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Abstract. The Penning trap Hamiltonian (hyperbolic oscillator in a homogeneous magnetic
field) is considered in the basic three-frequency resonance regime. We describe its non-Lie
algebra of symmetries. By perturbing the homogeneous magnetic field, we discover that,
for special directions of the perturbation, a secondary hyperbolic resonance appears in the
trap. For corresponding secondary resonance algebra, we describe its non-Lie permutation
relations and irreducible representations realized by ordinary differential operators. Under
an additional (Ioffe) inhomogeneous perturbation of the magnetic field, we derive an effec-
tive Hamiltonian over the secondary symmetry algebra. In an irreducible representation,
this Hamiltonian is a model second-order differential operator. The spectral asymptotics is
derived, and an integral formula for the asymptotic eigenstates of the entire perturbed trap
Hamiltonian is obtained via coherent states of the secondary symmetry algebra.
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1. INTRODUCTION
Penning traps are devices based on the use of the electric field created by a cylinder-like condenser

and an axially directed magnetic field in order to hold an electric charge in a compact domain,
inside the condenser. The micro- and nano-Penning traps applied, for instance, in fine detectors
[1–5] and artificial “atoms” [6] are of special interest. The nano-scale Penning traps already have a
visible structure of spectral lines and can be used as controllable quantum devices, say, for quantum
computers [7, 8].

Note that, although the Penning traps present one of the fundamental examples of mechanical
systems (both classical and quantum), it is not easy to find the mathematical theory of these
systems in standard textbooks, see [9–11]. Possibly, the reason is that these systems are hyperbolic
rather than elliptic, and therefore, they do not belong to the classical framework of “compact”
dynamics and “matrix” perturbation theory. The compact and finite matrix framework is simpler
and more stable; for this reason, dynamical systems of elliptic type play a very important role and
are studied at the first place. On the other hand, hyperbolic systems have attracted great interest
in relativistic mechanics, i.e., in the four-dimensional case. The micro- and nano-technologies now
suggest us the two-dimensional case, and this generates an interest in (2 + 1)-hyperbolic systems
in 3D-Euclidean space.

The mathematical model of an “ideal” Penning trap is equivalent to a harmonic 3D-oscillator of
hyperbolic type (with a saddle point). Three normal frequencies of this oscillator depend on external
parameters, namely, on the magnetic field magnitude and the electric voltage on the condenser.

The trapping condition reads
ω > ω0, (1.1)

where ω is the magnetic Larmor frequency and ω0 the frequency of the condenser‘s quadratic
potential in directions transversal to the magnetic field. If one chooses ω = 3

2
√
2
ω0 ≈ 1.06 ·ω0, then

the normal frequencies of the trapping 3D-oscillator are in the stable resonance 2 : (−1) : 2.
In this three-frequency resonance, the spectrum of the ideal Penning trap becomes an arithmetic

progression with common difference �ω0/
√
2. This equidistance of the spectrum is important, e.g.,

in quantum computations (quantum arithmetics); note also that the resonance spectral lines are
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well separated from each other (at distance O(�)); otherwise, out of resonance, they are disposed
much more dense (the distance is of order O(�3)), and therefore less visible and less controllable
under small perturbations. Below we consider the Penning trap with this resonance condition.

Now one has to take into account that the 3D-oscillator mentioned above (the ideal trap) is
only the leading term of the entire Penning trap Hamiltonian. There are also some perturbations
originating from several sources. First, there can be deviations of the homogeneous magnetic field
from the axial direction. Second, there are inhomogeneous magnetic corrections, the so-called Ioffe
field [12, 13]. Third, there are anharmonic corrections to the electric potential of the condenser,
see, e.g., [14].

All these types of perturbations could easily be taken into account if the frequencies of the
leading harmonic oscillator were not resonant. However, in our case, they are in the resonance
2 : (−1) : 2, and a stumbling stone for the application of standard perturbation theory arises,
namely, the infinite degeneracy of the spectrum of the hyperbolic resonance oscillator. The “finite
matrix” perturbation methods do not effectively work any more.

The spectral degeneracy is a consequence of the fact that the symmetry algebra of the resonance
oscillator is not commutative. The noncommutativity implies a nontrivial symplectic geometry.
Continuous geometric objects (like symplectic leaves of the symmetry algebra) enable one to model
and effectively replace the discrete infinite matrix structure, and integration with respect to a
continuous measure can effectively replace the summation of infinite series of matrix elements in
perturbation theory. Thus, there is a way to avoid the “stumbling stone” by using novel methods
of quantum geometry.

From the geometrical point of view, the occurrence of resonance noncommutativity implies the
transformation of the usual Liouville tori into a family of submanifolds, which are generally not
isotropic but coisotropic. The geometry of these submanifolds is no longer controlled by the leading
oscillator only; the control involves the perturbing part of the entire Penning trap Hamiltonian and
the symmetry algebra structure.

Here we meet another interesting mathematical fact: the symmetry algebra of the resonance
oscillator is of non-Lie type (except for the trivial resonances all of whose frequencies are mutually
equal). This means that the algebra cannot be described by linear commutation relations. Even in
the simplest two-frequency resonance, the symmetry algebra is described by nonlinear commutation
relations [15, 16] (see also [17], especially for the Penning trap). The case of three-frequency reso-
nance treated in this paper is much richer than the two-frequency case. For a general description
of the symmetry algebra in the elliptic three-frequency case, see [18].

The Penning trap presents a highly interesting example of actual physical system in which a
hyperbolic three-frequency resonance can occur. Below, we describe the symmetry algebra with
non-Lie permutation relations for the resonance 2 : (−1) : 2 realized in the trap.

The occurrence of non-Lie algebras requires the development of an analog of the entire framework
of geometric quantization and representation theory for such algebras. In our work, we apply
methods developed in [16, 19, 20].

Along with the algebraic structure, an important role is also played by the averaged perturbing
Hamiltonian. This Hamiltonian is obtained using a general algebraic procedure [16, 21] by projecting
to the symmetry algebra. This Hamiltonian can be viewed as a system with reduced number of
degrees of freedom, i.e., 2 instead of 3.

For the main (or primary) perturbing Hamiltonian, we consider the deviation of the homogeneous
magnetic field from its resonance value and the axial direction. The Hamiltonian of this perturbation
is very simple: it is just a quadratic form in canonical phase variables. The averaged system is
certainly integrable in this case. Thus, at first glance, this perturbation is trivial. However, there
is an interesting effect we have observed. The projection of the perturbing Hamiltonian to the
(primary) symmetry algebra can again have a resonance regime with its own noncommutative
symmetry algebra.

Thus, a secondary nonobvious resonance and a secondary symmetry algebra arise. This algebra
is again of non-Lie type. Below we specify its generators, commutation relations, and irreducible
representations.

Thus, in the Penning trap, we obtain a double resonance system, i.e., the leading resonance
oscillator + the primary perturbing quadratic Hamiltonian in a resonance regime. The classi-
cal trajectories of this system are presented as a combination of two cyclic rotations, a fast (by
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the leading oscillator) and a slower (by the quadratic perturbation); these trajectories span two-
dimensional tori. This double resonant system has a noncommutative secondary symmetry algebra.
Its irreducible representations control the spectral degeneracy of the double resonant system.

At the geometric level, one can say that the symplectic leaves of the secondary symmetry algebra
determine the reduced phase spaces of the double resonant system. The effective Hamiltonian on
these phase spaces is generated by the projection of the secondary perturbation onto the secondary
symmetry algebra. In this way, we again reduce the number of degrees of freedom, namely, to 1
instead of 2.

For the secondary perturbation, we choose a linear disturbance of the constant (homogeneous)
magnetic field, i.e., the so-called Ioffe correction. The linear disturbance of a field generates a qua-
dratic disturbance of the magnetic potential, and therefore gives a cubic (in the phase coordinates)
contribution to the Hamiltonian. Near the center of the Penning trap, this cubic piece is a small
perturbation indeed, in view of the coordinate scaling.

The final effective Hamiltonian is obtained by the projection of this secondary Ioffe perturbation
onto the secondary symmetry algebra. As is shown below, this Hamiltonian, in an irreducible
representation, is realized by a second-order ordinary differential operator. The nondegenerate
spectrum and the eigenfunctions of this final operator are just what one needs to compute the
approximate spectral data for the original Hamiltonian of the resonance Penning trap.

Thus, our algebraic method approximately reduces the original 3D-differential (Schrödinger)
operator with double resonance to a 1D-differential operator. In a sense, this procedure can be
regarded as an analog of the method of separation of variables. Instead of finding such variables,
we use irreducible representations of the primary and secondary non-Lie algebras of symmetries.
When computing irreducible representations in the non-Lie case, we follow [19].

At the geometric level, this algebraic “separation of variables” presents the classical trajectories of
the original Hamiltonians as a combination of three cyclic rotations: fast, slower, and the slowest (by
the averaged Ioffe correction). This double resonance reduction, using a secondary symmetry algebra
in a hyperbolic physical system, is a rare example. Other examples of similar type (but elliptic)
appear in the Zeeman–Stark effect [22].

It should be noted that the hyperbolic double resonance effect happens in a very simple physical
system, namely, in a homogeneous magnetic field plus a saddle potential.

Approximate eigenstates of the original quantum Penning trap (in the double resonance case)
can be presented as follows: the eigenfunctions of the reduced ordinary differential operator to-
gether with the “squeezed” coherent states for the secondary symmetry algebra are integrated over
2D-symplectic leaves with respect to a special reproducing measure.

In the semiclassical approach, i.e., when exited states are considered, this integral can be trans-
formed and explicitly represented as the integral of the squeezed coherent states over the periodic
trajectory of the averaged secondary (Ioffe) effective Hamiltonian. Such an integral representa-
tion of semiclassical eigenfunctions, which avoids all the usual difficulties with focal points, follows
the general approach [23], and combines it with quantum geometry and representation theory for
non-Lie symmetry algebras in a specific way (for details, see also [16, 24]).

2. HAMILTONIAN OF THE PENNING TRAP

The Hamiltonian of the Penning trap with perturbations can be written as
̂H = ̂H0 + ε ̂H1 + ε2 ̂H2 +O(ε3). (2.1)

Here ̂H0 is the Hamiltonian of the ideal trap
̂H0 = (1/2)

[

p̂21 + p̂22 + p̂23 + 2ω(p̂1q2 − p̂2q1) + (ω2 − ω2
0)(q

2
1 + q22) + 2ω2

0q
2
3

]

, (2.2)

where by p̂j = −i�∂/∂qj we denote the momentum operators corresponding to Cartesian coordi-
nates qj (j = 1, 2, 3), and ω, ω0 are positive parameters obeying condition ω > ω0. The magnetic
field of the ideal trap is homogeneous and directed along the third coordinate axis and has the
magnitude 2ω. The electric potential of the ideal trap has the form U0 = (ω2

0/2)(2q
2
3 − q21 − q22);

it obeys the Laplace equation ΔU0 = 0 and represents the model electric field between two hy-
perbolic cups. The real electric condenser of the trap is usually not of such hyperbolic shape, but
it is cylindric or cubic; its potential U obeys the Laplace equation ΔU = 0 and is approximated
by the function U0 near the center q = 0 of the trap: U = U0 + fourth-degree terms + · · · . After
rescaling the coordinates in a small domain near the center, all terms of the fourth- and higher
degrees become inessential and can be moved to the remainder O(ε3) in (2.1).
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The term ̂H1 in (2.1) is due to a deviation of the homogeneous magnetic field from its “ideal”
direction along the third axis. The magnitude of this deviation is assumed to be small (the parameter
ε in (2.1)); the direction of the deviation is given by a vector B = (B1,B2,B3). Thus,

̂H1 = 1
2
̂k · [q × B], k

def
== (p1 + ωq2, p2 − ωq1, p3). (2.3)

The third term ̂H2 in (2.1) contains the Ioffe inhomogeneous addition to the magnetic field.
The magnitude of this addition is taken in (2.1) to be of order O(ε2), but this was assumed just
for simplicity; the magnitude can be greater, but it is still less than the correction of order ε in

(2.1). The analytic expression for ̂H2 is ̂H2 = ̂k1(β1q2q3 + γ1(q
2
2 − q23)) +

̂k2(β2q3q1 + γ2(q
2
3 − q21)) +

̂k3(β3q1q3 + γ3(q
2
1 − q22))+ (1/8)|[q ×B]|2, where k is the kinetic momentum defined in (2.3) and βj

and γj are parameters of the Ioffe field.

Since the inequality in (1.1) is strict, one can make the canonical (i.e., preserving the commuta-
tion relations) transformation of phase coordinates (q1, q2, q3; p1, p2, p3) → (x+, x−, x0; p+, p−, p0)
by the following formulas:

q1 =
1√

2 4
√

ω2 − ω2
0

(x+ + x−), p1 =
4
√

ω2 − ω2
0√

2
(p+ + p−), q2 =

1√
2 4
√

ω2 − ω2
0

(p+ − p−),

p2 =
4
√

ω2 − ω2
0√

2
(x− − x+), q3 =

1
4
√
2
√
ω0

x0, p3 =
4
√
2
√
ω0p0.

(2.4)

Then the Hamiltonian (2.2) takes the normal form

̂H0 = (1/
√
2)
[

ω+(p̂
2
+ + x2

+)− ω−(p̂
2
− + x2

−) + ω0(p̂
2
0 + x2

0)
]

, (2.5)

where ω± =
(

ω2 − ω2
0/2± ω(ω2 − ω2

0)
1/2

)1/2
.

Now assume that
ω = (3ω0)/(2

√
2), or ω2 = (9/8)ω2

0 . (2.6)

Then ω+ = ω0 and ω− = ω0/2, and the Hamiltonian (2.5) reads

̂H0 =
ω0

2
√
2

[

2(p̂2+ + x2
+)− (p̂2− + x2

−) + 2(p̂20 + x2
0)
]

=
ω0√
2
[2ẑ∗+ẑ+ − ẑ∗−ẑ− + 2ẑ∗0 ẑ0] +

3�ω0

2
√
2
, (2.7)

where
ẑ± = (x± + ip̂±)/

√
2, ẑ0 = (x0 + ip̂0)/

√
2. (2.8)

As we see from (2.7) under condition (2.6), the Hamiltonian of the ideal Penning trap is a linear
combination of three oscillators whose frequencies are in the resonance 2 : (−1) : 2.

The spectrum of ̂H0 is discrete but infinitely degenerate under the resonance condition (2.6). The

problem is: How to take into account the perturbing terms ̂H1, ̂H2, . . . in the entire Hamiltonian
(2.1) of the trap?

3. SYMMETRY ALGEBRA OF THE 2 : (−1) : 2 TRAP

The degeneracy of the spectrum is controlled by the symmetry algebra, i.e., by the algebra of

all operators commuting with ̂H0. This algebra is nontrivial (noncommutative) if and only if the
frequencies ω+, ω−, ω0 in (2.5) are in resonance. We deal with (2.6) and, hence, with the resonance
2 : (−1) : 2. The algebra of symmetries of the Hamiltonian (2.7) is referred to as resonance algebra.

The following operators can be chosen as generators of the symmetry algebra:

S± = ẑ∗±ẑ±, S0 = ẑ∗0 ẑ0, (3.1)

Aρ = ẑ∗+ẑ0, Aσ = ẑ∗+(ẑ
∗
−)

2, Aθ = (ẑ∗−)
2ẑ∗0 . (3.2)

All these operators commute with ̂H0 (2.7). The operators (3.1) are self-adjoint, but the operators
(3.2) are not, and so the conjugate operators A∗

ρ, A∗
σ, A∗

θ have to be included into the set of
generators of the symmetry algebra.

The commutation relations between these generators are the following ones:

[S+, Aρ] = �Aρ, [S0, Aρ] = −�Aρ, [S+, Aσ ] = �Aσ, [S−, Aσ ] = 2�Aσ , [S−, Aθ] = 2�Aθ,

[S0, Aθ] = �Aθ, [Aρ, A
∗
σ] = −�A∗

θ, [Aρ, Aθ] = �Aσ, [Aσ, A
∗
θ ] = −4�

(

S− +
�

2

)

Aρ,

[A∗
ρ, Aρ] = �(S0 − S+), [A∗

σ, Aσ ] = �(4S+S− + S2
− + 2�S+ + 3�S− + 2�2), (3.3)

[A∗
θ, Aθ] = �(S2

− + 4S−S0 + 3�S− + 2�S0 + 2�2).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 20 No. 3 2013



SECONDARY RESONANCES IN PENNING TRAPS 287

The other commutators can be obtained either by conjugation of the above-written commutators
or are equal to zero.

Certainly, the operator (2.7) realized over the 3D-space can have the symmetry algebra with the
maximal number of independent generators 2×3−1 = 5. That is, not all nine operators S+, S−, S0,
Aρ, Aσ, Aθ, A

∗
ρ, A

∗
σ, A

∗
θ are independent in this realization. Therefore, there must be constraints

reducing the dimension from 9 to 5.
First, we note that relations (3.3) admit three Casimir operators (which commute with all the

generators):
Cρ = AρA

∗
ρ−S+(S0+�), Cσ = AσA

∗
σ−S+S−(S−−�), Cθ = AθA

∗
θ−S0S−(S−−�). (3.4)

In the realization (3.1), (3.2), these three operators vanish.
Also there are “quasi-Casimir” operators
C+ = AρA

∗
σ − S+A

∗
θ, C− = AσA

∗
θ − S−(S− − �)Aρ, C0 = AρAθ − (S0 + �)Aσ. (3.5)

The commutators of these operators with all generators are proportional to the operators (3.5). In
the realization (3.1), (3.2), the operators (3.5) also vanish.

Thus, the symmetry algebra of the resonance oscillator (2.6) can be defined as an algebra with
nine generators and relations (3.3) factorized by the ideal generated by the elements (3.4) and (3.5).

In this quotient algebra, we still have certainly a single additional Casimir element
C = 2S+ − S− + 2S0, (3.6)

which is in fact the operator ̂H0 (2.7), namely, ̂H0 = ω0√
2

(

C + 3�
2

)

.

4. ALGEBRAIC AVERAGING

To study the perturbed operator (2.1), we follow the general scheme of algebraic averaging
[16, 21]. Namely, we perform a unitary transformation which “kills” the part of the perturbation

in (2.1) that does not commute with the leading term ̂H0. The new perturbation commutes with
̂H0, and therefore, belongs to the algebra of symmetries described in the preceding section.
The formulas are as follows. We seek a unitary V = exp{−iRε/�} such that

V −1 · ̂H · V = ̂H0 + ε ̂H10 + ε2 ̂H20 +O(ε3), (4.1)
where

[ ̂H0, ̂H10] = [ ̂H0, ̂H20] = 0. (4.2)

The operator R generating the unitary family V has the form R = R0 + εR1, where
i

�
[ ̂H0, R0] = ̂H1 − ̂H10,

i

�
[ ̂H0, R1] = ̂H2 +

i

2�
[R0, ̂H1 + ̂H10]− ̂H20. (4.3)

Since ̂H0 = ω0√
2

(

C+ 3�
2

)

, where the operator C (3.6) has the spectrum {�n | n = 0,±1,±2, . . . },
the homological equations (4.3) can be solved easily:

̂H10 =
1

2π

∫ 2π

0

e−
it
�
C
̂H1e

it
�
C dt, ̂H20 =

1

2π

∫ 2π

0

e−
it
�
C
(

̂H2 +
i

2�
[R0, ̂H1 + ̂H10]

)

e
it
�
C dt, (4.4)

and the generators R0, R1 are given by

R0 =

√
2

2πω0

∫ 2π

0

e−
it
�
C
̂H1e

it
�
Ct dt, R1 =

√
2

2πω0

∫ 2π

0

e−
it
�
C
(

̂H2+
i

2�
[R0, ̂H1+ ̂H10]

)

e
it
�
Ct dt. (4.5)

The right-hand sides in (4.4), (4.5) can be computed explicitly, because the operator C is just
the linear combination (3.6) of the “action” operators S±, S0 and the evolution of all phase space
coordinates ẑ±, ẑ0 with respect to each action can be derived easily and explicitly.

Theorem 4.1. The Penning trap Hamiltonian (2.1) is unitary equivalent, up to O(ε3), to the

Hamiltonian (4.1) with the perturbing terms ̂H10, ̂H20 expressed via the generators of the symmetry
algebra (3.3) by the following formulas:

̂H10 = B3

(

2S+ + S− +
3�

2

)

− B1 + iB2√
2

Aρ −
B1 − iB2√

2
A∗

ρ, (4.6)

̂H20 = f+S+ + f−S− + f0S0 + (gρAρ + gρA
∗
ρ) + (gσAσ + gσA

∗
σ) + (gθAθ + gθA

∗
θ) + r.

(4.7)
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In formula (4.7), the scalar coefficients are given by the formulas f+ = ξ2(1 − 9η2)

√
2

8ω0
, f− =

ξ2
(

1 − 7 + 20η2

3

)

√
2

8ω0
, f0 = −ξ2(1 − η2)

5
√
2

24ω0
, gρ = ξ2η

√

1− η2
eiϕ√
2ω0

, gσ =
23/4
√
ω0

(γ2 − iγ1),

gθ =
1

27/4
√
ω0

(2β3 − β1 − β2 + 4iγ3), and r = −�ξ2(1 + 7η2) ·
√
2

8ω0
, where we use the notation

ξ2 = B2
1 + B2

2 + 2B2
3, η =

√
2B3/ξ, (4.8)

and the angle ϕ is given by
B1 + iB2 = ξ

√

1− η2eiϕ. (4.9)

5. SECONDARY RESONANCE

The perturbing terms ̂H10, ̂H20, . . . in (4.1) commute with the leading term ̂H0. Therefore, we
must now study the Hamiltonian

̂H10 + ε ̂H20 +O(ε2) (5.1)

on the eigenspaces of the resonance oscillator ̂H0. These eigenspaces can be determined by com-
puting the irreducible representations of the primary resonance algebra described in Section 3. The

expression for ̂H10 and ̂H20 in terms of generators of this algebra was given in Theorem 4.1, see 4.6.

Note that the generators Aρ, A
∗
ρ in (4.6) commute with S−, and therefore [ ̂H10, S−] = 0. Thus, the

Hamiltonian (5.1) under consideration is a perturbation of this integrable system (mostly by the
Ioffe field contribution).

The symmetry algebra of the operator ̂H10 (4.6) is trivial in general position (commutative and

generated by S− and ̂H10 itself), and its spectrum is nondegenerate. However, under a special
resonance condition imposed on the components of the perturbing magnetic field B, this algebra
becomes noncommutative, and a spectral degeneracy appears.

The condition for a secondary resonance in our trap is:

(k − l)2(B2
1 + B2

2) = 16((k + l)2 + kl/2)B2
3 , (5.2)

where k, l are some positive coprime integers. Assume that k > l if B3 > 0 and k < l if B3 < 0
in (5.2).

Theorem 5.1. Under condition (5.2), the symmetry algebra of the operator ̂H10 (4.6) is non-
commutative. The generators of this secondary resonance algebra are

A0 = S−, A±
def
== (1± η)S+ + (1∓ η)S0 ∓

√

1− η2(eiϕAρ + e−iϕA∗
ρ), (5.3)

B = Bl
+B

k
−, (5.4)

where
B±

def
==

√

1± η eiϕ/2Aσ ∓
√

1∓ η e−iϕ/2Aθ, (5.5)

the parameter η is taken from (4.8),

η =
k − l

3(k + l)
, (5.6)

and the angle ϕ is taken from (4.9).

Theorem 5.2. The commutation relations between generators (5.3), (5.4) read

[A0, B] = 2(k + l)�B, [A+, B] = 2l�B, [A−, B] = 2k�B, [B∗, B] = �f�(A0, A+, A−). (5.7)

The other commutators can be obtained either by conjugation of the above-written commutators or
are equal to zero. In formula (5.7),1

1The product
∏

is chosen to be equal to 1 if the upper limit in it is less than the lower limit.
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f�(A0, A+, A−)
def
==

1

�

{ 2(k+l)
∏

r=1

(A0 + r�)
k
∏

q=1

(A− + 2q�)
l

∏

p=1

(A+ + 2p�)

−
2(k+l)
∏

r=1

(A0 − r�+ �)

k
∏

q=1

(A− − 2q�+ 2�)

l
∏

p=1

(A+ − 2p�+ 2�)

}

.

(5.8)

The non-Lie algebra (5.7) has three Casimir (central) elements

M
def
== A+ −A− +

k − l

k + l
A0, C = A+ +A− −A0, K

def
== BB∗ − ρ�(A0, A+, A−), (5.9)

where ρ�(A0, A+, A−)
def
==

∏2(k+l)
r=1 (A0 − r�+ �)

∏k
q=1(A− − 2q�+ 2�)

∏l
p=1(A+ − 2p�+ 2�).

Theorem 5.3. In the realization (3.1), (3.2), the Casimir elements (5.9) read

M =
2
√
2

ξ
̂H10 − η(C + 3�), M =

√
2

ω0

̂H0 −
3�

2
, K = 0, (5.10)

where η is taken from (5.6) and ξ =
√
2B3/η. On the nth eigenspace of the leading Hamiltonian

̂H0, where the Casimir C takes the value n�, the spectrum of the Casimir M is { 4
k+l ·m�− k−l

k+l ·n� |
m ∈ L}. Here the subset L ⊂ Z is defined as follows:

if k = 1, l = 0, then L = Z+,
if k = 0, l = 1, then L = Z−,

if k �= 0, l �= 0, then L = {kt+ − lt− + klt0 | 0 � t+ � l − 1, 0 � t− � k − 1, t0 ∈ Z}.

Corollary 5.4. Under the secondary resonance condition (5.2), the spectrum of the Hamiltonian
(4.1) reads ω0√

2

(

n+
3

2

)

�+ ε
( 6m

k − l
− n+

3

2

)

�B3 +O(ε2), (5.11)

where n ∈ Z, m ∈ L.

The corrections O(ε2) in this spectrum are determined by the secondary perturbation ̂H20 (4.7)
in (5.1). In order to take them into account, one has to perform a secondary averaging operation
similar to those made in Section 4. By a unitary transform we obtain, instead of (5.1), the new
Hamiltonian

̂H10 + ε ̂H200 +O(ε2) (5.12)
with the new perturbing term commuting with the leading part: [ ̂H10, ̂H200] = 0. The explicit

formula for ̂H200 is obtained by the same integral operation as in (4.4) but, instead of the Casimir
operator C in the exponent, one now has to use the Casimir operator 1

4 (k + l)M whose spectrum
belongs to the arithmetic progression {m�+ a}.

For simplicity, consider now only the simplest resonance k : l = 1 : 0 in (5.2), i.e., assume that
B2
1 + B2

2 = 16B2
3 . (5.13)

This condition means that the angle between the trap axis and the perturbing magnetic field B is
about 76◦. In this case, the secondary resonance algebra (5.7) reads
[A0, B] = 2�B, [A−, B] = 2�B, [B∗, B] = 2�(A2

0 + 2A0A− + 3�A0 + �A− + 2�2). (5.14)

The Casimir elements are
M = A+ −A− +A0, C = A+ +A− −A0, K = BB∗ −A0(A0 − �)A−. (5.15)

Theorem 5.5. Under the secondary resonance condition (5.13), the secondary averaged Hamil-

tonian ̂H200 in (5.12) is expressed via generators of the secondary symmetry algebra (5.14) by the
formula

̂H200 = κ ·B + κ̄ · B∗ + μ0A0 + μ+A+ + μ−A− + ν, (5.16)

where the scalar coefficients are

κ =
1

27/4
√
3ω0

[

(2β3 − β1 − β2 + 4iγ3)e
iϕ/2 + 4(γ2 − iγ1)e

−iϕ/2
]

,

μ0 = −14
√
2

3ω0
B2
3, μ+ = −17

√
2

9ω0
B2
3, μ− =

2
√
2

9ω0
B2
3, ν = −�

97
√
2

16ω0
B2
3,

(5.17)

and the angle ϕ is derived from the relation cosϕ = B1/4B3.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 20 No. 3 2013



290 KARASEV, NOVIKOVA

Corollary 5.6. Under the primary resonance condition (2.6) and the secondary resonance con-
dition (5.13), the spectrum of the Hamiltonian (2.1) of the perturbed Penning trap has the following
asymptotics:

ω0√
2

(

n+
3

2

)

�+ ε
(

6m− n+
3

2

)

�B3 + ε2λn,m,k +O(ε3), (5.18)

where n ∈ Z, m ∈ L, and λn,m,k are the eigenvalues of the operator (5.16) over the secondary
resonance algebra (5.14) in its irreducible representation in which the Casimir elements (5.15) take
the values

K = 0, C = n�, M = (4m− n)�. (5.19)

6. IRREDUCIBLE REPRESENTATIONS OF THE SECONDARY RESONANCE ALGEBRA

Now we describe the irreducible representations of the algebra (5.7) (in particular, of (5.14)).

For any n ∈ Z, introduce a subset Tn ⊂ Z
2
+ as Tn

def
== {(t+, t−) ∈ Z

2
+ | t+ + t− � n/2}. This

subset has a natural partial order,
(a+, a−) � (b+, b−) ⇐⇒ a+ � b+ and a− � b−. (6.1)

Lemma 6.1. For any m ∈ L, there is a unique solution (m+,m−) ∈ Tn of the equation
km+ − lm− = m, (6.2)

which is minimal with respect to the partial order (6.1).

In particular, if k = 1, l = 0, then the minimal solution of (6.2) is given by the formula
m+ = m, m− = [(1 +max{n− 2m, 0})/2], (6.3)

where [. . . ] stands for the integer part of a number.

Define now the following function Fn,m of the integer arguments,

Fn,m(j)
def
= 2k+l

�
3(k+l)

(

2(m++m−)−n+2(k+l)(j−1)+1
)

2(k+l)

(

m−+k(j−1)+1
)

k

(

m++l(j−1)+1
)

l
,

(6.4)
where the Pochhammer symbols are defined by (c)0 = 1 and (c)j = c(c+1) · · · (c+ j− 1) for j � 1.

In particular, if k = 1, l = 0, then
Fn,m(j) = 2�3(2(m+m−)− n+ 2j)(2(m +m−)− n− 1 + 2j)(m− + j). (6.5)

Theorem 6.1. The irreducible representations of the secondary resonance algebra (5.7) are
given by the ordinary differential operators

A0 = a0(D), A± = a±(D), B = z̄, B
∗ = b̄(

2
z̄,

1

D), (6.6)

where D
def
== z̄ d

dz̄
and

a0(d)
def
== 2�(m+ +m− − n/2 + (k + l)d), a+(d)

def
== 2�(m+ + ld),

a−(d)
def
== 2�(m− + kd), b̄(z̄, d)

def
== Fn,m(d)/z̄.

(6.7)

In these representations, the values of the Casimir elements (5.9) are as follows:
M ≡ A+−A−+ k−l

k+l
A0 = 4

k+l
m�− k−l

k+l
n�, C ≡ A++A−+A0 = n�, K ≡ BB

∗−ρ�(A0,A+,A−) = 0.

(6.8)
The conjugation of operators in the above formulas is taken with respect to the inner product

in the space of holomorphic functions in the variable z̄ given by

(z̄j , z̄r)
def
== sn,m(j) · δjr, (6.9)

where
sn,m(j) = Fn,m(1) · · · Fn,m(j) = 2(k+l)j

�
3(k+l)j

(

2(m+ +m−)− n+1
)

2(k+l)j
(m− +1)kj(m+ +1)lj .

Remark 6.1. Consider the case k = 1, l = 0. In this case, since the function Fn,m (6.4) is
cubic, the operator B

∗ in the representation (6.6) is a third-order differential operator. Thus, the
Hamiltonian (5.16) in the irreducible representation realized by (6.6) is a third-order differential
operator as well. To reduce the order of this operator, one needs to find another realization of the
irreducible representations of the algebra (5.7) using second-order operators instead of third-order
ones.

Note that the pair of integer numbers (m+,m−) defined in Lemma 6.1 satisfies at least one of
the following conditions:
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(i) m+ < l or m− < k,

(ii) 2(m+ +m−)− n < 2(k + l).

In case (i), write

B = z̄

k+l
∏

r=1

(A0 + r�), B
∗ =

1

z̄

k+l−1
∏

r=0

(A0 − r�)

k−1
∏

q=0

(A− − 2q�)

l−1
∏

p=0

(A+ − 2p�). (6.10)

In case (ii), write

B =

k−1
∏

q=0

(A− − 2q�)

l−1
∏

p=0

(A+ − 2p�) · z̄, B
∗ =

1

z̄

2(k+l)−1
∏

r=0

(A0 − r�). (6.11)

Theorem 6.2. Formulas (6.10), (6.11) realize the irreducible representation of the secondary
resonance algebra (5.7) corresponding to the same values (6.8) of the Casimir elements as the
representation constructed in Theorem 6.1 (an equivalent representation).

The operator conjugation in (6.10), (6.11) is given by the same formula (6.9) as in Theorem 6.1,
and the numbers sn,m(j) are now defined as follows:

— in case (i),

sn,m(j) = 2(k+l)j
�
(k+l)j

(

2(m+ +m−)− n+ 1
)

2(k+l)j
(m− + 1)kj(m+ + 1)lj

(∏j
r=1

(

2(m+ +m−)− n+ 2(k + l)(r − 1) + 1
)

k+l

)2 ,

— in case (ii),

sn,m(j) =

(

�

2

)(k+l)j
(

2(m+ +m−)− n+ 1
)

2(k+l)j

(m− + 1)kj(m+ + 1)lj
.

It is possible to write out other useful variants of the realization of irreducible representations
of the algebra (5.7). The general classification is given in [19].

In particular, if k = 1 and l = 0, we derive from formulas of type (6.10) and (6.11) the following
irreducible representation of the secondary resonance algebra (5.14) by (at most second-order)
differential operators:

(i) if n � 2m, then

B = 2�z̄
(

z̄
d

dz̄
+m− n

2
+

3

4
− (−1)n

4

)

, B
∗ = 4�2

(

z̄
d

dz̄
+m− n

2
+

3

4
+

(−1)n

4

) d

dz̄
, (6.12)

(ii) if n > 2m, then

B = 2�z̄
(

z̄
d

dz̄
+ 1− (−1)n

2

)

, B
∗ = 4�2

(

z̄
d

dz̄
−m+

[n+ 1

2

]

+ 1
) d

dz̄
, (6.13)

and A± and A0 are first-order operators given by the following formulas:

(i) if n � 2m, then A0 = 2�
(

m− n
2
+ z̄ d

dz̄

)

, A+ = 2�m, and A− = 2�z̄ d
dz̄
;

(ii) if n > 2m, then A0 = 2�
( 1−(−1)n

4
+ z̄ d

dz̄

)

, A+ = 2�m, and A− = 2�
([

n+1
2

]

−m+ z̄ d
dz̄

)

.

The inner product for the operator conjugation in (6.12), (6.13) is given by (6.9), where the
numbers sn,m(j) are defined by

— in case (i),

sn,m(j) = (2�)jj!

(

m− n
2 + 3

4 + (−1)n

4

)

j
(

m− n
2 + 3

4 − (−1)n

4

)

j

,

— in case (ii),

sn,m(j) = (2�)jj!

([

n+1
2

]

−m+ 1
)

j
(

1− (−1)n

2

)

j

.

7. INTEGRAL REPRESENTATIONS OF EIGENFUNCTIONS VIA
COHERENT STATES OF THE SECONDARY RESONANCE ALGEBRA

We have determined the inner product in the space of antiholomorphic functions over C by the
formula

(u, v) =
∑

j�0

sn,m(j)uj v̄j . (7.1)
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Here u(z̄) =
∑

j�0 uj z̄
j , v(z̄) =

∑

j�0 vj z̄
j , and the numbers sn,m(j), for fixed n and m and

variable j = 0, 1, 2, . . . , are given by (6.9). These numbers are related to the choice of an irreducible
representation of the given algebra.

The reproducing kernel in the space with the inner product (7.1) is

Kn,m(w̄, z)
def
==

∑

j�0

(w̄z)j

sn,m(j)
. (7.2)

The term “reproducing” is applied here because of the following property: if one takes the inner
product (7.1) of two functions Kn,m(·, z) and Kn,m(·, w), then the result is equal to Kn,m(w̄, z).

One can now define a family of coherent states pn,m(z) of the given algebra so that
(pn,m(z), pn,m(w))L2 = Kn,m(w̄, z). (7.3)

The inner product on the left-hand side of (7.3) is taken in the space of the given representation
of the algebra. In our case, this space is L2 = L2(R3), i.e., the original Hilbert space for the
Schrödinger operator (2.1).

The family of coherent states obeying (7.3) can be determined by the formula
pn,m(z) = Fn,m(z,B)pn,m(0). (7.4)

Here the function Fn,m is given by Fn,m(z, w̄) =
∑

j�0(zw̄)j/β(j), where

β(j) =
(

j!sn,m(j)Fn,m(j − 1) · · · Fn,m(0)
)1/2

and Fn,m is taken from (6.4). The “vacuum vector” pn,m(0) in (7.4) is an eigenvector of all Cartan
generators A0, A+, A− of the algebra (5.7) and it is annihilated by the generator B∗.

Consider now the simplest secondary resonance k = 1, l = 0 and the resonance algebra (5.14).
Then the equations for the vacuum vector are as follows:

B∗pn,m(0) = 0, A0pn,m(0) = �(2(m+m−)− n)pn,m(0),

A+pn,m(0) = 2�mpn,m(0), A−pn,m(0) = 2�m−pn,m(0).
(7.5)

The normalized solution of the system of equations (7.5) is

pn,m(0) = cn,m(ẑ∗−)
2(m+m−)−n(

√
2eiϕ/2ẑ∗+ − e−iϕ/2ẑ∗0)

m

× (eiϕ/2ẑ∗+ +
√
2e−iϕ/2ẑ∗0)

m− exp
(

− (x2
+ + x2

− + x2
0)/2�

)

,

where
cn,m =

(

3m+m−π3/2
�
3(m+m−)−n+3/2

(

2(m+m−)− n
)

!m!m−!
)−1/2

.

By using coherent states, one can intertwine the original representation of the algebra (5.14)
with its irreducible representations. The intertwining mapping is

g → In,m(g)
def
==

1

2π�

∫

C

g(z̄)pn,m(z)l(|z|2) dz̄ dz. (7.6)

Here l stands for the density of the “reproducing measure” with respect to which the following
reproducing property holds:

∫

C

Kn,m(w̄, z)Kn,m(z̄, w)l(|z|2) dz̄ dz = K(w̄, w). (7.7)

The inner product (7.1) in terms of this measure reads

(u, v) =

∫

C

u(z̄)v(z̄)l(|z|2) dz̄ dz. (7.8)

The mapping (7.6) obeys
A0,±In,m(g) = In,m(A0,±(g)), BIn,m(g) = In,m(B(g)), B∗In,m(g) = In,m(B∗(g)), (7.9)

where A0, A+, A−, B, B∗ are the original generators of the algebra and A0, A+, A−, B, B
∗ are the

generators of the irreducible representation (6.12) or (6.13).

Applying (7.6), (7.9) to the operator ̂H200 (5.16), we derive ̂H200In,m(g) = In,m(H(g)), where
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H
def
== κB+ κ̄B

∗ + μ0A0 + μ+A+ + μ−A− + ν. (7.10)

Thus, in order to compute the spectrum and eigenvectors of ̂H200 in the eigenspace of ̂H0 and
̂H10, one needs to consider the eigenvalue problem in the space of antiholomorphic functions with
the inner product (7.8) for the operator H (7.10):

Hg = λg. (7.11)

From (6.12) or (6.13), it follows that (7.11) is the second-order ordinary differential equation
with coefficients that are linear or quadratic in z̄.

Denote the eigenvalues and the eigenfunctions of (7.11) by λ = λn,m,k, g = gn,m,k, where k =
0, 1, 2, . . . is the new “quantum number” indexing the eigenvalues. Then the vectors In,m(gn,m,k)

are the eigenvectors of ̂H200.

The reconstruction of eigenstates of the original Hamiltonian ̂H can now be obtained by applying
the unitary operator V (4.1) and another unitary operator V1 transforming (5.1) into (5.12).

Theorem 7.1. Let the frequencies ω and ω0 satisfy the resonance condition (2.6), and let the
components of the perturbing homogeneous magnetic field B satisfy the secondary resonance condi-

tion (5.13). Then the eigenstates of the Penning trap Hamiltonian ̂H (2.1) are given, up to O(ε),
by the integral formula

ψn,m,k =
1

2π�

∫

C

gn,m,k(z̄) · V V1pn,m(z) · l(|z|2) dz̄ dz, (7.12)

where gn,m,k are the eigenfunctions of the second-order ordinary differential operator H (7.10) with
generators A0,±, B, B

∗ given in (6.12) or (6.13).

The corresponding eigenvalues of ̂H read
ω0√
2

(

n+
3

2

)

�+ ε
(

6m− n+
3

2

)

�B3 + ε2λn,m,k +O(ε3),

where n ∈ Z, m ∈ Z+, and λn,m,k are the eigenvalues of H.

Remark 7.1. The family of vectors V V1pn,m(z) in (7.12) can be viewed as a kind of “squeezed”
coherent state of the secondary resonance algebra of the Penning trap. The squeezing is made by
unitary transformations V , V1, which reduce the original Hamiltonian (2.1) to the integrable form
(5.12). The basic coherent states pn,m(z) in (7.12) correspond to irreducible representations of the
non-Lie secondary resonance algebra (5.14).

Note that some coherent states of the Penning trap were studied in [25, 26].

Remark 7.2. In the integrand of (7.12), one still needs to compute the solutions gn,m,k of the
ordinary differential equation (7.11). However, in the semiclassical approximation, this can be done
explicitly, and (7.12) can be reduced to an integral of the form

ψn,m,k � 1√
2π�

∫

Λn,m,k

e
i
�
{Action}√{Jacobian} · V V1pn,m · {Measure}+O(�),

where Λn,m,k are level lines, of the Wick symbol of the operator H, that are subjected to a quantiza-
tion condition and {Action}, {Jacobian}, {Measure} are taken on Λn,m,k by a canonical procedure
[23, 24]. The eigenvalues λn,m,k are given, up to O(�2), by the values of the Wick symbol on the
level lines Λn,m,k.
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