4.2 in [27] for a proof of (2.4).

Observe also that, since P[Zβt ≤ u] = P[Sβ,+u > t], we have the following relation between
the density of the inverse Zβ and the density of the subordinator Sβ,+:

pZβ (t, u) = ∂uP[Zβt ≤ u] = ∂u(1 − P[Sβ,+u ≤ t]) = −∂u

 t

0
pSβ,+(u, y)dy. (2.5)

We also have the following important property for this density.

Proposition 2.1 (PDE Associated with pZβ ). For fixed t > 0, the density pZβ (t, u) satisfies in
the distributional sense the equation:

(Dβt + ∂u)pZβ (t, u) =
t−β

Γ (1 − β)
δ(u), (2.6)

where δ stands for the Dirac mass at 0 and Dβt denotes the Riemann–Liouville derivative.
Namely, for a function h and β ∈ (0, 1):

Dβt h(t) =
1

Γ (1 − β)

d

dt

 t

0
h(t − u)u−βdu


.

Proposition 2.1 is a special case of Theorem 3.1 in Baeumer and Meerschaert [1]. Additional
details can be found in Section 5.1 of [29].
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From (2.4) and (2.6) we therefore formally derive that for all t > 0:

Dβt q(t, x) =


+∞

0
pSα (u, x)


−∂u pZβ (t, u)+

t−β

Γ (1 − β)
δ(u)


du

=


+∞

0
∂u pSα (u, x)pZβ (t, u)du +

t−β

Γ (1 − β)
δ(x)

= Lq(t, x)+
t−β

Γ (1 − β)
δ(x), (2.7)

where we used that ∂u pSα (u, x) = LpSα (u, x) (the spatial density satisfies the Kolmogorov
backward equation) and the fact that Sαu →

u→0
0. We have also denoted by δ, with a slight abuse of

notation, the Dirac mass at 0 in Rd . A rigorous proof for Eq. (2.7) again follows from Theorem
3.1 in [1].

In other words, the transition p.d.f. q of (Sα
Zβt
)t≥0 can be viewed as the fundamental solution of

(2.7) (see also Theorem 5.1 in [27]). Hence, for a given continuous initial data f , the associated
Cauchy problem solved by u(t, x) = E[ f (x + Sα

Zβt
)] writes:

Dβt u(t, x) = Lu(t, x)+
t−β

Γ (1 − β)
f (x), (t, x) ∈ R∗

+ × Rd ,

u(0, x) = f (x), x ∈ Rd .

(2.8)

Alternatively, Eq. (2.8) can be rewritten in terms of the Caputo–Dzherbashyan fractional
derivative, denoted ∂βt hereafter, recalling that for a smooth function h and β ∈ (0, 1):

∂
β
t h(t) :=

1
Γ (1 − β)

 t

0
h′(t − u)u−βdu,

Dβt h(t)−
t−β

Γ (1 − β)
h(0) = ∂

β
t h(t), t > 0.

(2.9)

Applying identity (2.9) to the function h(t) = u(t, x) yields that (2.8) rewrites:
∂
β
t u(t, x) = Lu(t, x), (t, x) ∈ R∗

+ × Rd ,

u(0, x) = f (x),

which corresponds to the initial equation (1.1). The probabilistic representation of the solution
to Eq. (1.1) thus writes u(t, x) = E[ f (x + Sα

Zβt
)].

Let us mention that, in the special case L = λ2∆, some explicit expansions of the density of√
2λS2

Zβt
have been obtained by Beghin and Orsingher [6].

We will now consider the problem of approximating solutions to the fractional Cauchy
problem (2.8) (or in its Caputo–Dzherbashyan formulation (1.1)) for generators of the following
form:

L1φ(x) = ⟨b(x),∇φ(x)⟩ +
1
2

Tr(σσ ∗(x)D2
xφ(x)) or

L2φ(x) = ⟨b(x),∇φ(x)⟩

+


Rd

{φ(x + σ(x)y)− φ(x)− ∇φ(x) · σ(x)yI|σ(x)y|≤1}µ(dy), (2.10)
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for µ(dy) := |y|
−(1+α)d|y|ν(d ȳ) as in (2.1), in Eqs. (2.8), (1.1). We consider homogeneous

operators in time for notational simplicity. Let (Xs)s≥0 solve the SDE with generator given in
(2.10), i.e.

X t = x +

 t

0
b(Xs)ds +

 t

0
σ(Xs−)dYs (2.11)

where Y is a Brownian motion in the diffusive case and a symmetric α-stable with α ∈ (0, 2)
process with Lévy measure µ otherwise. Under suitable assumptions, typically smoothness
and boundedness of b, σ and non degeneracy of σ , the transition probability function of X
is absolutely continuous and the density is itself smooth and must satisfy the Fokker–Planck
equation, see e.g. Nualart [33] in the diffusive case, Bichteler et al. [7] in the jump case under
some integrability constraints on the jumps, and Chakraborty [8] in the stable driven case.

In all those cases, for t > 0, the density p(t, x, ·) of X t in (2.11) is the fundamental solution
of (1.1) with β = 1, i.e. (∂t + L)p(t, x, ·) = 0 for L = L1 or L = L2 and p(t, x, ·)→t↓0 δx (·).
From this property, and provided some good integrability properties are available for p(t, x, ·)
(see Lemma 4.10), the arguments of Theorem 3.1 in [1] and Corollary 3.1 in [27] can be
reproduced to derive that the density pX

Z
β
t

of X
Zβt

at time t > 0, which writes through a

conditioning argument for all (x, y) ∈ (Rd)2:

pX
Z
β
t
(x, y) =


+∞

0
p(u, x, y)pZβ (t, u)du, (2.12)

is the fundamental solution to (1.1) for β ∈ (0, 1), i.e. for a continuous f in (1.1):

∀(t, x) ∈ R+
× Rd , u(t, x) = E[ f (X0,x

Zβt
)]. (2.13)

Let us also mention that modifying the laws of the waiting times of the initial CTRW including
a possible dependence on the previous jump time and spatial position, leads to consider at
the limit a modified fractional derivative in time. We refer to Kolokoltsov [18] for details
and results concerning the extension of the formula (2.13) and convergence of the associated
approximations. Let us emphasize that the semi-group approach (convergence of the generators)
used in [18] gives convergence of the one dimensional marginals for these models. The process
convergence in the Skorokhod space for an appropriate topology still seems to be an open
problem.

3. Assumptions and main results

3.1. Assumptions on the coefficients and approximation scheme

We assume that the coefficients in Eq. (2.11) satisfy the following conditions:

(S) The coefficients b : Rd
→ Rd , σ : Rd

→ Rd
⊗ Rd are assumed to be bounded as well as

their derivatives up to order 6.
(UE) There exists Λ ≥ 1 s.t. for all (x, ξ) ∈ (Rd)2:

Λ−1
|ξ |2 ≤ ⟨σσ ∗(x)ξ, ξ⟩ ≤ Λ|ξ |2.
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Now, we consider for a given time step h > 0, setting for i ∈ N, ti := ih, the following Markov
Chain approximation of Eq. (2.11):

∀i ∈ N, Xh
ti+1

= Xh
ti + b(Xh

ti )h + σ(Xh
ti )h

1/αηi+1, Xh
0 = x, (3.1)

for i.i.d. Rd -valued random variables (η j ) j≥1 and α ∈ (0, 2].
Also, since we are considering the fractional derivative, we can first explicitly and exactly

simulate the β-stable subordinator on the infinite time grid, i.e. (Sβ,+ti )i∈N, using the scaling
properties and the independence of increments, from the procedure described in Chambers
et al. [9]. Precisely, we recall that if Θ is uniformly distributed on [0, π] and W is an exponential
variable with mean 1 and independent from Θ then for all β ∈ (0, 1):

Sβ,+1
(law)
= (aβ(Θ)/W )(1−β)/β , ∀θ ∈ (0, π), aβ(θ) =

sin((1 − β)θ) sin(βθ)β/(1−β)

sin(θ)1/(1−β)
. (3.2)

From the exact simulation on the time grid, a natural choice to approximate the inverse process
Zβt is to consider the discrete inverse process:

∀t ≥ 0, Zβ,ht := inf{si := ih : Sβ,+si
> t}. (3.3)

Thus, for a given T > 0, we finally approximate X
ZβT

appearing in (2.13) by Xh
Zβ,hT

.

Let us mention that the smoothness assumption (S) could be weakened in the case of the Euler
scheme. These smoothness conditions are actually those required to apply the results of [21] for
the Markov Chain approximation in the diffusive setting, i.e. for α = 2.

We also indicate that schemes of the type (3.1)–(3.3) had already been proposed by Magdziarz
et al. [25], without convergence analysis, to approximate the solution density of X

ZβT
. Let us also

mention that “particle methods” had already been considered in Zhang et al. [40] to approximate
the underlying PIDE(s) for the case of a stable like spatial motion for the usual time derivative.
Again, no convergence rates are proved.

Remark 3.1 (About the Innovations in the Spatial Approximation Scheme (3.1)).

– In the diffusive case, corresponding to generators of the form L1 in (2.10), or equivalently to
α = 2, we will typically consider for the (η j ) j∈N∗ in (3.1) standard i.i.d Gaussian variables
or i.i.d. random variables with polynomial tails whose moments match those of the standard
Gaussian law up to a given order.

– In the strictly stable case, corresponding to generators of the form L2 in (2.10) (or to
α ∈ (0, 2)), the situation is more complicated. Considering the Euler approximation in (3.1)

amounts to say that η j
(law)
= Y1, j ∈ N∗ and would require to be able to exactly simulate

the driving process (Ys)s≥0 in (2.11). Now, few symmetric stable processes can be exactly
simulated in Rd , d ≥ 2. This is for instance the case if the spectral measure ν in (2.1)
writes as a sum of n Dirac masses, n ∈ N, on Sd−1. Then Y1 can be realized as a sum of n
independent one-dimensional symmetric stable random variables that can be simulated using
directly identities (2.3) and (2.4) in [9] or from (3.2) and Gaussian subordination. This last
technique can be extended to the multidimensional case. Indeed, if N is a standard Gaussian
vector in Rd , d ≥ 1, then for a given matrix A ∈ Rd

⊗Rd , Z := (Sα/2,+1 )1/2 AN , where Sα/2,+1
stands for the α/2 stable subordinator at time 1, has Fourier transform E[exp(iλ · Z)] =

exp(−2−α/2
|A∗λ|α), λ ∈ Rd . The random variable Z is called elliptically symmetric.
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Observe that if AA∗ is non degenerate then the non-degeneracy condition (2.2) is fulfilled.
This condition guarantees the existence of the density of Z in Rd . When, for d ≥ 2,
the symmetric stable driving process cannot be simulated explicitly, we can under the non
degeneracy condition (2.2) approximate the spectral measure of Y1 by a discrete sum of Dirac
masses of the previous type for which the associated random variable can be simulated exactly.
We refer to Nolan and Rajput [32] for practical discussions on the choice of the points and
associated error bounds on the difference of densities of the two random variables. Another
approach might be to use random variables that can be explicitly simulated and converge, up
to a suitable normalization given by a limit theorem, to the random variable with the required
spectral measure. This scheme is proposed in Zhang et al. [40] to approximate a spatial Lévy
motion (see Section III in that reference). Again, the difficulty in this approach consists in
controlling the induced error.

3.2. Diffusive case

This case is associated with spatial motions with generators of the form L1 in (2.10). We then
specifically assume that α = 2 in (3.1) and that the (η j ) j≥1 are s.t. their moments coincide with
those of the standard Gaussian law in Rd up to order 2. We consider two kinds of conditions:

(IEul) The (η j ) j≥1 have standard Gaussian densities (so that the above scheme (3.1) is the usual
Euler discretization).

(Im) For a given integer m ≥ 2d + 1, the (η j ) j≥1 have a density QM which is C4 and has,
together with its derivatives up to order 4, polynomial decay of order M > d(2m +1)+4.
Namely, for all z ∈ Rd and multi-index ν, |ν| ≤ 4:

|DνQM (z)| ≤ CM (1 + |z|)−M .

We say that assumption (AD,Eul) (resp. (AD,m)) is in force as soon as (S), (UE), (IEul) (resp.
(Im)) hold. We write (AD) whenever (AD,Eul) or (AD,m) holds.

It is well known that under (AD) the random variables X t , Xh
ti have densities for all t >

0, i ∈ N∗ respectively, see e.g. [19]. This property then transfers to X
ZβT

and Xh
Zβ,hT

thanks to the

convolution equation (2.12) and its discrete analogue for the approximation (see Eq. (3.4)). We
will denote by pX

Z
β
T

and pXh

Z
β,h
T

the associated p.d.f. To distinguish precisely the approximations

under (AD,Eul) or (AD,m) we will specifically denote, when needed, by XEul,h

Zβ,hT

, pXEul,h

Z
β,h
T

the Euler

approximation and its density.
We first have the following density bounds for the random variables X

ZβT
and XEul,h

Zβ,hT

, Xh
Zβ,hT

.

Proposition 3.2 (Existence of the Density and Associated Estimates). Under (AD), for a given
T > 0, the laws of the random variables X

ZβT
and XEul,h

Zβ,hT

starting from x ∈ Rd have densities

pX
Z
β
T

(x, ·), pXEul,h

Z
β,h
T

(x, ·) in Rd
\{x} for d ≥ 2, and on R for d = 1. The expression of pX

Z
β
T

(x, ·)

is given by (2.12) whereas

pXEul,h

Z
β,h
T

(x, ·) =


i≥1

P[Zβ,hT = ti ]pEul,h(ti , x, ·). (3.4)
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Furthermore, there exists c := c((A), β) ≥ 1 s.t. for all (x, y) ∈ (Rd)2 and x ≠ y if d ≥ 2,
the following estimates hold:

(pX
Z
β
T

+ pXEul,h

Z
β,h
T

)(x, y) ≤ c( p̂β + p̃β)(T, x − y) (3.5)

where

p̂β(T, x − y) :=


Id≤2

T β/2|x − y|Id=2
+

Id≥3

T β |x − y|d−2


exp(cT β/2)

× exp


−c−1 |x − y|
2

T β


,

p̃β(T, x − y) :=
exp(cT β/(1+β))

T βd/2 exp


−c−1


|x − y|
2

T β

1/(2−β)
. (3.6)

For the Markov Chain approximation, under (AD,m), pXh

Z
β,h
T

expands as in (3.4) replacing pEul,h

by ph , and for all (x, y) ∈ (Rd)2, x ≠ y, d ≥ 2:

pXh

Z
β,h
T

(x, y) ≤ c{q̂2(m−1)−[(d−2)+Id≤2],β + q̃2(m−1),β}(T, x − y) (3.7)

where for all l ∈ N∗:

q̂l,β(T, x − y) :=


Id≤2

T β/2|x − y|Id=2
+

Id≥3

T β |x − y|d−2


exp(cT β/2)×


1 +

|x − y|

T β/2

−l

,

q̃l,β(T, x − y) :=
exp(cT β/(1+β))

T βd/2


1 +

|x − y|

T β/2

−⌊
l

2−β
⌋

. (3.8)

Proposition 3.2 is a direct corollary of our technical estimates (see Lemma 4.11 and its proof).
We also establish in Appendix B a similar lower bound for the density of X

ZβT
, proving that the

estimate is sharp.
We now have the following convergence result:

Theorem 3.1 (Error Bounds for the Approximation Schemes).

– Euler scheme. Under (AD,Eul), there exists c := c((AD)) s.t. for a given time step h ∈ (0, 1),
a deterministic time horizon T > 0 s.t. T > h1/2 (not necessarily a multiple of h), for every
x ≠ y we have:

|pX
Z
β
T

(x, y)− pXEul,h

Z
β,h
T

(x, y)|

=




R+

pZβ (T, u)p(u, x, y)du −


i≥1

P[Zβ,hT = ti ]pEul,h(ti , x, y)


≤ ch


Eβ,Time(T, x − y)+ Eβ,Space(T, x − y)


, (3.9)

where:

Eβ,Time(T, x − y) :=


Id≤2

T β/2|x − y|
+

Id≥3

|x − y|2


p̂β(T, x − y)+

1
T β

p̃β(T, x − y)


,
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Eβ,Space(T, x − y) :=


Id=1 + Id≥3

|x − y|
+

Id=2

T β/2


p̂β(T, x − y)+

1

T β/2
p̃β(T, x − y)


,

with p̂β , p̃β as in (3.6).
– Markov chain. Consider now assumption (AD,m) (general Markov Chain). Then, there exists

c := c((AD,m)) and for all ε ∈ (0, 1/5), cε := cε((AD,m)) s.t. for all given time step
h ∈ (0, 1), T β ≥ h1/5−ε, (x, y) ∈ (Rd)2, x ≠ y:

|pX
Z
β
T

(x, y)− pXh

Z
β,h
T

(x, y)| ≤ c

hEβ,Time(T, x − y)

+ {cεh
1/2 E M

β,Space,LLT(T, x − y)+ E M,ε
β,Space,NoLLT(T, x − y, h)}


, (3.10)

where the contribution Eβ,Time(T, x − y) due to the time sensitivity, see Eqs. (3.9) and (4.1),
is as above and:

E M
β,Space,LLT(T, x − y)

:=


Id=1 + Id≥3

|x − y|
+

Id=2

T β/2


q̂m−[(d−1)+Id=1],β(T, x − y)+

1

T β/2
q̃m,β(T, x − y)


,

with q̃m,β and q̂m−[(d−1)+Id=1],β as in (3.8). Also:

E M,ε
β,Space,NoLLT(T, x − y, h) :=

(h1/5−ε)
1
2 Id≤2

T β |x − y|d−2+Id≤2
exp(cT β/2)

×


exp


−c

|x − y|
2

h1/5−ε


+


1 +

|x − y|

(h1/5−ε)1/2

−2(m−1)+(d−2)+Id≤2

.

Comments on the results.

– Euler scheme. Observe that the term p̂β in (3.6) comes from the contribution of small times
in formula (2.12). This gives the additional (diagonal) spatial singularity in the fractional case.
The term p̃β in (3.6) comes from the integration over long times in (2.12). It induces a loss
of concentration in space w.r.t to the usual case β = 1, though preserving the usual parabolic
equilibrium: the spatial contribution remains comparable to the square root of time.
• In the diagonal region, i.e. for points s.t. |x − y| ≤ κT β/2 for some κ ≥ 1, if we restrict

to spatial points that are equivalent to the time contribution for the usual parabolic metric,
i.e. κ−1T β/2 ≤ |x − y| ≤ κT β/2, the previous error bound reads in small time, i.e. for
T ≤ 1:

|pX
Z
β
T

(x, y)− pXEul,h

Z
β,h
T

(x, y)| ≤
ch

T β
( p̂β + p̃β)(T, x − y). (3.11)

This means that we find the upper bound for the density of the processes involved, see (3.5),
multiplied by a factor corresponding to the singularity induced by a time derivative (or
equivalently second order derivatives in space) of the non degenerate diffusive heat kernel
at time T β . There is even here a difference w.r.t. to the usual analysis, see, e.g., [20], which
involves a singularity of order one in space, which in the current bound comes from the
contribution Eβ,Space(T, x − y) in (3.9) and is negligible if T ≤ 1. This is due to the discrete
approximation of the inverse of the subordinator which yields to consider derivatives in
time for the densities of the spatial motion (see Eq. (4.1) and Lemma 4.1). If the error
bound (3.9) is now considered for T sufficiently large, the contribution Eβ,Space(T, x − y)
dominates and we are back to the usual error rate for the considered region.
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Observe as well that the spatial diagonal singularity induced by the fractional time
derivative yields additional constraints. Namely, for the Euler approach, to get a conver-
gence rate of order hε one needs to take: |x − y| ≥ h(1−ε)/d , d ≥ 1.

• In the off-diagonal region, i.e. |x − y| ≥ κT β/2, we do not have spatial singularities
anymore. Indeed, the error bound also reads as in (3.11). Anyhow, the specificity comes
from the loss of concentration due to the term p̃β coming from the long time integration in
(2.12) and appearing in the two-sided estimates of Appendix B. We refer to Lemmas 4.8 and
4.11 (see also Proposition 3.2 and Theorem B.1) for a detailed presentation of these aspects.

The previous facts make us feel that the previous bounds are sharp, up to constants.
– Markov chains. For the error bound (3.10) associated with the Markov Chain approximation,

the term Eβ,Time is similar to the Euler case, since it does not depend on the chosen
discretization scheme but only on the time sensitivities of the spatial density, see again (4.1).
On the other hand two additional contributions appear. The first one, E M

β,Space,LLT enjoys

the same convergence rate h1/2 as in the usual LLT (see Petrov [34,19]) and the terms
q̂m−(d−1)+Id=1,β , q̃m,β appearing in (3.10) are the Markov chain analogue of the contributions
p̂β and p̃β in (3.9).1 Note first that we keep under (AD,m) the same index m as the one
appearing for the weak error at a given fixed time, see (4.28) and [21,19], for the contribution
q̃m,β associated with the large time integration and which also yields a loss of concentration.
Observe as well that the spatial diagonal singularities in small time also deteriorate the
concentration in this framework. We point out that, for the LLT to apply, the considered time
has to be sufficiently large, namely u ≥ h1/5−ε in (2.12). The last term E M,ε

β,Space,NoLLT comes

precisely from those very small times u ≤ h1/5−ε for which the limit results do not apply.
Also, applying the LLT in (very) small time deteriorates the concentration, see the difference
between Theorem 1 in [21], which is used to prove Theorem 3.1, and Theorem 1.1. in [19]
which gives the LLT with the same concentration rate appearing in the density estimates (3.7)
of Proposition 3.2 if T > 0 is fixed and h is sufficiently small. Eventually, the constraint
m ≥ 2d + 1 in (Im) appears to keep an integrable bound in (3.10).

– Continuity of the estimates when β ↑ 1. In this case, the Caputo derivative in (2.9)
tends to the usual derivative. It is therefore natural to ask whether our results match the
ones previously obtained in that case (see [19,20,22]). Let us now emphasize that when
β ↑ 1 then ψ

Sβ,+u
(λ) → exp(−λu), λ ≥ 0. Thus, the subordinator Sβ,+, and its inverse

Zβ both tend to the deterministic drift with slope 1. This means that for a given T >

0,P[ZβT ∈ du] −→
β→1

δT (du). Hence, the time integral in (2.12) disappears at the limit,

i.e. pX
Z
β
T

(x, y)−→
β→1

p(T, x, y). From (3.9) and (4.1), the same phenomenon occurs for the

scheme provided T = K h, K ∈ N∗ and the error associated with the time sensitivity, term
E1 in (4.1) yielding the contribution Eβ,Time would vanish in the previous error bounds. Since
the previous Dirac convergence would also kill the additional contributions in small and long
time, we finally derive that the error bounds obtained in (3.9) and (3.10) are coherent with
those of the previous works at the limit.

3.3. Strictly stable case

Additionally to assumptions (A), (UE) we will assume that :

1 We recall from Proposition 3.2 that ( p̂β + p̃β )(T, x − y) serves as an upper bound for (pX
Z
β
T

)(x, y).



1156 M. Kelbert et al. / Stochastic Processes and their Applications 126 (2016) 1145–1183

(ND) The spherical part ν of the measure µ in (2.10) satisfies the non-degeneracy condition
(2.2). Moreover, ν has a C3 density w.r.t. the Lebesgue measure of the sphere.

(B) The drift b = 0 if α ≤ 1.

This last condition is rather usual to have pointwise bounds on the density of the SDE, see [17].
We will consider similarly to the diffusive case the approximation (3.1) for α ∈ (0, 2) restricting
ourselves to the Euler scheme case, i.e. the (η j ) j≥1 are i.i.d. symmetric stable random variables
with common law Y1 (driving process at time 1). Thus, from Remark 3.1, the only driving process
satisfying the previous assumptions that can be exactly simulated is the elliptically symmetric
one. It would be interesting to investigate how the error discussed in Nolan and Rajput [32], due
to the discrete approximation of the spectral measure, propagates through the scheme. This is
beyond the scope of the present work.

We say that (AS) holds if (S), (UE), (ND), (B) are in force. Recall from Kolokoltsov [17,22]
that the random variables X t , XEul,h

ti have a density for all t > 0, i ∈ N∗ respectively. From
the controls of Lemma 4.11 we are able to establish that this property transfers to the random
variables X

ZβT
, XEul,h

Zβ,hT

from (2.12). We have the following result.

Proposition 3.3. Under (AS), for a given T > 0, the laws of the random variables X
ZβT

and

XEul,h

Zβ,hT

starting from x ∈ Rd have densities in Rd
\{x} for d ≥ 2 or d = 1, α ≤ 1, and on R for

d = 1, α > 1. The expression of these densities is given by Eqs. (2.12) and (3.4) respectively.
Furthermore, there exists c := c((A), β) ≥ 1 s.t. for all (x, y) ∈ (Rd)2 and x ≠ y if d ≥ 2 or
d = 1, α ≤ 1, the following estimates hold:

(pX
Z
β
T

+ pXEul,h

Z
β,h
T

)(x, y) ≤ c( p̂β + p̃β)(T, x − y), c := c(β, (AS)),

with

p̂β(T, x − y) := exp(cT βω)
 1

T β |x − y|d−α
I|x−y|≤T β/α +

T β

|x − y|d+α
I|x−y|>T β/α


,

p̃β(T, x − y) :=
exp(cT βω/(1−ω(1−β)))

T βd/α


1 +
|x−y|

T β/α

d+α
, ω :=

1
α

∧ 1.
(3.12)

Theorem 3.2. Under (AS), there exists a constant c s.t. for a given time step h ∈ (0, 1) and a
fixed time horizon T > h1/β , and any (x, y) ∈ (Rd)2 s.t. |x − y| ≥ h1/α we have the following
convergence result:

|pX
Z
β
T

(x, y)− pXEul,h

Z
β,h
T

(x, y)|

≤ ch
 I|x−y|≤T β/α

|x − y|α
+

I|x−y|>T β/α

T β


p̂β(T, x − y)+

1
T β

p̃β(T, x − y)

, (3.13)

where p̂β , p̃β are as in (3.12).

Remark 3.4. We observe a phenomenon which is similar to the diffusive case, i.e. the error
bound has the expected rate of order h up to additional singularities. In the strictly stable case,
i.e. α ∈ (0, 2), two contributions give additional singularities w.r.t. those already appearing in the
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sharp density bounds (see Theorem B.1). Those contributions write T −β , |x − y|
−α and come

from the time derivative of the density in (2.12).
On the other hand, since the spatial motion already has heavy tails, we do not observe here

a loss of concentration phenomenon as we did in the diffusive case. Eventually, we still have
diagonal spatial singularities, which are in the strictly stable case more direct to formulate. They
appear precisely when |x − y| ≤ T β/α , that is when the diagonal regime holds w.r.t. to the usual
stable parabolic scaling. This is again the effect of the fractional in time derivative analyzed in
small time, see (2.12). Let us mention that there is some continuity w.r.t. to the stability index
for the induced singularity (see (3.6) and (3.12)), at least when d ≥ 3 since the diffusive case
provides a factor (T β |x − y|

d−2)−1 for that contribution in p̂β(T, x − y).

4. Proof of the main results

In the following we denote by c a generic positive constant that may change from line to
line. Explicit dependences for those constants c, mainly on assumptions (AD) or (AS), β, are
specified as well.

4.1. Decomposition of the error

For given points (T, x, y) ∈ R∗
+ × (Rd)2, we get from (2.12) and (3.3) that the error writes:

E(T, x, y) := (pX
Z
β
T

− pXh

Z
β,h
T

)(x, y)

=


R+

pZβ (T, u)p(u, x, y)du −


i≥1

P[Zβ,hT = ti ]ph(ti , x, y),

=


R+

pZβ (T, u)(p(u, x, y)− p(φ(u), x, y))du

+


i≥1

P[Zβ,hT = ti ](p(ti , x, y)− ph(ti , x, y))


,

:= E1(T, x, y)+ E2(T, x, y), (4.1)

denoting for all u ∈ R∗
+, φ(u) := inf{ti := ih : ti > u}, where we have used (3.3) for the last

but one equality. Let us specify that E1 is a term involving the time sensitivities of the density
of the SDE (2.11), which does not depend on the approximation scheme. The contribution E2 is
associated with the spatial sensitivity involving the discretization error for the considered scheme.

The idea is then to use some known asymptotics of the density Sβ,+ (see e.g. Zolotarev [41]
or Hahn et al. [14]) which provide those for pZβ . On the other hand, the quantities |p(ti , x, y)−
ph(ti , x, y)| have been thoroughly investigated in the literature for the diffusive case, see [19,
13]. The results established therein give that for a general approximation scheme of type (3.1)
the difference is controlled at order h1/2 which is the convergence rate in the Gaussian LLT, see,
e.g., Petrov [34]. If the scheme already involves Gaussian increments (usual Euler scheme of
the diffusion) the control is improved and the convergence rate is h, see also [20]. In the strictly
stable case, i.e. α < 2, the convergence rate of the Euler scheme, for which the exact stable
increments are considered in (3.1), has been investigated in [22]. The proof of Theorems 3.1 and
3.2 immediately follows from Eq. (4.1) and the following lemmas.
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Lemma 4.1 (Time Sensitivity in the Error). Under assumption (AD) (Diffusive case) we have
that there exists c := c(β, (AD)) ≥ 1, s.t. for all T > 0, (x, y) ∈ (Rd)2, x ≠ y:

|E1(T, x, y)| ≤ ch


exp(cT β/2)

T β |x − y|d
exp


−

c−1

2
|x − y|

2

T β


+

exp(cT β/(1+β))

T β(1+d/2)
exp


−c−1


|x − y|

2

T β

1/(2−β)
≤ ch


Id≤2

T β/2|x − y|
+

Id≥3

|x − y|2


p̂β(T, x − y)+

1
T β

p̃β(T, x − y)


.

Under Assumption (AS) (Strictly stable case), there exists c := c(β, (AS)) s.t. for all
T > 0, (x, y) ∈ (Rd)2, x ≠ y:

|E1(T, x, y)| ≤ ch


exp(cT βω)

 I|x−y|≤T β/α

T β |x − y|d
+

I|x−y|>T β/α

|x − y|d+α


+

exp(cT βω/(1−ω(1−β)))

T β(1+d/α) ∨ |x − y|d+α


≤ ch

 I|x−y|≤T β/α

|x − y|α
+

I|x−y|>T β/α

T β


p̂β(T, x − y)+

1
T β

p̃β(T, x − y)


,

where ω =
1
α

∧ 1.

Remark 4.2. Observe that in the stable case there is no loss of concentration as in the diffusive
one. The second term of the stable bound in Lemma 4.1 corresponds to the usual estimate for the
time derivative of the stable density, see Lemma 4.10 and [17]. The first one corresponds to the
additional spatial singularity induced by the fractional derivative in time in the diagonal regime
|x − y| ≤ T β/α (stable parabolic scaling at time T β ).

We now give two Lemmas concerning the spatial sensitivity that involve the analysis of the
discretization error and the time randomization.

Lemma 4.3 (Spatial Sensitivity: Diffusive Case). Under assumption (AD) there exists c :=

c(β, (AD)) s.t. for all T > 0, (x, y) ∈ (Rd)2, x ≠ y:
– For the Euler scheme:

|E Eul
2 (T, x, y)| ≤ ch


Id=1 + Id≥3

|x − y|
+

Id=2

T β/2


p̂β(T, x − y)+

1

T β/2
p̃β(T, x − y)


:= chEβ,Space(T, x − y) (4.2)

where we write E Eul
2 , with a slight difference w.r.t. the definition in (4.1), to specifically make

the distinction with general Markov Chains.
– For a general Markov Chain, we have that for all ε ∈ (0, 1/5) there exist cε := cε((AD,m))

and c := c((AD,m)) s.t. for all T > 0, (x, y) ∈ (Rd)2, x ≠ y:

|E2(T, x, y)| ≤


cεh

1/2


Id=1 + Id≥3

|x − y|
+

Id=2

T β/2


q̂m−(d−1)+Id=1,β(T, x − y)

+
1

T β/2
q̃m,β(T, x − y)


+

c(h1/5−ε)
1
2 Id≤2

T β |x − y|d−2+Id≤2
exp(cT β/2)

×


exp


−c

|x − y|
2

h1/5−ε


+


1 +

|x − y|

(h1/5−ε)1/2

−2(m−1)+(d−2)+Id≤2


:= {cεh
1/2 E M

β,Space,LLT(T, x − y)+ E M,ε
β,Space,NoLLT(T, x − y, h)}. (4.3)
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Lemma 4.4 (Spatial Sensitivity: Strictly Stable Case). Under assumption (AS), there exists
c := c(β, (AS)) ≥ 1 s.t. for all T > 0, (x, y) ∈ (Rd)2, x ≠ y:

|E Eul
2 (T, x, y)|

≤ ch


exp(cT βω)

 I|x−y|≤T β/α

T β |x − y|d
+

I|x−y|>T β/α

|x − y|d+α


+

exp(cT βω/(1−ω(1−β)))

T β(1+d/α) ∨ |x − y|d+α


≤ ch

 I|x−y|≤T β/α

|x − y|α
+

I|x−y|>T β/α

T β


p̂β(T, x − y)+

1
T β

p̃β(T, x − y)


.

Remark 4.5. We emphasize that in the strictly stable case, both time and spatial sensitivities
yield the same error. This comes from the fact that the short time singularity for the error
expansion of the Euler scheme, exactly matches the time singularity of the derivative of the
stable heat kernel, see Eqs. (4.32) and (4.12).

4.2. Asymptotics of the PDF of the inverse subordinator

As a preliminary remark, let us mention that in the particular case β = 2−n, n ∈ N∗, for
all T > 0, the random variable ZβT , inverse at the level T of the subordinator Sβ,+ can be
easily and explicitly simulated from the following Proposition. In particular, the auxiliary discrete
approximation Zβ,hT is not needed in those cases, and the time sensitivity error E1(T, x, y) in (4.1)
would vanish (considering a straightforward extension of the discretization scheme for the last
time step).

Proposition 4.6 (Identity in Law for ZβT , β = 2−n, n ∈ N∗, T > 0).

∀n ∈ N∗, β = 2−n, ZβT
(law)
=

√
2|B1(

√
2|B2(

√
2|B3(· · · (

√
2|Bn(T )|) · · ·)|)|)|, (4.4)

where the (Bi )i∈{1,...,n} are independent Brownian motions.

Proof. Let us start with n = 1. In this case, it is well known that, recalling that (S
1
2 ,+

t )t≥0 is the

standard subordinator with index 1
2 , one has


S

1
2 ,+

t


t≥0

(law)
=


τ t

√
2


t≥0

, where τ t
√

2
:= inf{s ≥

0 : Bs =
t

√
2
}, stands for the hitting time of level t

√
2

for the standard Brownian motion B.

Indeed, considering for a given λ ≥ 0 the exponential martingale


exp(
√

2λBs − λs)


s≥0
, the

stopping theorem gives that, for all s ≥ 0,E[exp(
√

2λBs∧τ t√
2

−λ(s ∧τ t
√

2
))] = 1 which implies,

as s → +∞,E[exp(−λτ t
√

2
)] = exp(−tλ1/2). Write now for all t ≥ 0:

P[Z
1
2
T ≤ t] = P[S

1
2 ,+

t > T ] = P[τ t
√

2
> T ] = P


sup

s∈[0,T ]

Bs ≤
t

√
2


= P

√
2|BT | ≤ t


,

using the well known Lévy identity sups∈[0,T ] Bs
(law)
= |BT |, T > 0, for the last equality, see [35].

This proves (4.4) for n = 1. Introduce now a family of i.i.d. random processes

(Si (t))t≥0


i≥1

with law (S
1
2 ,+

t )t≥0. It is then easily seen that S̄n(t) := Sn(Sn−1(. . . S1(t))) is a standard stable
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subordinator of index β =
1
2n . An immediate induction indeed gives:

∀λ ≥ 0, E[exp(−λSn(Sn−1(. . . S1(t))))] = E[exp(−λ1/2Sn−1(. . . S1(t)))] = · · ·

= exp(−λ1/(2n)t).

Assume that identity (4.4) holds for a given n ∈ N∗ and let Bn+1 be an additional independent
Brownian motion independent of the (Bi )i∈[[1,n]]. Write:

P[S̄n+1(t) > T ] = P[Sn+1(S̄n(t)) > T ] = P


sup

s∈[0,T ]

Bn+1(s) ≤
S̄n(t)
√

2



= P


C̄n


√

2 sup
s∈[0,T ]

Bn+1(s)


≤ t


, (4.5)

where C̄n stands for the inverse of S̄n . Now, the induction hypothesis exactly gives that for all
u ≥ 0

C̄n(u)
(law)
=

√
2|B1(

√
2|B2(

√
2|B3(· · · (

√
2|Bn(u)|) · · ·)|)|)|.

The proof then follows from the Lévy identity and (4.5) since S̄n+1 is a subordinator of index
1/2n+1. �

Remark 4.7. It can be shown similarly that for given (βi )i∈[[1,n]] ∈ (0, 1)n, n ∈ N∗, if
(Si (t))t≥0


i∈[[1,n]]

are independent subordinators s.t for i ∈ [[1, n]], (Si (t))t≥0
(law)
= (Sβi ,+

t ), then

S̄n(t) := Sn(Sn−1(. . . S1(t))) is a subordinator of index β :=
n

i=1 βi and

ZβT
(law)
= Zβn

Z
βn−1

...Zβ1
T

.

The delicate part is that this relation cannot be easily exploited from the practical viewpoint,
except if βi =

1
2 ,∀i ∈ [[1, n]].

In particular, it follows from Proposition 4.6 that, for a given spatial Markov process (X t )t≥0
with generator L of the form (2.10), the solution of Eq. (1.1) with β = 2−n writes for a
continuous function f and for all (T, x) ∈ R+

× Rd :

u(T, x) := E[ f (X0,x

Z2−n
T

)] := E[ f (X0,x
√

2|B1(
√

2|B2(
√

2|B3(···(
√

2|Bn(T )|)···)|)|)|
)],

generalizing Theorem 2.2 in Beghin and Orsingher [6].
We now state the Lemma concerning the required asymptotics for the laws of ZβT , Zβ,hT .

Lemma 4.8 (Bounds for the Density of the Inverse Subordinator and Its Discrete
Approximation). For all T > 0,

pZβ (T, u) ≤ θ(T, u), ∀i ∈ N∗, P[Zβ,hT = ti ] ≤ Cβhθ(T, ti ), (4.6)

where:

θ(T, u) :=
cβ
T β

exp


−c−1
β

 u

T β

1/(1−β)

, (4.7)

for some constants cβ , Cβ ≥ 1.
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Remark 4.9. The above control is the generalization of the well known Gaussian bound for
β = 1/2 recalled in Proposition 4.6.

Proof. Let us first recall the following asymptotics for pSβ,+

1, ·


from equation (2.2), (2.3)
in [14], see also [41]:

pSβ,+

1, v


∼ K (β/v)(1−β/2)/(1−β) exp


−[1 − β](v/β)β/(β−1)


,

v → 0+, K = 1/


2πβ(1 − β),

pSβ,+

1, v


∼

β

Γ (1 − β)
v−β−1, v → +∞.

(4.8)

Write now from (2.5) recalling the identity Sβ,+u
(law)
= u1/β Sβ,+1 , u > 0:

pZβ (T, u) = −∂u

 T

0

1

u1/β pSβ,+


1,

y

u1/β


dy

=
1

βu1+1/β

 T

0
pSβ,+


1,

y

u1/β


dy +

 T

0
∂y pSβ,+


1,

y

u1/β


ydy


=

T

βu1+1/β pSβ,+


1,

T

u1/β


, (4.9)

integrating by parts and using (4.8).
Hence,

pZβ (T, u) ∼
T −β

Γ (1 − β)
, u → 0+,

pZβ (T, u) ∼


β

T

β/(2(1−β))

K u
β−1/2
1−β exp


−[1 − β] (β)β/(1−β)

 u

T β

1/(1−β)


u → +∞.

The above controls and elementary computations give the first bound in (4.6). Indeed, there exists
c0 := c0(β) ≥ 1 s.t.,

p
ZβT
(T, u) ≤ c

T −β

Γ (1 − β)
, u ≤


T

c0

β
,

p
ZβT
(T, u) ≤ cK


β

T

β/(2(1−β))

u
β−1/2
1−β exp


−[1 − β] (β)β/(1−β)

 u

T β

1/(1−β)


≤
cβ
T β

exp


−c−1
β

 u

T β

1/(1−β)

, u ≥ (c0T )β .

For the last bound we observe that for β ≤
1
2 and u ≥ (c0T )β , [u

β−
1
2

1−β ]/[T
β

2(1−β) ] ≤

c̄T
β

1−β
([β−

1
2 ]−

1
2 ) = c̄T −β , with a constant c̄ := c̄(β). For β > 1

2 , we obtain similarly that

[u
β−

1
2

1−β ]/[T
β

2(1−β) ] ≤ T −β
[

u
T β

]

β−
1
2

1−β . The last contribution can be absorbed by the exponential so

that we are back to the previous case. For u ∈ [(c−1
0 T )β , (c0T )β ], the statement follows from

(4.9) and the positivity of pSβ+ (1, ·) on compact sets.
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From the control pZβ (T, u) ≤ θ(T, u) and the relation (3.3), we indeed derive that for all
i ∈ N∗,P[Zβ,hT = ti ] ≤ Cβhθ(T, ti ) for some Cβ ≥ 1. �

For the rest of the analysis we will need some controls on the p.d.f. of X t and their time deriva-
tives in both the diffusive and strictly stable case. Such results can be found in Friedman [12] un-
der (AD) or [17] under (AS). The discrete counterpart for the Euler discretization schemes XEul,h

ti
are explicitly given in Theorem 2.1 of [24] under (AD,Eul) and would follow from [22] under (S).
For the diffusive Markov Chain, the controls can be derived from Lemmas 3.6 and 3.11 in [19].

All those controls are derived from the parametrix expansion of the densities. Some points
about these technique are recalled in the Appendix A for the reader’s convenience. Let us
emphasize that, for our analysis, we need to specify explicitly the dependence of the constants in
time since we are led to integrate over arbitrarily large time intervals in (2.12).

Lemma 4.10 (Non Degenerate Heat Kernel Bounds).

– Diffusive case. Under Assumption (AD) (diffusive case), there exists (c,C) :=

(c,C)((AD), d) ≥ 1 s.t. introducing for all (u, x, y) ∈ R∗
+ × (Rd)2,

gc(u, x − y) :=
1

(2πcu)d/2
exp


−

|x − y|
2

2cu


,

we have for γ ∈ {0, 1}:

|∂
γ
u p(u, x, y)| ≤

C

uγ
exp(Cu1/2)gc(u, x − y), (4.10)

pEul,h(ti , x, y) ≤ C exp(Ct1/2
i )gc(ti , x − y), i ∈ N∗.

Under (AD,m) there exists c := c((AD,m), d) ≥ 1 s.t. for all i ∈ [[1, iC ]], (x, y) ∈ (Rd)2:

ph(ti , x, y) ≤
c exp(ct1/2

i )

td/2
i


1 +

|x − y|

t1/2
i

−2(m−1)

. (4.11)

– Strictly stable case.
Under Assumption (AS) (strictly stable case), there exists C := C((AS), d) ≥ 1, ω :=

1
α

∧ 1 s.t. setting for all (u, x, y) ∈ R∗
+ × (Rd)2,

pS(u, x − y) =
cα

ud/α


1 +

|x − y|

u1/α

−(d+α)

where the constant cα is chosen to have


Rd pS(u, z)dz = 1, we obtain for γ ∈ {0, 1}:

|∂
γ
u p(u, x, y)| ≤

C

uγ
exp(Cuω)pS(u, x − y), (4.12)

pEul,h(ti , x, y) ≤ C exp(Ctωi )pS(ti , x − y), i ∈ N∗.

Observe that the above controls are exponentially explosive in time.

We now give a fundamental lemma for the error analysis. The quantities below derive from
the time sensitivities or the previous error bounds from [19,20] used to control the terms E1, E2
in (4.1) respectively.

Lemma 4.11 (Fundamental Bounds). Let T > 0 be given. The following controls hold:
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– Diffusive case: There exists c̄ := c̄((AD)) s.t. for γ ∈ {0, 1
2 , 1} and for all (x, y) ∈

(Rd)2, x ≠ y:
+∞

0
u−γ pZβ (T, u)gc(u, x − y) exp(Cu1/2)du

+


i≥1

t−γi P[Zβ,hT = ti ]gc(ti , x − y) exp(Ct1/2
i )

≤ c̄

 Id≥3

|x − y|2γ
+

Id=2

|x − y|
Iγ=1 T

β
2 Iγ>0

+
Id=1

|x − y|
Iγ>0 T

β
2 Iγ=1


p̂β(T, x − y)

+
1

T βγ
p̃β(T, x − y)


. (4.13)

For the Markov Chain approximation, for a given l ∈ N∗, l ≥ 2d + 1 there exists c := c(l, β)
s.t. denoting for all (x, y) ∈ (Rd)2,

ql(ti , x − y) :=
cl

td/2
i


1 +

|x − y|

t1/2
i

−l

,

where cl is s.t.


Rd ql(ti , z)dz = 1, we have for all γ ∈ {0, 1/2} and x ≠ y:
i≥1

ql(ti , x − y)t−γi exp(Ct1/2
i )P[Zβ,hT = ti ]

≤ c


Id=1 + Id≥3

|x − y|2γ
+

Id=2

T
β
2 Iγ>0


q̂l−[d+2(γ−1)+Id=1+Id=2,γ=0],β(T, x − y)

+
1

T βγ
q̃l,β(T, x − y)


. (4.14)

Note that, for l = m and γ = 1/2, the above contribution corresponds to the term
E M
β,Space,LLT(T, x − y) in Theorem 3.1.

– Strictly stable case: There exists c̄ := c̄((AS)) s.t. for γ ∈ {0, 1} and for all (x, y) ∈

(Rd)2, x ≠ y:
+∞

0
u−γ pZβ (T, u)pS(u, x − y) exp(Cuω)du

+


i≥1

t−γi P[Zβ,hT = ti ]pS(ti , x − y) exp(Ctωi )

≤ c̄
 I|x−y|≤T β/α

|x − y|γα
+

I|x−y|>T β/α

T βγ


p̂β(T, x − y)+

1
T βγ

p̃β(T, x − y)

. (4.15)

Remark 4.12. Observe that the controls (4.13), (4.14) remain valid if d = 1, γ = 0 for all
(x, y) ∈ R2. Also, (4.15) still holds in this case if α > 1.

Proof of Propositions 3.2 and 3.3. Now, from the independence of ZβT and (X t )t≥0, using a
simple conditioning argument, we obtain as a direct corollary of Lemmas 4.10, 4.11 and
Remark 4.12, taking γ = 0 in (4.13), (4.15), the existence of the density for the random variables
X

ZβT
in both the diffusive and strictly stable case as well as the indicated associated controls. The
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arguments can be reproduced for XEul,h

Zβt
, since Zβ,hT and (XEul,h

ti )i∈N are still independent and

the Euler schemes enjoy for fixed times similar bounds than the initial process, see Eqs. (4.10)
and (4.12). This completes the proof of Propositions 3.2 and 3.3 for the Euler schemes. For the
Markov Chain approximation, the control (3.7) is derived similarly from (4.11), (4.14) taking
l = 2(m − 1), γ = 0 and Remark 4.12. �

Remark 4.13. In the above bounds, from the definitions of p̂β , p̃β , we have in some sense the
usual scaling in time for the Gaussian and stable heat-kernels at time T β . We indeed observe
that the dichotomy between the diagonal and off-diagonal regime is performed depending on
|x − y| ≤ K (T β)1/α or |x − y| > K (T β)1/α for some positive constant K . In the diagonal
regime we also have, as indicated previously, an additional spatial singularity whereas in the
off-diagonal one, the concentration is modified in the diffusive case due to the integration of the
density pZβ (T, u) for large u in (2.12) (resp. P[Zβ,hT = ti ] for large i in (3.4)).

In the Gaussian case, these bounds are coherent with those of [11] and our approach can be
viewed as an alternative probabilistic strategy to derive estimates for the fundamental solution of
fractional in time diffusive PDEs. For the strictly stable case, to the best of our knowledge these
results seem to be new. Some lower bounds are derived in Appendix B.

Proof of Lemma 4.11. – Diffusive case. We focus on the first integral in the l.h.s. of (4.13)
since the other term can be handled similarly (Riemann sum approximation). Exploiting the
bounds from Lemma 4.8, we split the time integration domain at the characteristic time scale
T β and write:

Qγ,β(T, x − y) :=


+∞

0
u−γ pZβ (T, u)gc(u, x − y) exp(Cu1/2)du

≤
cβ exp(CT β/2)

T β
exp


−

c−1

4
|x − y|

2

T β

 T β

0

du

uγ+d/2 exp


−
c−1

4
|x − y|

2

u


+

cβ
T β


+∞

T β

du

uγ+d/2 exp(Cu1/2) exp


−c−1 |x − y|
2

2u


exp


−c−1

β

 u

T β

1/(1−β)


:= Qγ,β,S(T, x − y)+ Qγ,β,L(T, x − y), (4.16)

where the subscripts S, L respectively denote the contributions in short and long time. For
the contribution Qγ,β,S(T, x − y), we have to analyze the integral I (T β , γ, |x − y|, d) := T β

0
du

uγ+d/2 exp(− c−1

4
|x−y|

2

u ). Observe that except if d = 1, γ = 0 there is a singularity in
small time in the integral which needs to be compensated by the spatial component |x−y| ≠ 0
in the exponential. This yields the spatial (diagonal) singularity.

To equilibrate the time singularity we will thoroughly rely on the fact that the density of
the hitting time of level a > 0 for the scalar Brownian motion writes (see e.g. [35]):

∀u > 0, fa(u) :=
2a

(2πu3)1/2
exp


−

a2

2u


. (4.17)

– If γ + d/2 ≥ 3/2 we write for all |x − y| ≠ 0:
I (T β , γ, |x − y|, d)

=

 T β

0

du|x − y|

u3/2

|x − y|
d+2γ−3

u(d+2γ−3)/2
exp


−

c−1

4
|x − y|

2

u


1

|x − y|d+2γ−2

≤
c̃

|x − y|d+2(γ−1)

 T β

0

du|x − y|

(2πu3)1/2
exp


−c̃−1 |x − y|

2

2u


≤

c̃

|x − y|d+2(γ−1)
.
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– If γ + d/2 < 3/2 which actually happens for d = 1, γ ∈ {0, 1
2 } or d = 2 and γ = 0 we

write:
I (T β , 0, |x − y|, 1) ≤ cT β/2,

I (T β , 0, |x − y|, 2) = I (T β , 1/2, |x − y|, 1)

≤
T β/2

|x − y|

 T β

0

du|x − y|

u3/2 exp


−
c−1

4
|x − y|

2

u


≤

c̃T β/2

|x − y|
.

The previous results can be summarized as follows. There exists c := c((AD), β) s.t. for all
(T, x, y) ∈ R∗

+ × (Rd)2, |x − y| ≠ 0:

Qγ,β,S(T, x − y) ≤ c exp(cT β/2) exp


−c−1 |x − y|
2

2T β


×

 Id=1,γ=0

T β/2
+

Id=2,γ=0 + Id=1,γ=1/2

T β/2|x − y|
+

Id+2γ≥3

T β |x − y|d+2(γ−1)


. (4.18)

The restriction |x − y| ≠ 0 is not necessary if d = 1, γ = 0.
On the other hand, from Young’s inequality, there exists c̄β > 0 s.t. for all u, ε > 0:

u1/2
=


ε

u

T β

1/2
(ε−1T β)1/2 ≤ c̄β


ε

u

T β

1/(1−β)

+ ε−1/(1+β)T β/(1+β)


.

We thus get from (4.16) that, for ε sufficiently small, there exists c̃β s.t.:

Qγ,β,L(T, x − y) ≤
ccβ

T β(1+γ+d/2)
exp(c̃βT β/(1+β))

×


+∞

T β
du exp


−c−1 |x − y|

2

2u


exp


−

c−1
β

2

 u

T β

1/(1−β)

.

Now two cases occur according to the dichotomy indicated in Remark 4.13. If |x − y| ≤ T β/2

then setting ũ := u/T β we get Qγ,β,L(T, x − y) ≤
c̄β

T β(γ+d/2) exp(c̄βT β/(1+β)). If now

|x − y| > T β/2, we see that the two exponential contributions in the integral are equivalent if

κ1{|x − y|
2T β/(1−β)

}
1−β
2−β ≤ u ≤ κ2{|x − y|

2T β/(1−β)
}

1−β
2−β , 1 < κ1 < κ2 < +∞, for which

exp


−
c−1
β

2

 u

T β

1/(1−β)


≤ exp


−
c−1
β κ

1/(1−β)

1

4


|x − y|

2

T β

1/(2−β)
exp


−

c−1
β

4

 u

T β

1/(1−β)

.

On the other hand, for u ∈ [T β , κ1{|x − y|
2T β/(1−β)

}
1−β
2−β ] we have:

exp


−c−1 |x − y|
2

2u


≤ exp


−(2cκ1)

−1

|x − y|

2

T β

1/(2−β)
.

For u ∈ [κ2{|x − y|
2T β/(1−β)

}
1−β
2−β ,+∞), it suffices to bound

exp


−
c−1
β

4

 u

T β

1/(1−β)


≤ exp


−
c−1
β

4
κ

1/(1−β)

2


|x − y|

2

T β

1/(2−β)
.
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Thus, setting as in the diagonal case ũ = u/T β , we derive that there exists c̄β :=

c̄β((AD), κ1, κ2) ≥ 1, s.t. for all (T, x, y) ∈ R∗
+ × (Rd)2:

Qγ,β,L(T, x − y)

≤
c̄β

T β(γ+d/2)
exp(c̄βT β/(1+β)) exp


−c̄−1

β


|x − y|

2

T β

1/(2−β)

. (4.19)

The statement (4.13) follows from (4.16), (4.18) and (4.19).
– Markov chain.

Setting i := ⌈T β/h⌉, let us write from Lemma 4.8:

Qγ,β(T, x − y) :=


i≥1

P[Zβ,hT = ti ] exp(Ct1/2
i )t−γi ql(ti , x − y)

≤
c

T β
exp(CT β/2)

 ti

h
u−(d/2+γ )


1 +

|x − y|

u1/2

−l

du

+
c

T β(1+(d/2+γ ))
exp(cT β/(1+β))

×


+∞

ti


1 +

|x − y|

u1/2

−l

exp


−c−1
β

 u

T β

1/(1−β)


du

:= Qγ,β,S(T, x − y)+ Qγ,β,L(T, x − y), (4.20)

using as above Young’s inequality to get the upper bound and replacing, up to modifications
of the constants, the Riemann sums by integrals.

For Qγ,β,S we proceed as in the derivation of (4.18), depending on γ + d/2 ≥ 3/2 or
γ + d/2 < 3/2. We derive, that for γ + d/2 ≥ 3/2,

Qγ,β,S(T, x − y) ≤
c

T β
exp(cT β/2)

1

|x − y|d+2γ−2

×

 ti

h

|x − y|

u3/2


1 +

|x − y|

u1/2

−l+(d+2γ−3)

du

≤
c

T β
exp(cT β/2)

1

|x − y|d+2(γ−1)


1 +

|x − y|

T β/2

−l+d+2(γ−1)

.

Similarly, for γ + d/2 < 3/2,

Qγ,β,S(T, x − y)

≤ c exp(cT β/2)


Id=1,γ=0

T β/2


1 +

|x − y|

T β/2

−l

+

Id=1,γ=
1
2

+ Id=2,γ=0

|x − y|T β/2


1 +

|x − y|

T β/2

−l+1
.

We finally obtain:

Qγ,β,S(T, x − y) ≤ c exp(cT β/2)


Id=1,γ=0

T β/2


1 +

|x − y|

T β/2

−l

+

Id=1,γ=
1
2

+ Id=2,γ=0

|x − y|T β/2


1 +

|x − y|

T β/2

−l+1

+
1

T β
Id+2γ≥3

|x − y|d+2(γ−1)


1 +

|x − y|

T β/2

−l+d+2(γ−1)
. (4.21)
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On the other hand if |x − y| ≤ T β/2 (diagonal regime) we readily get Qγ,β,L(T, x − y) ≤

c exp(cT β/(1+β))

T β(d/2+γ ) . If now |x − y| > T β/2, splitting as above for u ∈ [ti , κ1{|x − y|
2T β/(1−β)

}
1−β
2−β ]

and u ≥ κ1{|x − y|
2T β/(1−β)

}
1−β
2−β yields :

Qγ,β,L(T, x − y) ≤
c

T β(d/2+γ )
exp(cT β/(1+β))


1 +


|x − y|

T β/2

1/(2−β)
−l

. (4.22)

Eq. (4.14) follows putting (4.22) and (4.21) in (4.20).
– Strictly stable case. We again focus on the first term in the l.h.s. of (4.15). The discrete sum

can be handled similarly. Analogously to (4.16), replacing gc by pS and the exponent 1/2 in
the exponential by ω, we write from Lemmas 4.8 and 4.10:

Qγ,β,S(T, x − y) ≤
cβcα exp(CT βω)

T β

 T β

0

du

uγ+d/α

1
1 +

|x−y|

u1/α

d+α
.

Two cases are to be distinguished.
– If d = 1, γ = 0, α > 1 then the above diagonal singularity is integrable and one gets:

Q0,β,S(T, x − y) ≤
cβcα exp(CT βω)

T β
1

1 +
|x−y|

T β/α

1+α

 T β

0

du

u1/α

≤
ccα exp(cT βω)

T β/α
1

1 +
|x−y|

T β/α

1+α
. (4.23)

In particular, this estimate holds even for x = y. There is no spatial singularity.
– For all the other cases, i.e. d = 1, γ = 1, α > 1 or d = 1, α ≤ 1, d ≥ 2 for γ ∈ {0, 1},

we need to consider x ≠ y in order to equilibrate the time singularity. In small time we still
distinguish the diagonal and off-diagonal regimes. Precisely,
– If |x − y| ≤ T β/α , then:

Qγ,β,S(T, x − y) ≤
cβcα exp(CT βω)

T β


1

|x − y|d+α


|x−y|

α

0
duu1−γ

+

 T β

|x−y|α

du

uγ+d/α



≤ cβc exp(cT βω)
 1

T β |x − y|d−α(1−γ )
+

1

T β(γ+d/α)


. (4.24)

– If |x − y| > T β/α

Qγ,β,S(T, x − y) ≤
cβcα exp(CT βω)

T β
1

|x − y|d+α

 T β

0
duu1−γ

≤ cβc exp(cT βω)
T β(1−γ )

|x − y|d+α
. (4.25)

Let us mention that, in the diagonal regime, we get as in the diffusive case an additional spatial
singularity.

Let us now deal with Qγ,β,L(T, x − y). We first write from Young’s inequality that there
exists c̄β s.t. for all u, ε > 0:

uω =


ε

u

T β

ω
(ε−1T β)ω ≤ c̄β


ε

u

T β

1/(1−β)

+ (ε−1T β)ω/(1−ω(1−β))


.



1168 M. Kelbert et al. / Stochastic Processes and their Applications 126 (2016) 1145–1183

Thus, taking ε small enough yields:

Qγ,β,L(T, x − y) ≤ c
exp(cT βω/(1−ω(1−β)))

T β


+∞

T β
du


u

|x − y|d+α
∧ u−dβ/α


u−γ

× exp


−

c−1
β

2

 u

T β

1/(1−β)


≤ c exp(cT βω/(1−ω(1−β)))


T β

|x − y|d+α
∧ T −βd/α


T −βγ . (4.26)

The result follows from (4.23)–(4.26). �

4.3. Time sensitivity: Proof of Lemma 4.1

The lemma, which gives the control on the time sensitivity term E1(T, x, y) in the
decomposition error (4.1), is proved using the bounds of Lemma 4.11. We simply write from
Lemma 4.10, and Lemma 4.8 for the first time step, that in the diffusive case, there exists
c̄ := c̄((AD)) s.t. :

|E1(T, x, y)| ≤ c̄


h exp(Ch1/2)

T β |x − y|d
exp


−c−1 |x − y|

2

h



+ h


+∞

h
pZβ (T, u)u−1 exp(Cu1/2)gc(u, x − y)du


,

whereas in the strictly stable case, there exists c̄ := c̄((AS)) s.t.:

|E1(T, x, y)| ≤ c̄


exp(Chω)h2

T β |x − y|d+α
+ h


+∞

h
pZβ (T, u)u−1 exp(Cuω)pS(u, x − y)du


.

Recalling that in the strictly stable case we assumed h1/β
≤ T and h1/α

≤ |x − y|, the result
then follows from the above controls and equations (4.13), (4.15) in Lemma 4.11.

4.4. Sensitivity in space: Proof of Lemmas 4.3 and 4.4

4.4.1. The case of a diffusive spatial motion
The key control for the analysis of the term E2(T, x, y) in (4.1) is provided by the following

Lemma.

Lemma 4.14 (Control for the Spatial Error). For our current approximation schemes in (3.1) we
have:

– Under (AD,Eul), i.e. for the Euler scheme, there exists (C, c) := (C, c)((AD), d) ≥ 1 s.t. for
a given h > 0 and for all i ∈ N∗:

|(p − ph
Eul)(ti , x, y)| ≤ Ch


1

t1/2
i

∨ exp(Ct1/2
i )


gc(ti , x − y),

gc(ti , z) =
1

(2πcti )d/2
exp


−

|z|2

2cti


, z ∈ Rd ,

(4.27)

standing for the usual d-dimensional Gaussian density with variance cti .
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– Under (AD,m), i.e. general Markov Chain approximation, for δ < 1/5 there exists C :=

C((AD,m), d, δ) ≥ 1 s.t. if ti ≥ hδ:

|(p − ph)(ti , x, y)| ≤ Ch1/2


1

t1/2
i

∨ exp(Ct1/2
i )


qm(ti , x − y),

0 ≤ qm(ti , x − y) := cm t−d/2
i


1 +

|x − y|

t1/2
i

−m

.

(4.28)

Let us mention that qm enjoys the same parabolic scaling as gc but has polynomial decay.
We observe the usual convergence rates in h and h1/2 respectively for the Euler scheme and the
Markov Chain approximation. For general Markov Chains, this is the rate of the Gaussian LLT
(see [34,19,21]). For the Euler scheme, the innovations are already Gaussian so that the first term
disappears in the previously mentioned LLT, yielding a contribution of order h.

The important point of the previous Lemma is that it specifies the behavior of the constants
in short and long time. This allows us to balance, as for the time sensitivity, those constants with
the controls on the laws of ZβT , Zβ,hT given in Lemma 4.8 thanks to Lemma 4.11.

Proof. For the Euler scheme, the short time behavior of the error has already been established
in [13, see Theorem 2.3 therein] whereas the exponential bounds can once again be derived from
the explicit form of the parametrix series used to investigate the error in [20]. For the sake of
completeness, we recall these aspects in Appendix A.1.

For a general Markov Chain approaching the diffusion, i.e. for which the innovations are not
necessarily Gaussian, to enter a Gaussian asymptotics specified by the Gaussian LLT, a certain
number of time steps is needed. This is why we impose the condition ti ≥ hδ, δ < 1/5 which
is the one required in [21, see assumption (B2) therein] to establish the Gaussian LLT in short
time. The behavior of the constants in large time can also be derived from [19] (similarly to
the procedure presented in Appendix A.1). For the control in short time we refer to Remark 1
after Theorem 1 in [21]. Anyhow, for the reader’s convenience, we recall in Appendix A.1 the
approach developed therein. �

We thus directly get from (4.1) and (4.27) in Lemma 4.14 that there exists (c,C) :=

c((AD)) ≥ 1 s.t. for all T > 0, (x, y) ∈ (Rd)2, x ≠ y:

|E Eul
2 (T, x, y)| ≤ Ch


i≥1

P[Zβ,hT = ti ] exp(Ct1/2
i )t−1/2

i gc(ti , x − y). (4.29)

The result (4.2) for the Euler scheme now follows from Eq. (4.13) in Lemma 4.11.
For the Markov Chain approximation, setting iC := ⌈h−4/5−ε

⌉ we write using (4.28):

|E2(T, x, y)| ≤

 
i∈[[1,iC ]]

P[Zh
T = ti ]|(p − ph)(ti , x, y)|

+ C
√

h

i>iC

P[Zβ,hT = ti ] exp(Ct1/2
i )

1

t1/2
i

qm(ti , x − y)


≤ {E21(T, x, y)+ cε

√
hE M

β,Space,LLT(T, x − y)}, (4.30)

exploiting Eq. (4.14) in Lemma 4.11 for the last inequality in the previous r.h.s. It therefore
remains to control E21(T, x, y).
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For this contribution, we do not have comparison results between the two densities. The
technique thus consists in controlling each of the terms. We thus derive from the definition in
(4.30) and Eqs. (4.6), (4.10), (4.11) that:

E21(T, x, y) ≤
c

T β
h exp(cT β/2)

×

 iC
i=1

t−d/2
i

exp


−
c−1

2
|x − y|

2

ti


+


1 +

|x − y|

t1/2
i

−2(m−1)
 .

From the arguments in the proof of Lemma 4.11, we can write for all d ≥ 1:

E21(T, x, y) ≤
c

T β
exp(cT β/2)

t
1
2 Id≤2

iC

|x − y|d−2+Id≤2

×

exp


−c
|x − y|

2

tiC


+


1 +

|x − y|

t1/2
iC

−2(m−1)+(d−2)+Id≤2


≤ E M,ε
β,Space,NoLLT(T, x − y, h), (4.31)

recalling tiC = h1/5−ε. Putting together estimates (4.31) into (4.30) for the Markov Chain
approximation concludes the proof of Lemma 4.3.

4.4.2. The case of strictly stable driven SDE
Similarly to the diffusive case, the crucial point is the following Lemma.

Lemma 4.15. Under (AS) there exists C := C((AS)), s.t. for a given ti := ih we have:

|(p − ph
Eul)(ti , x, y)| ≤ Ch


1
ti

∨ exp(Ctωi )


pS(ti , x − y),

pS(ti , z) :=
cα

td/α
i

1
1 +

|z|

t1/α
i

d+α
, ∀z ∈ Rd ,


Rd

pS(ti , z)dz = 1.
(4.32)

Proof. The exponential control is derived similarly to the diffusive case, and comes from the
specific form of the parametrix expansion used to analyze the error. The control in small time
can also be derived from this representation, similarly to what occurs in [22]. To make this last
point clear we give some details in Appendix A. �

Lemma 4.4 now follows from Lemma 4.15 and Eq. (4.15) in Lemma 4.11.

5. Perspectives

We did not consider in this work the case of a general Markov Chain approximating stable
driven SDEs. To do so the first step would consist in establishing a LLT for sums of i.i.d random
variables belonging to the domain of attraction of a stable law. Such results have been thoroughly
studied in the scalar case, see e.g. Mitalauskas and Statuljavičjus [30] or the monograph by
Christoph and Wolf [10]. We also refer to the PhD. of Squartini [38] and to [31] (Cauchy case),
for recent developments. We believe those results can be extended to the multidimensional case
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and would also transmit to a Markov Chain approximation through a continuity technique like
the parametrix. Now such limit theorems could also allow to consider more general fractional like
time derivatives that would be associated with the inverse of inhomogeneous stable subordinators
(S+

t )t≥0 with generators

L tφ(s) =


R∗

+

(φ(s + u)− φ(s))g(t, u)
du

u1+α
.

Eventually, an analysis of generalized fractional like derivatives involving as well the spatial
variable like in Kolokoltsov’s work, see e.g. Proposition 4.4 in [18], would require to establish
LLT for approximations of the couple (S+

t , X t ) with generator

Ltφ(s, x) =


R∗

+

(φ(s + u, x)− φ(s, x))g(t, u, x)
du

u1+α

+


Rd
(φ(s, x + z)− φ(s, x)) f (t, x, z)

dz

|z|d+α
.

This case is much more delicate in the sense that the complete coupling breaks the
independence in (2.13) between the spatial motion and the process associated with the fractional
like time derivative. We anyhow believe that the arguments of [18] can be adapted provided the
LLT holds. This will concern further research. We eventually mention the work of Becker-Kern
et al. [5] concerning some limit theorems in this coupled case for marginals. Again, the process
convergence remains an open problem.
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Appendix A. Derivation of the error bounds in small and large time

We briefly explain in this section the bounds appearing in (4.27), (4.28) and (4.32) that are
crucial for our analysis in order to balance the indicated explosive behaviors with the decays
of the density of the inverse subordinator, see Lemma 4.8. Actually, the only control that
needs to be fully justified is (4.32) in small time. The other bounds in small time are already
established in the previously quoted papers. Also, the exponential bounds are in some sense
classical.

Let us consider the case of the Euler scheme associated with (2.11) first. The crucial point
is that the densities p(ti , x, ·), ph

Eul(ti , x, ·), of respectively X ti in (2.11) and its Euler scheme
Xh

ti in (3.1) starting at x , enjoy a parametrix expansion, see again [12,26,19,20] for the diffusive
case and [17,22] for the stable one. We proceed with the simplest example of a non degenerate
diffusion, but the results for the other cases can be derived similarly. Consider the dynamics
(2.11) under (AD). The p.d.f p(t, x, ·) of X x

t exists for every t > 0 and writes:

p(t, x, y) = p̃(t, x, y)+


i≥1

p̃ ⊗ H (i)(t, x, y), (A.1)
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where for all (t, x, y) ∈ R∗
+ × R2d , H(t, x, y) = (L − L̃) p̃(t, x, y) where p̃(t, x, y) stands for

the p.d.f. at point y of the frozen Gaussian or stable process X̃ x,y
t = x +σ(y)Yt , with generator L̃ .

We point out here that, since we are considering bounded drifts, it is better to take a zero drift in
the parametrix instead of the “usual approach” consisting in choosing X̄ x,y

t = x +b(y)t +σ(y)Yt
as frozen process. This choice gives the upper bounds of Lemma 4.10 improving the constants
in large time. Note that the frozen density is always considered at the freezing point. In
(A.1) for two integrable functions f, g : R∗

+ × (Rd)2 → R, we denote f ⊗ g(t, x, y) := t
0 du


Rd f (u, x, z)g(t −u, z, y)dz and also for all i ≥ 1, H (i)

:= H (i−1)
⊗ H, f ⊗ H (0)

= f .

A.1. Diffusion case

It is known (see [12,20]) that, under (AD), there exist (c1, c2) := (c1, c2)((AD)) ≥ 1 s.t. for
all i ≥ 1, t > 0,

| p̃ ⊗ H (i)(t, x, y)| ≤
(c1t)i/2

Γ (i − 1/2)
gc2(t, x − y). (A.2)

From Eqs. (A.2) and (A.1), it is easily seen that there exists (c1, c2) := (c1, c2)((AD)) s.t.

p(t, x, y) ≤ c1 exp(c1t1/2)gc2(t, x − y). (A.3)

This explains the exponential control. This approach is due to McKean and Singer [26]. It can
be easily transposed to the approximation schemes. The p.d.f. of Euler approximations enjoy
similar properties as the one of the initial SDE (see the quoted references).

The control in small time comes from the explicit form of the error decomposition which is
similar to (A.1). Namely, one has (see [20] in the considered case)

(p − ph
Eul)(ti , x, y) =

h

2


p ⊗ (L2

− L2
∗)p


(ti , x, y)+ h2 R(ti , x, y), (A.4)

where the remainder term satisfies as well |R(ti , x, y)| ≤ c1 exp(c1t1/2
i )t−1/2

i gc2(ti , x − y).
Also, we denote for i ∈ {1, 2}, L i

∗φ(x) := (L i
ξφ(x))|ξ=x , Lξφ(x) = ⟨b(ξ),∇φ(x)⟩ +

1
2 Tr(a(ξ)D2

xφ(x)). Observe that Lφ(x) = L∗φ(x), but more generally the operators do not
coincide anymore when iterated. Precisely considering d = 1 to alleviate the notations, we get
for all t ∈ (0, ti ):

(L2
− L2

∗)p(t, x, y) = {b(x)b′(x)+
1
2

a(x)b′′(x)}∂x p(t, x, y)

+


1
2

b(x)a′(x)+ a(x)b′(x)+
1
4

a(x)a′′(x)


∂2

x p(t, x, y)

+
1
2

a(x)a′(x)∂3
x p(t, x, y). (A.5)

Now, the controls on the density and its derivatives imply under the smoothness assumptions in
(AD) similarly to (A.3) that there exists c̄ := c̄((AD)) s.t. for all multi-indexes α, β, |α|+|β| ≤ 3
for all t > 0:

|∂αx ∂
β
y ∂p(t, x, y)| ≤

c̄

t
|α|+|β|

2

exp(c̄t1/2)gc2(t, x − y). (A.6)
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We refer to Friedman [12] for details. Hence, the most singular term in (A.5) is the last one.
Precisely,

|a(x)a′(x)∂3
x p(t, x, y)| ≤

c

t3/2 exp(c̄t1/2)gc2(t, x − y). (A.7)

Now, recalling from (A.4) that this control needs to be plugged in the time–space convolution
p ⊗ [(L2

− L2
∗)]p(ti , x, y) =

 ti
0 ds


Rd p(s, x, z)(L2

− L2
∗)p(ti − s, z, y)dz, two cases can

occur: if s ∈ [0, ti/2] the control in (A.7) is not singular and gives the stated bound of t−1/2
i once

integrated in time. On the other hand when s ∈ [ti/2, ti ], some integration by parts need to be
performed for the singular term yielding a third order spatial derivative in z of p(s, x, z). Thanks
to (A.6), which gives |∂3

z p(s, x, z)| ≤
c̄

s
3
2

exp(c̄s1/2)gc2(s, x − z), and the integration in time,

we get again a time singularity in t−1/2
i for the main contribution in (A.4). The remainder can

be handled similarly (see [20]). This analysis can be performed as well for the Markov Chain
approximation, see [21].

A.2. Strictly stable case

The expansion (A.1) also holds under (AS), see [17] from which we have

| p̃ ⊗ H (i)(t, x, y)| ≤
(c1t)iω

Γ (i − ω)
pS(t, x − y), ω :=


1
α

∧ 1


∈ (1/2, 1].

This therefore gives the indicated exponential bound p(t, x, y) ≤ c exp(ctω)pS(t, x − y) for
c := c((AS)). Now, let us denote by f the spherical density of the measure ν (see assumption
(ND)). We can rewrite:

Lϕ(x) = L∗ϕ(x) = ⟨b(x),∇xϕ(x)⟩

+


Rd

{ϕ(x + σ(x)z)− ϕ(x)− ⟨∇xϕ(x), σ (x)z⟩I|σ(x)z|≤1} f


z

|z|


dz

|z|d+α

= ⟨b(x),∇xϕ(x)⟩ +


Rd

{ϕ(x + z)− ϕ(x)− ⟨∇xϕ(x), z⟩I|z|≤1}Θ(x, z)dz,

where we denoted for all ζ ∈ Rd ,

Θ(ζ, z) :=

f

σ−1(ζ )z
|σ−1(ζ )z|


|σ−1(ζ )z|d+αdet(σ (ζ ))

. (A.8)

With the notations of the previous section (considering α < 1 to avoid the cut-off and alleviate
the notations) we get:

L2 p(t, x, y) = ⟨b(x),∇x b(x)∇x p(t, x, y)⟩ + ⟨b(x), D2
x p(t, x, y)b(x)⟩

+


b(x),


Rd
(∇x p(t, x + z, y)− ∇x p(t, x, y))Θ(x, z)dz


+


b(x),


Rd
(p(t, x + z, y)− p(t, x, y))∇xΘ(x, z)dz


+


Rd


Rd

{p(t, x + z′
+ z, y)− p(t, x + z′, y)}Θ(x + z′, z)dz


−


Rd

{p(t, x + z, y)− p(t, x, y)}Θ(x, z)dz


Θ(x, z′)dz′,



1174 M. Kelbert et al. / Stochastic Processes and their Applications 126 (2016) 1145–1183

L2
∗ p(t, x, y) =


⟨b(x), D2

x p(t, x, y)b(ξ)⟩

+


b(x),


Rd
(∇x p(t, x + z, y)− ∇x p(t, x, y))Θ(ξ, z)dz


+


Rd


Rd

{p(t, x + z′
+ z, y)− p(t, x + z′, y)}Θ(ξ, z)dz


−


Rd

{p(t, x + z, y)− p(t, x, y)}Θ(x, z)dz


Θ(ξ, z′)dz′


ξ=x

.

Thus, the difference writes:

(L2
− L2

∗)p(t, x, y) = ⟨b(x),∇x b(x)∇x p(t, x, y)⟩

+


b(x),


Rd
(p(t, x + z, y)− p(t, x, y))∇xΘ(x, z)dz


+


Rd


Rd

{p(t, x + z′
+ z, y)− p(t, x + z′, y)}

× {Θ(x + z′, z)− Θ(x, z)}dz


× Θ(x, z′)dz′.

We mention that, even though we assumed b = 0 for α < 1 we kept the explicit dependence on
b in the above computations for the sake of completeness. Let us now focus on the last term in
the above equation:

D(t, x, y) :=


Rd


Rd
(p(t, x + z + z′, y)− p(t, x + z′, y))× {Θ(x + z′, z)− Θ(x, z)}dz


×Θ(x, z′)dz′,

which is the only contribution if α < 1 and which would be the most singular for α ≥ 1. The
smoothness and non-degeneracy assumptions (S), (UE), (ND) on the coefficients yield:

|∇xΘ(x, z)| ≤
c

|z|d+α
,

|D(t, x, y)| ≤ c


Rd


Rd

|p(t, x + z + z′, y)− p(t, x + z′, y)|

×

I
|z′|> 1

4 t1/α + |z′
|I

|z′|≤
1
4 t1/α

|z|d+α
×

1
|z′|d+α

dz′dz,

where we have truncated with respect to the characteristic time-scale t1/α (up to a constant) in
the variable z′. Indeed, if |z′

| ≤
1
4 t1/α we perform a Taylor expansion and exploit the previous

bound on ∇xΘ whereas if |z′
| > 1

4 t1/α we simply use the uniform bound of Θ deriving from its
definition in (A.8) and the non degeneracy assumptions. Write now:

|D(t, x, y)| ≤ c


|z′|≤
1
4 t1/α


Rd

|p(t, x + z + z′, y)− p(t, x + z′, y)|

×
|z′

|

|z′|d+α
×

1
|z|d+α

dz′dz
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+ c


|z′|> 1
4 t1/α


Rd

|p(t, x + z + z′, y)− p(t, x + z′, y)|

×
1

|z′|d+α
×

1
|z|d+α

dz′dz := (D1 + D2)(t, x, y).

Let us treat those two terms separately. Recalling from [17] and the above bounds that
|∇x p(t, x, y)| ≤

c exp(ctω)
t1/α pS(t, x − y) we derive:

D1(t, x, y) ≤
c exp(ctω)

t1/α


|z′|≤

1
4 t1/α,|z|≤ 1

4 t1/α
pS(t, x + z′

+ θ z − y)|z|

×
|z′

|

|z′|d+α
×

1
|z|d+α

dz′dz

+


|z′|≤

1
4 t1/α,|z|> 1

4 t1/α
|p(t, x + z + z′, y)− p(t, x + z′, y)|

×
|z′

|

|z′|d+α
×

1
|z|d+α

dz′dz := (D11 + D12)(t, x, y),

for some θ := θ(x, z, z′, y) ∈ [0, 1] in D11. In that contribution, since both z, z′ are small w.r.t.
the characteristic time t1/α , we have:

pS(t, x + z′
+ θ z − y) ≤

c

td/α

1
1 +

|x+z′+θ z−y|

t1/α

d+α
≤

c

td/α

1
1
2 +

|x−y|

t1/α

d+α

≤ c2d+α pS(t, x − y). (A.9)

Hence:

D11(t, x, y) ≤
c exp(ctω)

t1/α pS(t, x − y)


r≤

1
4 t1/α

dr

rα

2

≤
c exp(ctω)

t2−
1
α

pS(t, x − y).

For the contribution |p(t, x + z + z′, y)− p(t, x + z′, y)| in D12(t, x, y), since |z| can be large,
we write directly, recalling as well that |z′

| is small and proceeding as in (A.9):

|p(t, x + z + z′, y)− p(t, x + z′, y)| ≤ |p(t, x + z + z′, y)| + |p(t, x + z′, y)|

≤ c(pS(t, x + z − y)+ pS(t, x − y)). (A.10)

Observe that if |x − y| ≤ t1/α , i.e. the diagonal regime holds for pS(t, x − y), we can then use
the global upper bound (pS(t, x + z − y)+ pS(t, x − y)) ≤

c
td/α , in the control (A.10) so that

D12(t, x, y) ≤ c exp(ctω)pS(t, x − y)


|z′|≤
1
4 t1/α

dz′
|z′

|

|z′|d+α


|z|> 1

4 t1/α

dz

|z|d+α

≤ c exp(ctω)pS(t, x − y)t−2+
1
α .

If now |x − y| > t1/α , we have for all given ε ∈ (0, 1), pS(t, x + z − y) ≤ cε pS(t, x − y) if
z ∉ B(x − y, ε|x − y|). Indeed, |x − y + z| ≥

|x − y| − |z|
 ≥ ε|x − y|. On the other hand,

if z ∈ B(x − y, ε|x − y|), |z| ≥ (1 − ε)|x − y| and |z|−(d+α)
≤ ((1 − ε)|x − y|)−(d+α)

≤
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cεt−1 pS(t, x − y), up to a possible modification of cε. Thus,

D12(t, x, y) ≤ c exp(ctω)


t−2+

1
α pS(t, x − y)

+ cε pS(t, x − y)

(B(x−y,ε|x−y|))c∩{|z|> 1

4 t1/α}

dz

|z|d+α


|z′|≤

1
4 t1/α

|z′
|dz′

|z′|d+α

+
1

{(1 − ε)|x − y|}d+α


B(x−y,ε|x−y|)

pS(t, x + z − y)dz


|z′|≤
1
4 t1/α

|z′
|dz′

|z′|d+α


≤ c exp(ctω)pS(t, x − y)t−2+

1
α .

This proves that:

D1(t, x, y) ≤ c exp(ctω)pS(t, x − y)t−2+
1
α . (A.11)

Let us observe that we have some continuity for the singularity w.r.t. the stability index, w.r.t.
to the diffusive case, as far as the small jumps are concerned (see Eq. (A.7)). The large jumps
deteriorate the singularity. Precisely,

|D2(t, x, y)| ≤


|z′|> 1

4 t1/α

dz′

|z′|d+α
×


Rd

|p(t, x + z′
+ z, y)− p(t, x + z′, y)|

dz

|z|d+α
.

From the previous arguments, splitting again the small and large jumps in the z variable w.r.t. the
characteristic time scale t1/α , we get:

Rd
|p(t, x + z′

+ z, y)− p(t, x + z′, y)|
dz

|z|d+α
≤

c

t
exp(ctω)pS(t, x + z′

− y).

This therefore gives following the dichotomy used for the term D12(t, x, y):

|D2(t, x, y)| ≤
c

t2 exp(ctω)pS(t, x − y),

which together with (A.11) indeed gives the bound |D(t, x, y)| ≤
c
t2 exp(ctω)pS(t, x − y).

Let us emphasize from [22] that the expansion (A.4) also holds in the strictly stable case. The
previous control then gives the result, similarly to the discussion in the previous paragraph if
s ∈ [0, ti/2]. For s ∈ [ti/2, ti ] we take the spatial adjoint and the associated contribution can be
analyzed similarly. Eventually, this analysis extends to the remainder terms in (A.4).

Appendix B. Two-sided heat kernel estimates

We derive in this section two-sided estimates for the density of X
ZβT

. Precisely we have the

following theorem.

Theorem B.1 (Two-Sided Heat Kernel Bounds).

– Diffusive case: Under (AD), there exists c := c(β, (AD)) ≥ 1 s.t. for a given T > 0 and for
all (x, y) ∈ (Rd)2, one has:
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• For d = 1:
c−1

T β/2


exp(−cT β) exp


−c

|x − y|
2

T β


+ exp(−cT ) exp


−c


|x − y|
2

T β

 1
2−β


≤ pX

Z
β
T

(x, y)

≤
c

T β/2


exp(cT

β
2 ) exp


−c−1 |x − y|

2

T β



+ exp(cT
β

1+β ) exp


−c−1

|x − y|

2

T β

 1
2−β


. (B.1)

• For d = 2 and x ≠ y:
c−1

T β


exp(−cT β) exp


−c

|x − y|
2

T β

log


c1/2 |x − y|

T β/2

I|x−y|≤c−1/2T β/2 + 1


+ exp(−cT ) exp


−c


|x − y|
2

T β

 1
2−β


≤ pX

Z
β
T

(x, y)

≤
c

T β


exp(cT

β
2 ) exp


−c−1 |x − y|

2

T β

log


c−1/2 |x − y|

T β/2

I|x−y|≤c1/2T β/2 + 1


+ exp(cT
β

1+β ) exp


−c−1


|x − y|

2

T β

 1
2−β


. (B.2)

• For d ≥ 3 and x ≠ y:

c−1


exp(−cT β)

T β |x − y|d−2 exp


−c
|x − y|

2

T β


+

exp(−cT )

T βd/2 exp


−c


|x − y|
2

T β

 1
2−β


≤ pX

Z
β
T

(x, y)

≤ c


exp(cT

β
2 )

T β |x − y|d−2 exp


−c−1 |x − y|
2

T β



+
exp(cT

β
1+β )

T βd/2 exp


−c−1

|x − y|

2

T β

 1
2−β


. (B.3)

– Strictly stable case: Under (AS), there exists c := c(β, (AS)) ≥ 1 s.t. for d ≥ 2 and α ∈ (0, 2)
or d = 1, α ≤ 1, a given T > 0 and for all (x, y) ∈ (Rd)2, x ≠ y, one has:

c−1


exp(−cT β)

T β |x − y|d−α
I|x−y|≤T β/α +

1
T βd/α

exp(−cT β)
1 +

|x−y|

T β/α

d+α


≤ pX

Z
β
T

(x, y)

≤ c


exp(cT βω)

T β |x − y|d−α
I|x−y|≤T β/α +

1
T βd/α

exp(cT
βω

1−ω(1−β) )
1 +

|x−y|

T β/α

d+α


, ω :=

1
α

∧ 1. (B.4)
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If d = 1, α > 1 we get for all (x, y) ∈ R2:

c−1


1
T βd/α

exp(−cT β)
1 +

|x−y|

T β/α

d+α



≤ pX
Z
β
T

(x, y) ≤ c


1

T βd/α

exp(cT
βω

1−ω(1−β) )
1 +

|x−y|

T β/α

d+α


, ω :=

1
α
. (B.5)

Proof. We first mention that the arguments in the proof of Lemma 4.8 also give that, a lower
bound homogeneous to (4.6) holds for pZβ (T, u). Precisely:

c−1
β

T β
exp


−cβ

 u

T β

1/(1−β)


≤ pZβ (T, u). (B.6)

– Diffusive case. Let us concentrate on the lower bounds, since the upper bounds are already
derived in Proposition 3.2, and on the two-sided bounds for the two dimensional case. Note
that we obtain in Eqs. (B.2), (B.3), for dimensions d ≥ 2, the same singularities that we
observe for the Poisson kernel of the associated dimension.

We focus below on the lower bound for d ≥ 3 and the two-sided bounds for d = 2. The
other controls can be derived from arguments similar to those developed below. One of the
key points for the proof is the lower bound for the density of the spatial motion. Namely
a lower bound homogeneous to the one in Lemma 4.10 holds for the density of the spatial
motion. It is classical, from chaining arguments, see e.g. Chapter 7 in Bass [4], to derive from
the parametrix expansions presented above that there exists c := c((AD)) ≥ 1 s.t. for all
(x, y) ∈ (Rd)2:

p(t, x, y) ≥ c−1 exp(−ct)

td/2 exp


−c
|x − y|

2

t


. (B.7)

Lower bound for d ≥ 3. We now start from (2.12), (B.6) and (B.7) to derive:

pX
Z
β
T

(x, y) ≥
c−1

T β


exp(−cT β)

 T β

0

du

ud/2 exp


−c
|x − y|

2

u



+


+∞

T β

du

ud/2 exp


−c
|x − y|

2

u


exp(−cu) exp


−c

 u

T β

1/(1−β)


:= (m1 + m2)(T
β , x − y). (B.8)

To control m1(T β , x − y) we consider again the previous, diagonal/off-diagonal dichotomy:
– For |x − y|/T β/2 ≤ 1 (diagonal regime) write:

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β


|x−y|

2

|x−y|2/2

du

ud/2

≥
c−1 exp(−cT β)

T β


|x−y|

2

|x−y|2/2

du

|x − y|d
≥

c−1 exp(−cT β)

T β |x − y|d−2 .
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– For |x − y|/T β/2 > 1 (off-diagonal regime) write:

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β |x − y|d−2

 T β

T β/2

du

u


|x − y|

u1/2

d−2

exp


−c
|x − y|

2

u



≥
c−1 exp(−cT β)

T β |x − y|d−2 exp


−c
|x − y|

2

T β

 T β

T β/2

du

u

≥
c−1 exp(−cT β)

T β |x − y|d−2 exp


−c
|x − y|

2

T β


.

We have thus established that:

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β |x − y|d−2 exp


−c
|x − y|

2

T β


. (B.9)

On the other hand for the contribution m2(T β , x − y) in (B.8) we get:

– For |x − y|/T β/2 ≤ 1 (diagonal regime) write:

m2(T
β , x − y) ≥

c−1 exp(−cT β)

T β(1+d/2)

 2T β

T β
du exp


−c

 u

T β

1/(1−β)


≥
c−1 exp(−cT β)

T βd/2 .

– For |x − y|/T β/2 > 1 (off-diagonal regime), write first from Young’s inequality,

u ≤ cβ
 u

T β

1/(1−β)

+ (T β)1/β

.

Computations similar to those in Lemma 4.11 then yield:

m2(T
β , x − y) ≥

c−1 exp(−cT )

T β

×

 2[|x−y|
2T

β
1−β ]

1−β
2−β

[|x−y|2T
β

1−β ]

1−β
2−β

du

ud/2 exp


−c
|x − y|

2

u


exp


−c

 u

T β

1/(1−β)


≥
c−1 exp(−cT )

T β
exp

−c


|x − y|

2

T β

 1
2−β

 1

[|x − y|2T
β

1−β ]
1−β
2−β

(d/2−1)

≥
c−1 exp(−cT )

T β
exp

−c


|x − y|

2

T β

 1
2−β

 1

[T β(1+
1

1−β
)
]

1−β
2−β

(d/2−1)

≥
c−1 exp(−cT )

T βd/2 exp

−c


|x − y|

2

T β

 1
2−β

 ,
recalling that ∀z ≥ 1, exp(−z1/(2−β))z−

1−β
2−β

(d/2−1)
≥ c−1 exp(−cz1/(2−β)) for the last but

one inequality. We have thus proved in all cases:

m2(T
β , x − y) ≥

c−1 exp(−cT )

T βd/2 exp

−c


|x − y|

2

T β

 1
2−β

 ,
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which together with (B.9) and (B.8) completes the proof of the lower bound for
d ≥ 3.

Bounds for d = 2. The lower bound (B.8) and an homogeneous upper bound still hold, with
obvious modifications of the constants. We focus on the contribution m1(T β , x − y) yielding
the additional spatial diagonal singularity. The term m2(T β , x − y) can be analyzed as above.
Let us write:

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β

 T β

0

du

u
exp


−c

|x − y|
2

u


.

Assume first that c1/2
|x − y|/T β/2 ≤ 1. Setting v := exp


−c |x−y|

2

u


in the above integral

we derive:

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β

 exp(−c |x−y|
2

Tβ
)

0

dv

− log(v)

≥
c−1 exp(−cT β)

T β

−v log(− log(v))|
exp(−c |x−y|

2

Tβ
)

0 +

 exp(−c |x−y|
2

Tβ
)

0
log(− log(v))dv


≥

c−1 exp(−cT β)

T β


exp


−c

|x − y|
2

T β


− log


c
|x − y|

2

T β


+

 exp(−c |x−y|
2

Tβ
)

e−1
log(− log(v))dv


≥

c−1 exp(−cT β)

T β


exp


−c

|x − y|
2

T β


− log


c
|x − y|

2

T β


+ log


c
|x − y|

2

T β


exp


−c

|x − y|
2

T β


− e−1


.

Hence:

m1(T
β , x − y) ≥

c−1 exp(−cT β)e−1

T β


− log


c
|x − y|

2

T β


≥

c−1e−1 exp(−cT β) exp

−c |x−y|

2

T β


T β

log


c
|x − y|

2

T β

 .
The upper bound could be derived similarly.

If now c1/2
|x − y|/T β/2 > 1, we write:

m1(T
β , x − y) ≥

c−1 exp(−cT β) exp

−c |x−y|

2

T β


T β

 T β

T β/2

du

u

≥

c−1 exp(−cT β) exp

−c |x−y|

2

T β


T β

.

The previous bounds give the result.
– Strictly stable case. We focus here on the lower bound for d ≥ 2. The other cases can be

handled similarly. From the lower bound in Kolokoltsov [17] for the density and a chaining
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argument one derives that there exists c := c((AS)) ≥ 1 s.t. for all t > 0, (x, y) ∈ (Rd)2:

p(t, x, y) ≥
c−1 exp(−ct)

td/α

1
1 +

|x−y|

t1/α

d+α
. (B.10)

From (2.12), (B.6) and (B.10) we now get:

pX
Z
β
T

(x, y) ≥
c−1

T β

exp(−cT β)
 T β

0

du

ud/α

1
1 +

|x−y|

u1/α

d+α

+


+∞

T β

du

ud/α

1
1 +

|x−y|

u1/α

d+α
exp(−cu) exp


−c

 u

T β

1/(1−β)


:= (m1 + m2)(T
β , x − y). (B.11)

Let us first control m1(T β , x − y) exploiting again the diagonal/off-diagonal dichotomy.
– If |x − y| ≤ T β/α then

m1(T
β , x − y) ≥

c−1 exp(−cT β)

T β


|x−y|

α

|x−y|α/2

du

ud/α ≥
c−1 exp(−cT β)

T β |x − y|d−α
.

– If |x − y| > T β/α we get:

m1(T
β , x − y) ≥

c−1

T β
exp(−cT β)

 T β

T β/2
du

u

|x − y|d+α
≥

c−1T β

|x − y|d+α
exp(−cT β).

We have thus established

m1(T
β , x − y)

≥ c−1 exp(−cT β)
 1

T β |x − y|d−α
I|x−y|≤T β/α +

T β

|x − y|d+α
I|x−y|>T β/α


. (B.12)

Let us now turn to m2(T β , x − y). We get:
– If |x − y| ≤ T β/α ,

m2(T
β , x − y) ≥

c−1

T β
exp(−cT β)

 2T β

T β

du

ud/α ≥
c−1

T dβ/α exp(−cT β).

– If |x − y| > T β/α ,

m2(T
β , x − y) ≥

c−1

T β |x − y|d+α
exp(−cT β)

 2T β

T β
udu ≥

c−1T β

|x − y|d+α
exp(−cT β).

Plugging the above estimates and (B.12) into (B.11) gives the result. �

Remark B.1. Let us emphasize that the bounds of Theorem B.1 would hold under the weaker
assumptions that the coefficients b, σ are measurable and s.t. σσ ∗ is Hölder continuous and b is
bounded. Indeed, the two-sided heat kernel bounds for the spatial motion hold in that case. We
can for instance refer to Sheu [37] in the diffusive case or to Huang [15] in the strictly stable
case.

Let us point out as well that the two sided bounds hold in the diffusive case under those
assumptions for the density of Xh,Eul

Zβ,hT

associated with the Euler scheme approximation for the

spatial motion. Again, the key estimate is a two-sided bound for the Euler scheme which can be
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found in Lemaire and Menozzi [24]. In the strictly stable case, the upper bound holds under the
indicated assumptions. This is a consequence of the parametrix expansion for the density of the
scheme, see [22]. The lower bound is more delicate to obtain since even in the diffusive case,
the localization arguments which are standard for the SDE need to be carefully adapted for the
scheme.

Remark B.2. We conclude saying that the results in Theorem 3.1 could be slightly improved in
light of the sharp estimates of Theorem B.1 for d = 2. We did not exploit those controls in the
presentation of the main results mainly for notational coherence and simplicity.
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