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Abstract. For a class of degenerate diffusion processes of rank 2, i.e. when only Poisson brackets of order one are needed to
span the whole space, we obtain a parametrix representation of McKean—Singer [J. Differential Geom. 1 (1967) 43-69] type for the
density. We therefrom derive an explicit Gaussian upper bound and a partial lower bound that characterize the additional singularity
induced by the degeneracy.

This particular representation then allows to give a local limit theorem with the usual convergence rate for an associated Markov
chain approximation. The key point is that the “weak” degeneracy allows to exploit the techniques first introduced in Konakov and
Molchanov [Teor. Veroyatn. Mat. Statist. 31 (1984) 51-64] and then developed in [Probab. Theory Related Fields 117 (2000)
551-587] that rely on Gaussian approximations.

Résumé. Pour une classe de processus de diffusion de rang deux, i.e. lorsque seuls des crochets de Poisson d’ordre un permettent
d’engendrer I’espace, nous obtenons une représentation parametrix de type McMean—Singer [J. Differential Geom. 1 (1967) 43—69]
de la densité. Nous en dérivons une borne supérieure Gaussienne explicite et une borne inférieure partielle qui caractérisent la
singularité additionnelle induite par la dégénérescence.

Nous donnons ensuite un théoréme limite local pour une approximation par chaine de Markov associée. Le point crucial est
que la faible dégénérescence permet d’exploiter les techniques initialement introduites par Konakov et Molchanov [Teor: Veroyatn.
Mat. Statist. 31 (1984) 51-64] puis développées dans [Probab. Theory Related Fields 117 (2000) 551-587] et qui reposent sur des
approximations Gaussiennes.
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1. Introduction
1.1. Global overview

Let us consider in R?, d > 1, the Markov diffusion process with generator

L= Yo a®ag, + Y bi(0)dy.

i,je[1,d]? ie[l,d]
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If the coefficients of L are smooth enough, say C 1(R?), bounded, and the diffusion matrix A(x) = (ajj(x)) is uni-
formly elliptic (VA € R?, (Ax, 1) € [8|A)%, 8~ A|?] for an appropriate § > 0) then the associated process (X;);>0 has a
transition density p(z, x, y) which is the fundamental solution of the parabolic problem 9; p(-) = L, p(-), p(0,x,y) =
8y (x). Of course, one also has 9, p(-) = L} p(), p(0, x, y) = 6x(y).

Moreover, this density satisfies uniformly in ¢ € ]J0, T'] the following Gaussian bounds

M~! lx — y[? M Ix — )2
Jaz P\ —M— =pt.x,y) = grexp| —— =),

where the constant M depends on T, d, the ellipticity constant and the norms of the coefficients in C!(R?), see e.g.
Aronson [1] or Stroock [24].

The above estimations express the following physically obvious fact: if the process starts from xo € R?, then for
small ¢ > 0, in the neighborhood of xg it is “almost Gaussian” with the “frozen” diffusion tensor A(x() and the drift
b(xp).

The justification of this fact requires the solution of the perturbative integral equation for p(-) (so-called Parametrix
equation), where the leading term of the perturbation theory for p(-) is exactly the Gaussian kernel pg(-) corresponding
to the “frozen” coefficients at xg. For details concerning Parametrix equations we refer the reader to McKean and
Singer [19], Friedman [11] or [14].

If the matrix A(x) degenerates, but the coefficients a, b are still smooth, the diffusion process (X;);>0 with gener-
ator L exists (one can use the It6 calculus for the direct construction of the trajectories), but has generally speaking no
density.

Consider now generators of the form L = Zle Af + Ao, k < d, where (A;);c[o,x] are first order operators (vector

fields) on R (or more generally on smooth manifolds) with C* coefficients. Sufficient conditions for the exis-
tence of the density can be formulated in terms of the structure of the Lie algebra of the vector fields on R¢, with
usual linear operations and the Poisson bracketing [-, -]. Namely, if the vector fields A1, ..., Ag, [A}, Am](l,m)e[[(), k]2
[A, [An, An]](l,m,n)e[[o,kﬂ37 ... span R then the density exists. This result is due to Hérmander [13], see also Norris
[22] for a Malliavin calculus based probabilistic proof. Operators having the previous property are said to be hy-
poelliptic. Also, in [13], Hormander stressed that the seed of the idea of hypoellipticity goes back to Kolmogorov’s
note [17].

A. Kolmogorov made the following important observation. Let d = 2. For the generator L = % fo +axdy,a#0,
the solution of the associated SDE writes (X;, Y;) = (xo + W;, yo + a(xot + fé W, ds)), where W is a standard one-
dimensional Brownian motion. Thu2$ (X;, Yy) has two-dimensional Gaussian distribution with mean (xg, yg + axot)

heat kernel. In Hormander’s f(irm i = %A% + Ag, A1 =03y, Ag =ax 9y so that [A1, Ag]l =a dy and thus, A, [Ay, Ag]
have together rank 2.

In this paper, using a parametrix approach derived from the work of McKean and Singer [19], we are able to derive
a Gaussian upper bound, and a “partial” lower bound with the two previous time scales, and an associated local limit

theorem in the following case.

. . r % . . . . .
and covariance matrix C = ( 2 s ) Note that the transition density for small ¢ has higher singularity than the usual

1.2. Statement of the problem

We consider R? x R?-valued diffusion processes that follow the dynamics

Xi =x+ [y b(Xy, Yy)ds + [3 o (X, Yy) dW,, D

Yt=y+f(;Xstv ’
where (W;);>0 is a standard d-dimensional Brownian motion defined on some filtered probability space (§2, F,
(Fi)=0, P) satisfying the usual assumptions. We assume that o is uniformly elliptic and that b, ¢ are C!, bounded,
Lipschitz continuous functions so that there exists a unique strong solution to (1.1).
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Such kind of processes appear in various applicative fields. For instance, in mathematical finance, when dealing
with Asian options, X represents the dynamics of the underlying asset and its integral Y is involved in the option Pay-
off. Typically, the price of such options write E [y (X7, T~'Y7)], where for the put (resp. call) option the function
V(x,y)=(x —y)* (resp. (y —x)T), see [5] and [26].

The cross dependence of the dynamics of X in Y is also important when handling kinematic models or Hamiltonian

systems. For a given Hamilton function of the form H(x, y) =V (y) + ﬁ, where V is a potential and # the kinetic
energy of a particle with unit mass, the associated stochastic Hamiltonian system would correspond to b(Xj, Ys) =
—(0yV(XYy) + F(Xy, Ys)Xy) in (1.1), where F is a friction term. When F > 0 natural questions arise concerning the
asymptotic behavior of (X, Y;), for instance, the geometric convergence to equilibrium for the Langevin equation is
discussed in Mattingly and Stuart [20], numerical approximations of the invariant measures in Talay [25], the case
of high degree potential V is investigated in Hérau and Nier [12]. Under the previous boundedness assumption on b,
Eq. (1.1) describes frictionless Hamiltonian systems with “almost linear” potential.

Importantly, the two time-scales coming from Kolmogorov’s example, and that we obtain for the density associated
to (1.1), can be exploited to investigate small time asymptotics of the previous models. For instance, for the Asian
option, a normalization is required in the pay-off to make both quantities scale-homogeneous.

As mentioned above, equation (1.1) provides one of the simplest forms of degenerated processes and the previous
assumptions guarantee that Hérmander’s theorem is satisfied taking only the first Poisson brackets between the vector
fields associated to the drift and the diffusive part in (1.1). In a more general hypoelliptic setting, let us mention
the work of Cattiaux [8,9] whose assumptions include the case (1.1), but who obtains less explicit controls, see his
Proposition (1.12). Under the “strong” Hormander condition that involves the Poisson brackets of the diffusive part
of the process, small time asymptotics of the density are discussed in Ben Arous [3] or Ben Arous and Léandre [4].
Eventually, in whole generality two-sided bounds for the density of degenerate diffusions are investigated in Kusuoka
and Stroock [18]. All these work strongly rely on Malliavin calculus techniques. We want to stress that the parametrix
approach is not very well suited to study general degenerate processes. Anyhow, the counterpart is that it gives by
construction more explicit controls. In the non-degenerate case, for «-Holder continuous coefficients, it directly gives
two-sided Gaussian estimates. The lower bound on the diagonal in small time derives from the series representation
and the global lower bound is obtained thanks to a chaining argument as in [18]. Here, we still derive a lower bound
in small time from the series, but a chaining argument needs to be developed.

Also, our controls remain valid if the coefficients in (1.1) are uniformly a-Holder continuous, a case for which
Hormander’s theorem breaks down, see Section 3, Remark 3.1 for details.

A natural question then concerns the Markov chain approximation of (1.1). For non-degenerated processes this
aspect has been widely studied, see e.g. [15] for local limit theorems. In [7], using Malliavin calculus techniques,
Bally and Talay obtain an expansion at order one w.r.t. the time step for the difference of the densities of the diffusion
and a perturbed Euler scheme, i.e. the stochastic integrals are approximated by Gaussian variables and an artificial
viscosity is added to ensure the discrete scheme has a density. This rate corresponds to the usual “weak error” bound.
Since we follow the local limit theorem approach we can handle a wider class of random variables in the approximation
but obtain a rate of order 1/2 w.r.t. the time step. Of course, plugging Gaussian random variables in our approximation
yields to rate & as in [7].

Importantly, as opposed to [7], we do not need to introduce an artificial viscosity to ensure the existence of the
density for the underlying degenerate Markov chain. We develop analogously to the continuous case a parametrix
approach to express the density of the Markov chain in term of the density of an auxiliary frozen random walk.
The random walk is degenerated as well, but has a density after a sufficient number of time steps, see Section 4.4
for details. The local limit theorem is then derived from an accurate comparison of the parametrix expansions of the
densities of the process and the chain. To motivate this result we can consider the case of the approximation of a
“digital Asian call” i.e. of the quantity IP)[(T_1 Yr — X7)T > K] for a given K € R™. Indeed, the local limit theorem
associated to our scheme directly relates the densities of the discrete and continuous objects which is not the case if
we only consider a discretization of the non degenerate component and a numerical estimation of the integral, since
in that case the approximating couple can fail to have a density.

The paper is organized as follows. In Section 1.3, we give our assumptions and fix some notations. Then, since
the form of the Markov chain approximation strongly relies on the proof of our results for the diffusion we choose
to divide this paper into two parts. Sections 2 and 3 deal with the results for the diffusion and their proofs. Section 4
is dedicated to the Markov chain approximation of (1.1), the associated convergence results and the key points of the
proofs. The complete proof of the local limit theorem can be found in the Appendix of [16].
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1.3. Assumptions and notations

We suppose that the coefficients of Eq. (1.1) satisfy the following assumptions:
(UE) 3(min, Amax) € (0,00)%, ¥z € R, ¥(x, y) € R, Aminlz|* < (@(x, ¥)z,2) < Amax|z|*, denoting a(x, y) =

o0*(x, y). From now on we suppose that o is the unique symmetric matrix s.t. 6o = a. We are interested in the den-
sity of the process and its approximation at a given time. Hence, from the uniqueness in law, the previous assumption
concerning the factorization of a can be made without loss of generality.

(B) The coefficients b, o in (1.1) are C', uniformly Lipschitz continuous and bounded.

Throughout the paper we consider the running diffusion (1.1) up to a fixed final time 7 > 0. We denote by C a
generic positive constant that may change from line to line and only depends on 7', and the parameters appearing in
(UE), (B). We reserve the notation ¢ for constants that only depend on parameters from (UE), (B). Other possible
dependencies are explicitly indicated.

2. Explicit parametrix and associated controls for the density of the diffusion

The previous assumptions guarantee that Hormander’s theorem, see e.g. Nualart [23], holds true, and therefore that
vVt > 0, (X, Yy) has a density w.r.t. the Lebesgue measure. Introduce the vector fields in R

bi(x,y) o1j(x,y)
Ao(x, y) = b"(;‘l’y) o vielld]l Ay =| G| @.1)
x'd 0

One directly derives the following proposition.
Proposition 2.1. For all (x,y) e R%,

Span(A1(x, y), ... Aa(x,y), [Ao(x, y), Ai(x, »)]. ... [Ao(x, ¥), Aa(x, y)]) = R*,
where ¥(i, ) € [0,d]?, [A;, Aj1=AiVAj— A;VA; denotes the Poisson bracket.

FixT>0and0<t<T, (x,y) € R24 . Since, we now know that (X¢, Yy) has a transition density, i.e. P[X; €
dx', Y, edy’'|Xo =x, Yo =y] = p(t, (x, y), (x’, y"))dx’ dy’, our aim is to develop a parametrix for (1.1) to obtain an
explicit representation of this density.

Recall that we consider the following SDE

{dXs =b(X;, Yy)dt + 0 (X, Y)dWs, Xo=x, 2.2)

dY, = X ds, Yo=y.

For the parametrix development we need to introduce a “frozen” diffusion process, ()N( P ?s)selo,t] below. Namely
forall (x', y") e R%, t € (0, T define

(2.3)

~ 7o ~ ’
dxir = cr(x’, v —x'(t — s)) dw, + b(x’, y’) ds, X(t)’x Y o=x,
>t /7 / St /, "’ >t /, /
dyes = X0 ds, Yo't =y
The key point is that the above process is Gaussian. The arguments in the second variable of the diffusion coefficient
can seem awkward at first sight, it includes the transport of the frozen point x” with a time reversal. This particular
choice is actually imposed by the natural metric of the frozen process, see Proposition 3.1, in order to allow the
comparison of the singular parts of the generators.
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The processes (X, Ys) and (XL FEEYY 5 €10, 1], have the following generators: Y(x,y) € R ¢ e
CQ(RM),

1
LW(X» Y) = (5 Tr(a(x7 y)D)%I//) +<b(-x7 )’)» Vxl//)+ (.X, V}'I/f>>(xa y)’
(2.4)

~t !y 1

LY y(x,y) = <E Tr(a(x',y —x'(t — $))D2y) + (b(x', ') Vi) + (x, vyw)) (x, y).
From these operators we define for 0 <t < T, ((x, y), (x’, y")) € (R2)2 the kernel H by

H(tv (.X, y)7 (-x/s y/)) = (L - Z)ﬁ(l, ()C, y)s (.X/, y/)),

where p(t, (x,V), (-,7)) = ﬁ”x/*y/(t, x, ), ¢, 9)), L= Zg’x,’y, respectively stand for the density of the process

Stx'y Sty Stx'y Sty . . .. .
(X; Y, ) and the generator of (X , Y )se[0,:] at time s = 0. We omit to explicitly emphasize the
dependence in ¢, x’, y’ for notational convenience.

Remark 2.1. Note carefully that in the above kernel H, because of the linear structure of the model the most singular
terms, i.e. those involving derivatives w.r.t. y, vanish.

The next proposition gives the expression of the density p in terms of an infinite sum involving iterated convolutions
of the density p with the kernel H. Namely,

Proposition 2.2 (Parametrix expansion for (2.2)). Forall0 <t <T, ((x,y), (x’,y")) € (R?)2,

+00
p(t, @), (x3) =D P HD (1, (x, ), (x,Y)), 2.5)
r=0

where
feg(t @, , (x,y))

t
=f du/y [, (x, ), (z,0))g(r —u, (z,v), (¥, y')) dzdv,
0 R
PRHO =pand H” = H® H"~V,r > 0 denotes the r-fold convolution of the kernel H.

The previous Proposition is a direct consequence of the usual parametrix recurrence relations. For the sake of
completeness we provide its proof in Section 3.

Now, since forO <t < T (f(s, 17 s)sef0.1]» 18 @ Gaussian process, p and its derivatives are well controlled. The pre-
vious expression is the starting point to derive the following theorem.

Theorem 2.1 (Gaussian bounds). There exist constants ¢,C > 0 s.t. for all 0 <t < T, ((x, y), (x', y")) € (R??)2,
one has:

p(t. (x,y), (x'.)) < Che(t, (x,y), (x'. ), (2.6)

where

dad/2 ) /A / 2
- 3 lx" — x| Iy =y = (x+x)1/2]
Pe(t, (e, ), (', ¥)) = Gy eXP<—c[ 3 3
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enjoys the semigroup property, i.e. YO <s <t <T,

fde Pe(s, (. ), (w,2)) pe(t — s, (w, 2), (x',y)) dwdz = pe(t, (x, ), (x', y")).

/ 2 oy / 2
Also, for a given Co > 0, 319 :=10(Co. ¢, C) s.t. for t <19, [ 4 3Dmy=0BOIBE) < Co p(r, (x, y). (¢, y) =
C™1Pe1 (1, (x, ), (&Y.
Remark 2.2. The lower bound, obtained in small time and compact sets, derives from the parametrix representation

of Proposition 2.2 and the upper Gaussian control. It remains an open problem to find a well suited chaining argument
to derive a global lower bound for this degenerate case.

Remark 2.3. Note that the above result would remain valid if we replaced the dynamics of Y; in (1.1) by Y, =y +
fot F(Xy)ds for a C**% « > 0, Lipschitz continuous mapping F :R? — R? s.t. the Graim matrix DF DF* is non-

degenerated, i.e. 3cy > 0,V(€,x) e RY x RY |(DFDF*(x)&, £)| > co|€|*. Indeed, in such a case, (X, YS)SE[(),T] =
(F(X5s), Ys)selo,1] follows a dynamics of type (1.1).

3. Proof of the main results: Diffusion process
3.1. Proof of Proposition 2.2: Parametrix expansion

Following Cattiaux [8] and Lemma 3.1 one derives that p, p have continuous densities with bounded derivatives.
Hence, from the forward and backward Kolmogorov equations associated to (X, Y), (X, Y) and denoting by L* the
adjoint of L, we have

p(t7 (x,y),(x/,y/))—ﬁ(t, (x,y),(x/,y/))
:/ du—/l;mdwdzp( (x, ), (w, ) p(r —u, (w, 2), (x', "))

_[ ap(u, (x, ), (w,2)) ~ L
_/o du/dedwdz[ » p(r—u, (w,2),(x",y))

)8ﬁ(t —u, (w7 Z)a (x/’ y/))
ou

+ p(u, (x, ), (w,2)

/ duf dwdz [L*p(u, (x,y), (w,2))p(t —u, (w,2), (x', "))
— LB(t — . (w2, (<)) (. (2, 3). (w,2))]

t ~
f du/ dwdz p(u, (x, ), (w,2))(L — L)p(r — u, (w, 2), (x,y))
0 R2d
p®H(t, (x,y). (x',))).

A simple iteration completes the proof.

3.2. Proof of Theorem 2.1

3.2.1. Proof of the upper bound
The proof is divided into two parts. First an elementary control on the density of (f , ?) is stated in Lemma 3.1. Then,
this control is used to control the kernel H and the convolutions.

Step 1: Gaussian controls for (X, Y).
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Lemma 3.1. There exist constants ¢ > 0,C > 0, s.t. for all multi-index o, || <3, VO0<u <t <T, Y(w,2),
(', y) e R¥,

|0 P (t —u, (w,2), (x',y"))]

3772 p(_c[w —wl Y -2 = (/2w X)) — u)|2]>

Qni2yd ti—m t —u)

=C(t—uw) V2P (t —u, (w,2), (x', ),

Pt —u, (w,2), (x',y) 22C7" poi (t —u, (w, 2), (x',Y)),

<C(t—u)y 2

where p. is as in Theorem 2.1 and enjoys the semigroup property.

The proof is postponed to Section 3.2.2.
Step 2: Control of the kernel. Recall that under (B), the coefficients a, b are uniformly Lipschitz continuous. Hence,

it is easy to get from Lemma 3.1 and the previous definition of H that, up to a modification of ¢ > 0 in p., 3C; >
0,Vu e[0,1),

Cy

Vi—u

Lemma 3.1 also yields that 3C; > 0, Yu € (0, ], p(u, (x,y), (w, 2)) < C2p-(u, (x,Y), (w, z)). Setting C := C1 Vv Cy,
we finally obtain

|H(t —u, (w,2), (x",y)| < Pelt —u, (w,2), (x, ). (3.1

t
P H(t, (x,y), (x",y)| < /0 du /RM Plu, (x,y), (w,2)|H(t —u, (w,2), (x',y"))| dwdz,

t 5 1 R
5/0 du/l‘ydC pc(u,(x,y),(w,z))mpc(t—u,(w,z),(x’,y’))dwdz

< Czt”zB(l, %)ﬁc(t, G, ), (¢4 Y),

using the semigroup property of p. in the last inequality and where B(m,n) = fol u™ (1 — u)"~'du denotes the
B-function. By induction in r,

P HT (1 (x, 1), (.y))]
1 31 r+1 1Y\ __
<erta(1g)a(5 ) e a5 ) ). e

This implies that the series representing the density p(z, (x, y), (x', y")),

(3.2)

p(t. (., (x'.3) =D F@H (1. (x, 1), (x'.)))
r=0

is absolutely convergent and the following estimate holds
p(t, (e, ), ()| < Cpe(r, (x, 3, (x7, Y1)

Remark 3.1. Note carefully that the above series still converges if the coefficients b, o are only uniformly a-Holder
continuous. In such case Hormander’s theorem does not hold, but one can show by standard techniques, see e.g.
Baldi [2], that p(t, (x,y), (-,-)) := Z"EN @ H"(t, (x,y), () is a probability density and derive with a Dynkin
like argument, see e.g. Theorem 2.3 in [10], that it corresponds to the density of the weak solution of (1.1).
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3.2.2. Proof of the partial lower bound o
From the previous proof and the Gaussian nature of (X, Y;), see Lemma 3.1, one gets

() (7 3) 2 5o ), () = € 2B (1 (e ), (6 Y))
> 207 5o (8, (x, ), (6 3)) = CE 2B (8, (), (6 3))
zc_lﬁc—l(ty (x,Y):(x/’y/))

I_v12 Iy Ny12
b ef? 4 3=y /D]

for T

< Cp and ¢ small enough.
3.2.3. Proof of the technical lemmas

Proof of Lemma 3.1. . We prove the statement for |«| = 0, i.e. without derivation. Indeed, since our computations
only involve a finite number of derivations that introduce some polynomials in front of the exponential, the general
bound can be derived similarly and the result holds taking the worst constants. Also, with respect to the statement of
the lemma, we suppose w.l.o.g. u = 0 for notational convenience. We get from (2.3) with x = w, y = z that for all
0<t<T,

2 t v
- t
Y;z{z+wt+b(x’,y’)5}+/ {f G(X’,y/—x/(t—S))dWs}dv =my; + Ay,
0 0

, , (3.3)
A= f (t =)o ('3 = x'(t = 5)) dW, = / (1 = )3, dW,,
0 0

using [td’s formula for the last but one equality. Setting Vs € [0, 7], ay = 02 recall from (UE) that &y is symmetric,
we finally obtain that the covariance matrix X; of the vector (X t Y,) is equal to

v - < f() asds fo(l‘ — s)dyds >
T\ Sl —syads [ —s)%ads)

Note from (UE) that: 3¢ > 0, Vs € [0, T],VE e RY, ¢~V |€|? > (4,&, &) > c|€|*. Hence, by the Cauchy Schwarz in-
equality

2d tly 5l
VZ eR 2/c(CtZ,Z2) > (%, Z,Z) >c/2(C: Z, Z), C;:= ’2[ ’3[ , (3.4
5la 5l

where C; is actually the covariance matrix of a d-dimensional standard Brownian motion and its integral.
The mean vector of (X, Y;) is equal to (mj , ma ), with mj; = w + b(x’, y')t and my, as in (3.3). Note that
C; = T, AT;*, where

3/2
T*_<t1/21d ’Tld) A—<Id 0 >
! 0 B321,)° 0 ﬁld '

In the above decomposition, the matrix 7; can be seen as a “scale” matrix that gives the characteristic scale of each
component, whereas A is a time independent “macroscopic” matrix.
Hence,

— -1z —1/2
Cr = (ry g = (T Sty (fa 0y (RO
' ! ' o 2 )\o e )\-2L o)

Now, X; can be factorized using the scale matrix 7;. Namely, X; = T, D, T,;* where owing to (3.4),

. ( =1 [ dyds t—Zan;(g—s)ds>
t =

172 [pds(5 —s)ds 173 a5 —9)*ds
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is a macroscopic uniformly non-degenerated matrix w.r.t. ¢ € (0, T']. Thus, for a sufficiently small ¢, different than
the one appearing in (3.4), we obtain that VZ € R*?, £ := —(E,_IZ, Z) < —c(A_l(Tt_IZ), TI_IZ). In particular, for
Z=(Z1,22), Zi =% — (w+b(', Y)1), Za =y — (2 +wi +b(x', Y)'5), we get

L o —w—b(', Y1/
7 Z= P “3n -
O —z—5E&" +w)ne

We therefore derive

2
f—; l(x’ + w)t

y—z-
2

Z < —%‘x’ —w —b(x’, y’)t’2 —

From (B) (boundedness of b), we derive that there exist ¢, C > 0 s.t.

I 2 r ’ 2
§5c_c["‘ wP Y — 2= (/w40 }
2 4¢ 13

Eventually

ﬁ(t, . 7). (x/’y/)) < chp P +3 3

= CPe(t, (w,2), (x',))).

Note from [17] that p, enjoys the semigroup property. This gives the statement for |«| = 0. The lower bound is derived
similarly from the control VZ € R (717, Z) < ¢1(C,; ' Z, Z) achieved for ¢ small enough. O

Ce?3? (_C[W —wf Y —z- (/2w +x’>r)|2]>

4. Markov Chain approximation and associated convergence results
4.1. Global strategy

Let us recall the strategy to derive a local limit theorem for the Markov chain approximation associated to a diffusion
process. Suppose the underlying diffusion has a density with parametrix representation as in Proposition 2.2. If the
“natural” Markov chain associated to the diffusion has a density, the main idea is to introduce a Markov chain with
frozen coefficients that also has a density so that the density of the Markov chain can be written in parametrix form as
well with a suitable discrete kernel.

The next step consists in comparing these two parametrix representations. To this end, two key steps are needed:

1. The comparison of the densities of the frozen Markov chain and frozen diffusion process.
2. The comparison of the kernels.

The first step relies on Edgeworth like expansions, see e.g. Bhattacharya and Rao [6], the second one on careful Taylor
like expansions.

The local limit Theorem is then derived by controlling the iterated convolutions of differences of the kernels. This
procedure has been applied successfully in [15] to derive a local limit theorem for the Markov chain approximation
of uniformly elliptic inhomogeneous diffusions with bounded coefficients.

In our current framework new difficulties arise. First of all it is not obvious to derive that a “natural” Markov chain
associated to (1.1) has a transition density. To guarantee such an existence a common trick in the literature consists
in adding an artificial viscosity term in the discretization scheme, see e.g. [7]. Our strategy is here different. Namely,
we manage to obtain a density for the natural frozen Markov chain deriving from (2.3) after a sufficient number of
time steps. We therefore consider a “macro scale” frozen model corresponding to this number of time steps. We then
obtain a good comparison between the densities of the “aggregated” chain at macro scale and the frozen diffusion
process. This first step gives the structure of the random variables involved in the approximation in order to have the
comparison of the densities. These variables have a density. From these variables, we then derive the Markov chain
dynamics by letting the coefficients vary at macro scale.
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A second difficulty is that the second component in (1.1) is unbounded. This yields to handle a supplementary term
w.r.t. the analysis carried out in [15] and to a slightly different version of the local limit theorem. In the sequel we
first give the dynamics of the Markov chains at macro scale and state the local limit theorem (Section 4.2). We give
the lemma for the comparison of the densities (Section 4.3) and prove the existence of the density for the aggregated
“frozen” Markov chain (Section 4.4). The whole proof of the local limit theorem is carried out in the appendix of [16].

4.2. Models and results

Now, fix 7' > 0, No € N* and let ho = T /Ny be the “micro” time discretization step. Let n € N* be large enough so
that the natural “frozen” chain associated to (2.3) has a density, see Proposition 4.2, and define the “macro” scale time
step h =nhg and set N = No/n € N* the total number of “macro” time steps over [0, T'].

For all i € [0, N] set #; := ih. For any (x, y) € R24_ we define on the time grid {0, ..., 7y} an R24 valued Markov
chain (Zg)ie[[o,N]] = ((XZ, Y,i’)*)ie[[o,zv]] whose dynamics is given by

Zh=(x,y)* and Vie[0o,N—1],

Xitoy = Xy +b(Z)h+ o (Z)Vhnl,,. (@.1)
=t (X ozt o (2t i

where y, 1= (1 + %). The variables (9;);co,n] := (17,.1, ﬂ,-z)ie(o,zv}] are i.i.d. 2d-dimensional random variables s.t.

1
(A1) E[9;] =0 and Cov(d;) = ( Lixa 2Vildxa )

svlaxa  3va(l+ ) laxa
(A2) The variable ©%; has density ¢, (171, 72) and there exist a positive integer " and a function ¥ : R>? — R with
sup, cr2d ¥ (u) < oo and f ||u||S1,0(u) du < oo for S =4dS’ + 4 such that

|DYgn )| < v (u)

for all |v| € [0, 4]. The main result of the section, i.e. Theorem 4.1, is stated in terms of §’.

We finally need a “frozen” time inhomogeneous Markov chain. For (x, y), (x, y) € R, J € (0, N] we define
(ZM)icpo.j1 = (XYY )iep0,57 by

Zh=(x,y)* and Viel0,j—1],

Xi, = XL+ o (Y =t = )V, 4.2)
Sho_h [wn Y "
Via =Y+ {Xh + (Yo (Y =¥ m)ﬂnﬁl}h'

The i.i.d. variables (f;l.l, ﬁ,-z)ie(o,j]] have density g, (-).

Remark 4.1. Note that the models introduced in (4.1) and (4.2) can seem awkward at first sight. They actually derive
from computations that yield the existence of the density for the natural frozen Markov chain associated to (2.3) after
n “micro” time steps ho, i.e. at the “macro” level with time step h. This is developed in Section 4.4.

From now on, p;(tj/, (x,y), (-, -)) and ﬁ}tlj’x 7 (tjr, (x,¥), (-,) == pp(tj, (x,y), (-, -)) denote the transition densi-

ties between times 0 and ¢» < ¢; of the Markov chain (4.1), and “frozen” Markov chain (4.2) respectively. Introducing
a discrete “analogue” to the generators we derive from the Markov property a relation similar to (2.5) between pj,
and pj,.
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For a sufficiently smooth function f, define Lj and Ly by

th(tj, (x,y), (x/’ y/))

—n! /ph(h, (). . 0) (6 = e (v), () dudv = f (5 = . (2. 9), (2, y/))}’

Luf (1), (). (v.5)

=h"! f P (h, (e, y), @, ) (5 — By ), (6, Y)) dudv — £t — b (x, y), (¥, y’))}.
Note that because of technical reasons, there is a shift in time in the above definitions, i.e. the time is #; — h, instead

of the “expected” ¢;, in the right-hand side of the previous equations.
A discrete analogue Hj, of the kernel H is defined as

Hi(tj, (x, ), (x'.Y)) = L — L) Pa (1. (x.y). (x'.Y)). 0<j=N.

From the previous definition
Hiy (1), (x, ), ("))
=h~! /[ph — B Gy @) B (= B ), (¢, ) dudo.
Analogously to Lemma 3.6 in [15] we obtain the following result.

Proposition 4.1 (Parametrix for Markov chain). Assume (Al), (A2), (UE), (B) are in force. Then, for 0 <t; <T,

J
pu(ty. ooy, (20)) =Y (Bn @ HY) (17, (. 9). (+.Y)). (4.3)
r=0
where the discrete time convolution type operator Qy, is defined by
(g ®n (1. .y, (') Zh/ ti, (x, ), (u, 0) £t — ti, (u,v), (x', ")) dudv,
D Qn H}EO) = pp, and H;fr) =H, Q) Hér_l) denotes the r-fold discrete convolution of the kernel Hy,. W.r.t. the above

definition, we use the convention that pj, ®j, H}Er)(O, x,y), &, y)N=0,r>1.

Now (4.3) and (2.5) have the same form. Comparing these two expressions we obtain the following local limit
theorem.

Theorem 4.1 (Local limit theorem for the densities). Assume (A1), (A2), (UE), (B) hold true. Then, 3¢ > 0,

P Pl X x/ -1
: |:(1 |x/| | |) : C( (1 8)’( ,y),(x’,y/))+xf<x/ x,y/— y ( +2x>>:|
(x,),(x',y")eRX 8€[0,1] T

x| pa(T, (e, ), (') = p(T. (. 9), (', ¥')) [ = O(h'2),
where P is as in Theorem 2.1, py, denotes the density of the Markov chain (4.1) and ¥(p, u, v) € R x R4
Xo@.v)=p " x(u/p.v/pY).  x@.w)=(1+ (luf+pR) )7

Note from the above result that the bigger is S’, the better is the control on the tails.
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4.3. Comparison of the discrete and continuous frozen densities
The first step for the error analysis is achieved with the following

Lemma 4.1. There exists C > 0, s.t. for all j € (0, N], ,02 =1,

- _ +x'
(B — D) (1. (e y). ()| <= Ch' o7 1g, <X’ —xy —y—= 2x pz), (4.4)

where é‘p(u, v) = p74d§'(u/p, U/,O3), c(u,v) = W, S being introduced in (A2).

Proof. Iterating (4.2) from O till ¢; we get

~ 1 j-1 N
X; =x+b(x5y/)02+ﬂ[jw G(X’»y’—x/(pz—fk))mlﬂ}
k=0

~n 2 p4 1 ) 1 it »

/ / / ~
Yij=y+ap +7b(xvY)<1+n—j)+p {Jmkzoa(x’y = (0% = 1))y =

1 - k+1
+ = G(X’»y/—X’(pz—tk))mlH(l - —)} (4.5)
J k=0 J

Introduce
x +b(x', y)p? . m} . 1
" <y +xp? + b y’)m,,») . (m2> B AT
and
(ot Ao o @,y =2 (0% = 1)t )
0= | {2 TiSoo &y —x (0> — )i, 3

- "
+ 5t Yoo (@ y =20 — )i, (1= 50)

J

The dynamics of (4.2) thus writes
gzh Plixa  Oixa
(5) =+ (ot s, )or
t dxd P ldxd
Setting Vs € [0, p1, ¢ (s) ;= inf{t; :=ih: t; <5 <tip1},ds ;=02 (x',y' — x'(p* —5)) we get Vj := Cov(0;) =

L[l 1 [t~ j.h
i Jo @ps)ds 2 o' Bow F (@5 ds

j ~ i h j ~ i h
5 Ao P @60 ds k f) G F (@(9)) ds
J J

i i 2

where F/™" () := [ + (1 — (@ () + D], F " (@(5)) = (24 (1 + 2) + yah(t; — (@(5) + 1) + (1 — (p(5) +
1))?]. Now, similarly to the proof of Lemma 3.1, since 3¢ > 0 s.t. V& e RY, ¢ 1[£|> > (A€, &) > c|€|?, we derive
from the Cauchy—Schwarz inequality that VZ € R

-
Lixa L5 F @) dsluxa
J

27 NA;Z,2)>(V;Z,Z) > o o
LIy FM @) dslaxa 5 fo F" (@) dslana
J J

(AjZ,Z), Aj =

N o
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1
Elementary computations also give 3c; > 0,VZ € R%?, 261_1 (AZ,Z)>(A;Z,Z) > %(AZ, Z), A= ( Lixa 21‘1”)

i1 1
7 dxd 3ddxd
for n large enough. Thus, for ¢ small enough, and n large enough, VZ € I[£2d,c’1|Z|2 >(V;Z,2) > c|Z|2 and

the covariance matrix V; is uniformly invertible w.r.t. the parameter j € (0, N]. Denoting by g, the density of the
. —1/2 .
normalized sum V; '“©; we derive

X *m}
~ 1 —1/2 o
Ph t',(x,y), )C/,y/ =3, & V. /
( J ( )) ,O4d det(vjl/Z) n J y _;,15
P

Applying the Edgeworth expansion for g, (the key tool is the normal approximation of Bhattacharya and Rao, Theo-
rem 19.3 in [6]) and exploiting arguments similar to those of the proof of Lemma 3.1, we obtain

X 7mj
~ 1 -12 P
Ph t'v(-xv y)v )C/, y/ — 7> 8G V /
(/ ( )) o4 det(le/z) J y 7m3
03
_ x +x
<Ch'?p 1;p<x’—x,y’—y— 5 p2), (4.6)

where g¢ stands for the standard 2d-dimensional Gaussian density. To conclude the proof, recall from the proof of
Lemma 3.1 that

) x’—m'cqj
~ 1,2 )
t.v(xa )7 x/5 ! = 11, 8G C / ) (4‘7)
p(] Yy ( y)) p4ddet(cl~/2)g J yfm%:‘j
j Py
where
WY A2 1
m ( x+bx',y)p ) (mc’j)
C,j = 4 =
Ty xp? + b, y) m?
and
i~ i~
% o dsds % o ds(tj —s)ds
j= i~ ti~
,Lz_fo] as(tj —s)ds zi‘ o dy(tj — 5)*ds
J J
The result eventually follows from (4.6), (4.7) and standard computations involving the mean value theorem. ]

4.4. Existence of the density for the aggregated frozen process

Let o > 0 be a given fixed time step. For i € N set t; := ihg. Fix (x’, y') € Rt > 0. We consider the frozen model
defined by Xgo =x, Yé’" =yandforalli €N,

Th Sh ~

X0, =X+ b(x',y)ho + o (x',y" —tx")/ ho§it1,

Sh Sh S Sh Sh 3/2 ~ (4.8)
V0 = V)0 4+ X1 ho = ¥, + ho X1 + h3b(x', ') + hy/ %o (x .y — 1x')&i41,

where (E,-) ien+ are i.i.d., centered with identity covariance. The aim of this section is to show that for i large enough
(X ,}:0, Y:O) admits a density. We refer the reader to the work of Yurinski [27] or Molchanov and Varchenko [21] for
related topics.
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Conditionally to
gélo — x*
( Y }."’ y* )
and iterating the frozen model we get

X0 = x* 4 (nho)b(x',y) + 0 (', ¥ — x't)/nhoEl,

="+ (nh)x* + 2 uho) b (x'. ') + (o) 2 (. ' — 1x')E L,

4.9)
yho

Lign

where we recall y, = (1 4 %) and

~ 1 ~ ~ ~
El(,il) = _(§i+1 +§,’+2 —+ .. +§i+n),

ﬁ
g(z)_ i1+ )&+ (1 n-l Eiyn ).
i,n \/— L 14 n i+n
We have
~2) (1—(n—1)/n)2+.-.+12 2n2+3n+1 1 1
Var(£7) = 1 Lixa,
ar(gl,n) n 6n 3 + — m dxd
I-m-1)/m)+---+1 n+1

Cov(g(l) 5(2)) / = = ﬁldxd

n 2n 2

Hence, the covariance matrix of the 2d-dimensional vector (§; , gD El( n))* is non-degenerate for n > 2.

Estimating the characteristic function ¢, (7, 72) of the vector (éi( }1), él.(i))* € R we derive the following proposi-
tion.

Proposition 4.2. Let ¢(t) := E[exp(i(gl, ™)1, © € R? denote the characteristic function of the (Ei)ieN*. If for all

multi-index B, |8l =S +2d + 1, |DP¢(v)] < C(1 + |r|*H2d+1)~1, then for n large enough and for all multi-index «,
|| <4, one has

ol | 7y S+2d+1
/ |[(r1, ) || D> g (11, 12) | ATy dTp < 00
R4 xR4
In particular, by Fourier inversion the density

1
fn(O1,62) = W/GXP(—i<(91,92)*, (t1, 12)*))gn (11, 2) dT1 dT2 (4.10)

exists and there exists C s.t. for all multi-index v, |v| <4,

C

D' £,(01,0y)| < :
| i 2)| = 1401, 6,)|SH2d+1

=Y, (61,02).

Proof. Write

outer 1 = Elexpifa £0) + il )]

- Tl+(1—J/n)T2> A1l
1] ( NG @10
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We partition the space R?¢ into the following disjoint sets

1
Ag:= {(Tl,fz) eR¥: |7 > (1 - _>|f2|}’
n

- .
A, ::{(rl,rz)eRZd: (1—”r >|r2|5|r1|<< ——)|z2|} iell,n—2],
n n

2d 1
Ap_1:=1(11, ) eR :|r1I<;|er .

If (71, 72) € Ap then fori € [2,n — 2],
n+0—i/mn| 1 i 1 1 j i—1
_— "> — —(1-- >—(|1-- —|1-- —_—
7 g (= o) = G (1= o= (=5t = e

and similarly |W| > %WH- Hence,

u+ 1 —i/mn M (- 1)/2)%!

Jn

If (11, 72) € A= for some i*, i* € [I,n — 2] and ! € [2,n — 1 — i*] then elementary computations yield similarly

s (4.12)

—— (1],
= 3d+3/2 |(1 2

T+ —E;*_—f—l)/n)rz e ((1—31d)+/32/)22d+1 (o, o) P4, @13

n n

and for [ € [1,i* — 1],
41— =D/ /22! 21

NG > — | )] (4.14)

If (t1,12) € Ap—y then fori € [1,n — 1],
Tt (1;/11)@ e (1/dz+)?j2+‘ ( R 1>2d+1|(m e “.15)

n n n

Use now the growth assumption on ¢ and the inequality 1 + Z?’zl pj =< ]_[j-\;] (1 + pj) where p; >0, to derive
from (4.11)

n—1

n+(—-j/mrt
[To(= 7)<

j=0

C}’l
T2+ I(x1 + (1 = j/m)r2) //n+D)

|on(T1, 2)|

Cn
1+ 27;(1) [(t1 + (1 — j/n)12)/ /0|24 ] )

IA

Now equations (4.12)—(4.15) yield that there exists n large enough s.t.

|(p (t1, T )| &
I T @ ) PT
where C(n) —, +00. Anyhow, for such a fixed n, one has ¢, € L' (R2?) which implies the existence of the density f;,

of the vectors (’5513 , 5}5})* € R?¢ The properties concerning the growth and derivatives of f, are derived from (4.10)
and the growth and smoothness properties of ¢. O
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Hence we can set (771.1, 771.2) = (~.(1) N.(z)) where (E(l) ® ) are as in the above proposition. Introducing a “macro”

i,n’>i,n i,n’oi,n

scale time step & = nhy, the discrete model (4.2) corresponds to the “aggregated” dynamics of (4.9). Set for all
61,62) e RXM, Y (01, 62) := ¥, (01, 02) defined in Proposition 4.2. With the notations of Section 4.2 one derives that
qn(01,02) = f,(01, 0) satisfies (A2) with the above r = ,.
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