
THE MAIN CUBIOID

ALEXANDER BLOKH, LEX OVERSTEEGEN, ROSS PTACEK,
AND VLADLEN TIMORIN

Abstract. The connectedness locus in the parameter space of
quadratic polynomials is called the Mandelbrot set. A good com-
binatorial model of this set is due to Thurston. By definition, the
Principal Hyperbolic Domain of the Mandelbrot set consists of pa-
rameter values, for which the corresponding quadratic polynomials
have an attracting fixed point. The closure of the Principal Hy-
perbolic Domain of the Mandelbrot set is called the main cardioid.
Its topology is completely described by Thurston’s model. Less is
known about the connectedness locus in the parameter space of
cubic polynomials. In this paper, we discuss cubic analogs of the
main cardioid and establish relationships between them.

1. Introduction

Studying parameter spaces of polynomials is a major task of complex
dynamics. The main achievements here concern quadratic polynomi-
als. One of them is Thurston’s beautiful description of a combinatorial
model for the parameter space of quadratic polynomials. Motivated
by it, we want to study the structure of the closure of the Principal
Hyperbolic Domain in the parameter space of cubic polynomials. To
this end we study topological dynamics of cubic polynomials, building
our investigation on a partial similarity with the dynamics of quadratic
polynomials.

For a complex polynomial f , let K(f) be the filled Julia set of f
consisting of all complex numbers z, whose f -orbits do not escape to
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infinity. We write J(f) for the Julia set of f , which is the boundary
of K(f). An equivalent definition of the Julia set is that it consists of
points z such that the forward f -orbits fail to be Lyapunov stable in
a neighborhood of z (equivalently, the sequence of iterates f ◦n fails to
be equicontinuous in a neighborhood of z).

Quadratic polynomials depend essentially on one complex parameter
c, since every quadratic polynomial is affinely conjugate to a polyno-
mial of the form fc(z) = z2 + c. The Mandelbrot set M2 is a subset
of the parameter plane, the c-plane, consisting of all values c ∈ C,
for which K(fc) is connected. The geometric shape of M2 gives a
very informative overview of how the dynamics of fc depends on c. In
particular, as c varies within one interior component of M2, the topo-
logical dynamics of the map fc : J(fc) → J(fc) does not change, i.e.,
the maps fc and fc′ are topologically conjugate on their Julia sets if
c and c′ belong to the same interior component of M2, see [MSS83].
As c crosses the boundary of M2, bifurcations happen. For example,
going from one interior component of M2 to an adjacent component
corresponds to a bifurcation, during which a periodic cycle changes its
period.

The central part of M2 is the so called main cardioid consisting of
all parameter values c, for which fc has an attracting or neutral fixed
point. It can also be defined as the closure of the principal hyperbolic
domain PHD2, the interior component of the Mandelbrot set such that
for all c ∈ PHD2, the Julia set J(fc) is homeomorphic to the circle,
and the dynamics of fc : J(fc) → J(fc) is topologically conjugate to
the dynamics of the angle doubling map on R/Z. It is easy to see that
polynomials in PHD2 have no periodic cutpoints in J(f) except for at
most one neutral fixed point. Recall that a cutpoint of a topological
space X is a point α ∈ X such that X \ {α} is disconnected.

As follows from the Douady–Hubbard–Sullivan–Yoccoz landing the-
orem [DH8485, Hub93], the Mandelbrot set itself can be thought of as
the union of the main cardioid and limbs (connected components of
M2 \ PHD2) parameterized by reduced rational fractions p/q ∈ (0, 1).
The limb corresponding to p/q consists of c such that Kc is connected,
and there is a repelling fixed cutpoint α of Kc of combinatorial rota-
tion number p/q (this description of limbs is given in [Mil00a]). The
point α being repelling means that |f ′

c(α)| > 1, then indeed α repels
all nearby points. Finally, having combinatorial rotation number p/q
means the following: the set Kc \ {α} has q connected components,
whose germs at α are mapped to each other like rotation by p/q, i.e.,
for every component X of Kc \{α}, there is a small neighborhood U of
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α with the property that fc(X ∩ U) is mapped to the pth component
from X in the counterclockwise order.

This description of the Mandelbrot set serves as a motivation for
our study of higher degree analogs of PHD2. By classes of degree d
polynomials, we mean affine conjugacy classes. Denote by [f ] the class
of a polynomial f . Note that, for a quadratic polynomial fc, the class
[fc] can be identified with c. The degree d connectedness locus Md

(the higher degree generalization of the Mandelbrot set) is the set of
classes of degree d polynomials f with connected K(f) (equivalently,
[f ] ∈ Md if all critical points of f belong to K(f)). A polynomial of
any degree is said to be hyperbolic if the orbits of all its critical points
converge to attracting cycles. The set of all classes [f ] ∈ Md such that
f is hyperbolic splits into the so called hyperbolic components of Md.
The degree d Principal Hyperbolic Domain PHDd is the hyperbolic
component of Md consisting of classes [f ] such that K(f) is a Jordan
disk. Equivalently, the class [f ] of a degree d polynomial f belongs to
PHDd if all critical points of f are in the immediate attracting basin
of the same attracting (or super-attracting) fixed point.

Thus, the study of PHD3 in the context of complex dynamics, is the
next logical step. Working in this direction and similar to the quadratic
case, we establish properties of polynomials in PHDd in Theorem A
which lists necessary conditions for [f ] to belong to PHDd.

Theorem A. Let f be a polynomial, whose class belongs to PHDd.
Then f has a fixed non-repelling point and no repelling periodic cut-
points in the Julia set of f . Moreover, all non-repelling periodic cut-
points, except at most one fixed point, have multiplier 1.

This motivates the following definition of a cubic analog of the main
cardioid.

Definition 1.1 (Main Cubioid). The Main Cubioid is the set CU of
classes of cubic polynomials f with connected J(f) such that:

(1) the polynomial f has at least one non-repelling fixed point,
(2) there are no repelling periodic cutpoints in J(f), and
(3) all non-repelling periodic cutpoints of J(f), except at most one

fixed point, have multiplier 1.

The following corollary is immediate from Theorem A.

Corollary 1.2. PHD3 ⊂ CU.

If [f ] ∈ PHDd, then f cannot have two attracting periodic points
as otherwise any small perturbation of f will also have two attracting
periodic points while there exist polynomials with classes from PHDd
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Figure 1. Left: the Mandelbrot set. The main cardioid
is light grey; the 1/2-limb is dark grey. Right: the set
of parameter values a = b2, for which [f0,b] ∈ M3 (note
that [f0,b] = [f0,−b] depends only on a). The biggest light
grey component consists of points a such that [f0,b] ∈ CU.

(and hence with only one periodic attracting point) arbitrarily close
to f . A part of Theorem A extends this observation to non-repelling
periodic points. Observe that, by definition, if J(f) is disconnected,
then [f ] ̸∈ CU. Also, by the Fatou-Shishikura inequality [Fat20, Shi87],
a cubic polynomial f has at most two non-repelling cycles.

Let Fλ be the space of all cubic polynomials of the form

fλ,b(z) = λz + bz2 + z3, b ∈ C.

This space maps onto the space of classes of all cubic polynomials
with a fixed point of multiplier λ as a finite branched covering. This
branched covering is equivalent to the map b 7→ a = b2, i.e., classes of
polynomials fλ,b ∈ Fλ are in one-to-one correspondence with the values
of a. Thus, if we talk about, say, points [f ] of M3, then it suffices
to take f ∈ Fλ for some λ. A polynomial f ∈ Fλ is called stable
with respect to 0 if its Julia set admits an equivariant holomorphic
motion over some neighborhood of f in Fλ. Intuitively, this means
that no bifurcations happen near f in Fλ (precise definitions will be
given later). The (λ-) stable set Sλ ⊂ C is the set of all b ∈ C such that
fλ,b is stable with respect to 0. A (λ-) stable domain is a component of
Sλ. A polynomial g is said to be stable if g ∈ [f ] for some polynomial
f ∈ Fλ that is stable with respect to 0.

Definition 1.3. The set PHD
e

3 is the union of PHD3 and classes of all
polynomials from all λ-stable domains Λ with |λ| 6 1 such that for all
b ∈ Bd(Λ), we have [fλ,b] ∈ PHD3.
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We conjecture that PHD3 = CU = PHD
e

3. To support this conjec-
ture, we prove Theorem B. Let LC be the set of classes of all polyno-
mials with locally connected Julia set.

Theorem B. We have PHD
e

3 ⊂ CU and LC ∩ CU = LC ∩ PHD
e

3.

To state Theorem C, we need the language of laminations. Lamina-
tions have been introduced by Thurston [Thu85] to study topological
models of polynomials with locally connected Julia sets. Consider a
degree d polynomial f such that K(f) is connected. Let S1 = R/Z be
the unit circle and σd : S1 → S1 be the map defined by σd(t) = d · t
mod 1. If K(f) is locally connected then there exists an equivalence
relation ∼f on S1 such that σd maps ∼f -classes to ∼f -classes, S1/ ∼f is
homeomorphic to J(f), and f |J(f) is topologically conjugate to the self-
mapping of S1/ ∼f induced by σd. By [Kiw04, BCO11], the definition
of ∼f can be extended to the case, where K(f) is not locally connected.
Then the quotient of S1 by ∼f is the biggest quotient of J(f) that is
a locally connected continuum, and, as before, σd maps ∼f -classes to
∼f -classes. If K(f) (equivalently, J(f)) is not locally connected, then
∼f may have infinite classes. The purpose of laminations is to describe
the combinatorial structure of f |J(f).

Definition 1.4. A curve Γ in the dynamic plane of f consisting of
(pre)periodic dynamic external rays Rf (θ1), Rf (θ2) and their common
landing point x ∈ J(f) is called a (pre)periodic cut with vertex x. The
set G(x) then is defined as the convex hull of the arguments of all
dynamic external rays landing at x.

Define the set Lf of chords in D consisting of all edges of convex hulls
of all ∼f -classes, all edges of polygons G(x) associated with vertices x

of (pre)periodic cuts, and all limits of these edges. A chord ab in Lf is

a leaf of Lf ; set σ3(ab) = σ3(a)σ3(b). The closure of a complementary
domain to Lf in D is a gap of Lf ; we write σ3(G) for the convex hull of
σ3(G∩S1). The pair (∼f ,Lf ) is called the laminational pair associated
with f . A rotational set H of ∼f is a k-periodic leaf or a gap of Lf

such that the map σ◦k
3 : H ∩ S1 → H ∩ S1 extends to a monotone map

of S1 topologically semi-conjugate to a non-trivial rotation of S1.

Theorem C. If [f ] ∈ CU then Lf coincides with the set of leaves of
∼f , and the following properties hold:

(1) each periodic leaf of ∼f has an attached to it gap G such that
G ∩ S1 is infinite and is not one ∼f -class;

(2) ∼f has at most one rotational set.
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Notation and terminology: we write A for the closure of a set A in a topological

space and Bd(A) for the boundary of A; the n-th iterate of a map f is denoted

by f◦n. For A ⊂ C let CH(A) be the convex hull of A in C. If it does not cause

ambiguity, we speak of cutpoints meaning cutpoints of the appropriate Julia sets.

We will consistently identify angles, i.e. elements of R/Z, with points of the unit

circle S1 ⊂ C. If G is the convex hull of some closed subset G′ ⊂ S1, then we call

G′ the basis of G. A gap G is said to be finite or infinite according to whether G′

is finite or infinite.

2. Proof of Theorem A

We first recall some terminology and notation.

2.1. Dynamic rays. Let f(z) = zd + ad−1z
d−1 + · · · + a0 be a monic

degree d polynomial. The Green function Gf is defined by the formula

Gf (z) = lim
n→∞

log+ |f ◦n(z)|
dn

,

where log+ r equals log r if r > 0 and 0 otherwise. The function Gf

is harmonic on the complement of the filled Julia set K(f) of f and
is equal to 0 on K(f). Define dynamic rays as unbounded trajectories
of the gradient flow for Gf (in the introduction, dynamic rays have
been defined in the case, where K(f) is connected; this new definition
matches the old one in this case). Let V (f) be the union of all dynamic
rays of f . Then V (f) is a forward-invariant open set, and there is a
conformal isomorphism ϕf between V (f) and some open subset of the
set {|z| > 1} with the following properties:

ϕf (f(z)) = ϕf (z)
d, Gf (z) = log |ϕf (z)|.

These properties define the map ϕf almost uniquely: the only way to
change the map ϕf without violating the two properties is to post-
compose it with multiplication by a (d− 1)-st root of unity.

The map ϕf is called a Böttcher coordinate. It is used to parameterize
dynamic rays of f . Every dynamic ray is the preimage of a straight
radial ray {re2πiθ | r > r0}, r0 > 1, under the map ϕf (in the case where
K(f) is disconnected, we may have r0 > 1 if the dynamic ray contains
a pre-critical point in its closure). We will write Rf (θ) for this ray, and
call it the dynamic ray of argument θ. If f is a degree d polynomial,
not necessarily monic, then we can make it monic by a complex linear
change of variables. Thus, it still makes sense to talk about dynamic
rays of f .
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However, arguments of dynamic rays are not well-defined, since they
depend on the choice of a Böttcher coordinate. Hence every time we
consider rays in dynamic planes of different polynomials, we must re-
solve the issue of choosing the arguments consistently. For example, if
a sequence fn of degree d polynomials converges to a degree d polyno-
mial f , then we can choose any Böttcher coordinate for f , and then,
for fn sufficiently close to f , choose the Böttcher coordinate for fn that
is close to the chosen Böttcher coordinate for f .

Suppose that the Julia set J(f) is connected. Consider a periodic
repelling cutpoint α of f , and let r be its minimal period. Then, by the
Douady–Hubbard–Sullivan–Yoccoz landing theorem [DH8485, Hub93],
there are finitely many dynamic rays landing at α; we will assume
that the choice of their arguments is fixed, and denote the set of the
arguments by Arf (α). Every wedge between consecutive rays landing
at α contains exactly one component of J(f) \ {α}. The dynamic rays
landing at α may form one or more orbits under the map f ◦r. Choose
one of the orbits, and let θ0, . . . , θq−1 denote the arguments of all
rays in this orbit labeled in the counterclockwise order. Suppose that
dr · θi = θi+p (mod q), where d is the degree of the polynomial f . In
this case, we say that α has combinatorial rotation number p/q. It
is easy to see that the combinatorial rotation number is well defined,
i.e., does not depend on the choice of the orbit. Observe that p, q are
coprime except for the case when p/q = 0 and all rays landing at α are
invariant. Every repelling fixed point has a well-defined combinatorial
rotation number (thus, p/q above does not depend on the choice of θ0).

2.2. Polynomials in PHDd. We now recall Lemma B.1 from [GM93]
that goes back to Douady and Hubbard [DH8485].

Lemma 2.1. Let f be a polynomial, and z be a repelling periodic point
of f . If the ray Rf (θ) lands at z, then, for every polynomial g suffi-
ciently close to f , the ray Rg(θ) lands at a repelling periodic point w
close to z. Moreover, w depends holomorphically on g.

Choose a polynomial f with [f ] ∈ PHDd. We want to prove the
following statements:

(1) the map f has no repelling periodic cutpoints, and
(2) the map f has at most one non-repelling periodic point of mul-

tiplier different from 1.

Statement (1) follows from Lemma 2.1. Indeed, suppose that α is
a repelling periodic cutpoint of f . Let θ0, . . . , θq−1 be the arguments
of dynamic rays landing at α. Since α is a cutpoint, we have q > 1.
Lemma 2.1 says that, for g sufficiently close to f , the dynamic rays
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with arguments θ0, . . . , θq−1 in the dynamic plane of g land at the
same periodic point that is obtained from α by analytic continuation.
We get a contradiction if we choose g such that [g] ∈ PHDd.

The second statement is a consequence of the Pommerenke–Levin–
Yoccoz inequality, see e.g. [Hub93]. It follows from the Pommerenke–
Levin–Yoccoz inequality that, for any sequence of polynomials fn with
repelling fixed points αn → α, the fact that f ′

n(αn) → e2πiρ implies
that the combinatorial rotation numbers of fn at αn converge to ρ. We
can now prove Lemma 2.2.

Lemma 2.2. Consider a polynomial f , whose class belongs to PHDd,
and a sequence of polynomials fn converging to f , whose classes belong
to PHDd. If f has a non-repelling fixed point α, whose multiplier is
different from 1, then α is the limit of the attracting fixed points of fn.

Proof. Let α be neutral and αn be a fixed point of fn such that αn → α
as n→ ∞. If αn are attracting for arbitrarily large n, then we are done.
Otherwise assume that for all large n, the points αn are repelling fixed
points. Then their combinatorial rotation numbers equal 0. By the
assumptions, f ′(α) = e2πiρ, where ρ ̸≡ 0 (mod 2π). On the other
hand, by the Pommerenke–Levin–Yoccoz inequality, the combinatorial
rotation numbers of fn at αn (which are all equal to 0) must converge
to ρ, a contradiction. �

We can now complete the proof of Theorem A.

Proof of Theorem A. Observe that if [f ] ∈ PHDd then one of the non-
repelling cycles of f must be a fixed point (indeed, as we approximate
f with polynomials g, whose classes belong to PHDd, the attracting
fixed points of g converge to a non-repelling fixed point of f). Let
[f ] ∈ PHDd. By way of contradiction, suppose that α and β are two
non-repelling periodic points, whose multipliers are different from one.
Replacing f with a suitable iterate, we may assume that α is fixed but
has multiplier different from 1. By Lemma 2.2, α is the limit of the
attracting fixed points of polynomials g with [g] ∈ PHDd approximating
the polynomial f . However, the same must be true for the point β, a
contradiction. �

3. Proof of the first part of Theorem B

We will write F for the union of all Fλ, and Fnr for the union of all
Fλ with |λ| 6 1. Fix λ with |λ| 6 1. Let gλ,b be the Green function
for K(fλ,b). Let Vλ,b be the union of all unbounded trajectories of
the gradient flow generated by gλ,b. The Böttcher coordinate is an
analytic map ϕλ,b : Vλ,b → C with ϕλ,b ◦ fλ,b = ϕ3

λ,b and ϕλ,b(z) =
8



z + o(z) as z → ∞. The following theorem is an easy consequence
of the analytic dependence of the Böttcher coordinate on parameters
[DH8485, BrHu88].

Theorem 3.1 ([BuHe01], Proposition 2). Let Vλ be the union of {b}×
Vλ,b over all b ∈ C. This set is open in C2. The map Φλ : Vλ → C2

given by the formula Φλ(b, z) = (b, ϕλ,b(z)) is an analytic embedding of
Vλ into C2.

We will write Rλ,b(θ) for the dynamic ray Rfλ,b(θ).

3.1. Polynomials with parabolic points and their petals. Let g
be a polynomial of arbitrary degree such that 0 is a fixed parabolic
point of g of multiplier 1. Suppose that g(z) = z + azq+1 + o(zq+1),
where q is a positive integer. Below, we recall some basic terminology,
which is used when working with parabolic points; a general reference
is [Mil06]. An attracting vector for g is defined as a vector (=complex
number) v such that avq is a negative real number, i.e. v and avq+1

have opposite directions. Clearly, there are q straight rays consisting
of attracting vectors, which divide the plane of complex numbers into
q repelling sectors.

Consider a repelling sector S. Note that the set S−q = {z ∈ C | z−q ∈
S} is the complement of the ray {−ta | t > 0} in C. We will write
F : S−q → C for the composition of the function w 7→ w−1/q mapping
S−q onto S, the function g mapping S onto g(S), and the function
z 7→ z−q mapping g(S) to C. We have F (w) = w − qa + α(w), where
α(w) denotes a power series in w−1/q that converges in a neighborhood
of infinity, and whose free term is zero (note that the function w 7→
w−1/q is single valued and holomorphic on S−q). It follows that there

exists a positive real number r with the property that |α(w)| < |a|
2

whenever |w| > r|a|. Consider the half-plane Π given by the inequality
Re(w/a) > r. We include the point ∞ into Π so that Π is a compact
subset of the Riemann sphere. Since w ∈ Π implies that |w| > r|a|, we
have F (Π) ⊃ Π, and also that the shortest Euclidean distance from a
finite point on the boundary of Π to a point on the boundary of F (Π)
is at least (q − 1

2
)|a|. The preimage RP of the half-plane Π under the

map z 7→ z−q from S ∪ {∞} to S−q ∪ {0} is called a (closed) repelling
petal of g.

We choose one repelling petal in every repelling sector; thus, our
polynomial g(z) = z+azq+1+o(zq+1) has q repelling petals. A repelling
petal RP of g is such that g(RP ) ⊃ RP . Let us discuss the dependence
of the repelling petals on parameters. The argument of the following
lemma is rather standard, see e.g. the proof of Lemma 5 in [BuHe01].
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Lemma 3.2. Let gt(z) = z + atz
q+1 + o(zq+1) be a continuous family

of polynomials, in which at never vanishes, and the parameter t runs
through some locally compact metric space I that is a union of countably
many compact spaces. Then all q repelling petals of gt can be chosen
to vary continuously with respect to the parameter.

Proof. First note that, since the attracting vectors depend continuously
on the parameter t, so do the repelling sectors (to be more precise, the
intersections of the repelling sectors with a finite disk about 0 depend
continuously on t with respect to the Hausdorff metric). We will choose
St to be a continuous family of repelling sectors for gt.

Consider some particular parameter value t. The map

Ft(w) = w − qat + αt(w)

of S−q
t to C is obtained from the map gt : St → gt(St) by the conjugation

z 7→ z−q, as above. Let rt be a positive real number with the property

that |αt(w)| < |at|
4

whenever |w| > rt|at|. Set Πr(a) to be the half
plane given by the inequality Re(w/a) > r. We include the point ∞
to Πr(a). Thus Πr(a) is compact. Note that αt′(w

′) is a continuous
function of (t′, w′) defined at least for w′ ∈ Πrt(at′) and t

′ sufficiently
close to t. It follows that there is some open neighborhood Et of t in

I such that |αt′(w)| < |at′ |
2

for all t′ ∈ Et and all w ∈ Πrt(at′) (we use
the compactness of Πr(a) and its continuous dependence on a in the
Hausdorff metric associated with the spherical metric).

The family of neighborhoods Et is an open covering of I. Choose a
countable and locally finite subcovering Etn . Let φn : I → R be the
associated partition of unity, so that the support of the continuous func-
tion φn > 0 is contained in Etn , and

∑
n φn = 1. Set Rt =

∑
n φn(t)rtn .

Then Rt depends continuously on t, and we have |αt(w)| < |at|
2

for all
w ∈ ΠRt(at) and t ∈ I. The half-plane ΠRt(at) depends continuously
on t in the Hausdorff metric. Then the image of ΠRt(at) under the map
w 7→ w−1/q from S−q

t ∪ {∞} to St ∪ {0} is a repelling petal depending
continuously on t. �
3.2. Stability of rays and their perturbations. Throughout this
subsection, we fix λ that is a root of unity, i.e. λ = exp(2πip/q) for
some relatively prime p and q. Since λ is fixed, we will skip λ from
the notation fb, Rb(θ) etc. We discuss conditions that guarantee that a
dynamical ray Rb(θ) landing at 0 is stable, i.e., for b′ sufficiently close
to b, the ray Rb′(θ) also lands at 0.

Proposition 3.3. We have f ◦q
b (z) = z + Tp/q(b)z

q+1 + o(zq+1), where
Tp/q(b) is a non-zero polynomial in b.
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Proof. By the Petal Theorem [Bea00, Theorem 6.5.10], we have

f ◦q
b (z) = z + Tp/q(b)z

q+1 + o(zq+1).

It remains to prove that the polynomial Tp/q(b) cannot be identically
equal to zero. For any b such that Tp/q(b) = 0, the polynomial fb has
at least two cycles of attracting petals at 0. Each of the associated
cycles of Fatou domains must contain a critical point of fb. Thus both
critical orbits of fb converge to 0. However, for large b, one of the
critical points escapes. Therefore, for such b, we have Tp/q(b) ̸= 0. �
Proposition 3.4. Suppose that a dynamic ray Rb∗(θ) with periodic θ
lands at 0, and Tp/q(b∗) ̸= 0. Then, for all b sufficiently close to b∗, the
ray Rb(θ) lands at 0.

Proof. By Lemma 10.1 of [Mil06], the ray Rb∗(θ) must be tangent to
some repelling vector of f ◦q

b∗
at 0. Let RPb∗ be the corresponding re-

pelling petal of f ◦q
b∗
. The period of θ is equal to q by Theorem 18.13

of [Mil06]. There are two points z∗ and f ◦q
b∗
(z∗) in Rb∗(θ) that lie in

the interior of RPb∗ . By Lemma 3.2 for all b sufficiently close to b∗,
we can define a repelling petal RPb of f

◦q
b that is close to RPb∗ in the

Hausdorff metric.
Let L∗ denote the subray of the ray Rb∗(θ) from z∗ to infinity. By

Theorem 3.1, for every ε > 0, we can choose a neighborhood U of b∗
such that, for all b ∈ U , the corresponding piece L of Rb is ε-close to
L∗ in the Hausdorff metric. The number ε can be chosen so that this
implies that L enters the corresponding petal RPb. Dynamics inside
RPb implies that Rb(θ) lands at 0. �

3.3. The proof of inclusion PHD
e

3 ⊂ CU. We first recall the nec-
essary terminology. Let Λ be a Riemann surface, and Z ⊂ C any (!)
subset. A holomorphic motion of the set Z is a map µ : Z × Λ → C
with the following properties:

• for every z ∈ Z, the map µ(z, ·) : Λ → C is holomorphic;
• for z ̸= z′ and every ν ∈ Λ, we have µ(z, ν) ̸= µ(z′, ν);
• there is a point ν0 such that µ(z, ν0) = z for all z ∈ Z.

A crucial result about holomorphic motions is the λ-lemma of Mañé,
Sad and Sullivan [MSS83]: a holomorphic motion of a set Z extends
to a unique holomorphic motion of the closure Z; moreover, this ex-
tension is a continuous function in two variables. Suppose that for
each ν ∈ Λ a map hν : Z → C is given. A holomorphic motion
µ : Z × Λ → C is called equivariant (with respect to the family of
maps hν) if for every ν ∈ Λ and every z ∈ Z with hν0(z) ∈ Z we
have hν(µ(z, ν)) = µ(hν0(z), ν). In the introduction, we have defined
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the λ-stable set Sλ consisting of parameter values b∗ such that J(fλ,b)
moves holomorphically with respect to b in some neighborhood of b∗,
and the corresponding holomorphic motion is equivariant. We have
also defined λ-stable domains as components of Sλ. Often, by stable
domains we also mean the corresponding subsets of Fλ.

By Theorem A, we have PHD3 ⊂ CU. Consider a stable domain
U ⊂ Fλ such that for all f ∈ Bd(U), we have [f ] ∈ PHD3. We need
to prove that classes of all polynomials in U belong to CU. Suppose
that f∗ = fλ,b∗ ∈ U , and show that then f∗ has properties (1)–(3) from
Definition 1.1.

Property (1). Clearly, f∗ has a fixed non-repelling point 0, thus
property (1) is fulfilled.

Property (2). Let us prove that f∗ has no repelling cutpoints. As-
sume that f∗ has a repelling periodic cutpoint zb∗ . The set Arf∗(zb∗) of
arguments of external rays of f∗ landing at zb∗ consists of at least two
angles. Since all maps in U are quasi-symmetrically conjugate, it is easy
to see (e.g., by Lemma 3.5 [BOPT13b]) that all maps fλ,b ∈ U have
repelling periodic cutpoints zb corresponding to zb∗ . By Lemma 2.1
Arfλ,b(zb) = Arf∗(zb∗). Suppose that {α, β} ⊂ Arf∗(zb∗).

Let Λ be the set of all parameter values b with fλ,b ∈ U , and choose a
sequence bn → b′ ∈ Bd(Λ). We may assume that zbn → zb′ , where zb′ is
a non-attracting periodic point of fλ,b′ . If both rays Rb′(α), Rb′(β) land
at repelling periodic points, then these landing points must coincide as
otherwise by Lemma 2.1 we obtain a contradiction with the fact that
Rbn(α), Rbn(β) land at zbn and zbn → zb′ . However, by Theorem A,
the map fλ,b′ does not have repelling periodic cutpoints. Hence one of
the rays Rb′(α), Rb′(β) lands at a parabolic periodic point. Clearly,
for at most finitely many parameter values b′ ∈ Bd(Λ) the rays Rb′(α)
or Rb′(β) land at a parabolic point distinct from 0. Assume that for
infinitely many b′ ∈ Bd(Λ) the rays Rb′(α) land at 0 which is a parabolic
fixed point: λ = exp(2πip/q) for some relatively prime p and q.

Let us show that in the above case Tp/q(b
′) = 0. Indeed, arbitrarily

close to b′, there are parameter values b, for which Rb(α) does not land
at 0. It follows from Proposition 3.4 that Tp/q(b

′) = 0. However, the
polynomial Tp/q has only finitely many roots, a contradiction.

Property (3). Suppose that f∗ has a non-repelling n-periodic point
zb∗ ̸= 0 with multiplier not equal to 1. Since f∗ is stable, the corre-
sponding periodic point zb ̸= 0 of fb, b ∈ Λ, is n-periodic and non-
repelling. If b→ b′ ∈ Bd(Λ), then zb → zb′ where zb′ is a non-repelling
f ◦n
b′ -fixed point. Consider two cases. First, suppose that zb′ ̸= 0. Then
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by Theorem A the multiplier at zb′ is 1. There are only finitely many
values of b′, for which this can happen. Second, suppose that zb′ = 0.
We have f ◦n

b (z) − z = z(z − zb)Qb(z) for some polynomial Qb, whose
coefficients are algebraic functions of b that have no poles in C (indeed,
all roots of the left-hand side have this property). We obtain in the
limit as b→ b′ that f ◦n

b′ (z)− z = z2Qb′(z), hence 0 is a parabolic fixed
point of fb′ . We may assume that the multiplier at 0 is e2πip/q. Let us
show that then 0 is a degenerate parabolic point (i.e., that Tp/q(b

′) = 0
where T = Tp/q is the polynomial introduced in Proposition 3.3).

Indeed, n = mq is a multiple of q, and as in Proposition 3.3 by the
Petal Theorem f ◦q

b (z) = z + T (b)zq+1 + o(zq+1). It is easy to see by

induction that then for any k we have f ◦kq
b (z) = z+kT (b)zq+1+o(zq+1).

On the other hand, as above f ◦mq
b (z) − z = zq+1(z − zb)Rb(z) where

Rb(z) is a polynomial of z whose coefficients are algebraic functions of
b that have no poles in C. Hence in the limit we have f ◦mq

b′ (z) − z =
zq+2Rb′(z). It follows thatmT (b

′)zq+1+o(zq+1) = zq+2Rb′(z) and hence
mT (b′) + o(1) = zRb′(z), which implies that T (b′) = 0 as desired.
Clearly, there are finitely many such values of b′. Thus, we showed
that overall there are only finitely many values of b′ to which b may
converge, a contradiction with Bd(Λ) being infinite.

4. Laminations associated to polynomials

We first recall the language of laminations. A Riemann map ψf :

D → C \ K(f) from the unit disk D = {z ∈ C | |z| < 1} in C to the
complement of K(f) in the Riemann sphere C can be chosen so that
ψf (0) = ∞ and ψf (z

d) = f(ψf (z)) for all z ∈ D. A dynamic ray Rf (θ)
of argument θ is by definition the set ψf ((0, 1)e

2πiθ). We say that Rf (θ)
lands at a point z ∈ J(f) if z = limt→1− ψf (te

2πiθ). By the classical
Carathéodory theorem, if K(f) is locally connected, then there exists
a continuous extension ψf : D → C, which maps the unit circle S1 onto
J(f). In particular, all rays land. Let ∼f be the equivalence relation on

S1, whose classes are fibers of ψf . It is called the (Thurston) invariant
lamination associated with f . Leaves of ∼f are defined as edges of the
convex hulls of all ∼f -classes. It is not hard to see that leaves of ∼f

are disjoint in D.
Laminations can also be defined abstractly, i.e., without reference to

a polynomial.

Definition 4.1 (Laminations). An equivalence relation ∼ on the unit
circle S1 is called a lamination if either S1 is one ∼-class (such lamina-
tions are called degenerate), or the following holds:
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(E1) the graph of ∼ is a closed subset in S1 × S1;
(E2) if t1 ∼ t2 ∈ S1 and t3 ∼ t4 ∈ S1, but t2 ̸∼ t3, then the open
straight line segments in C with endpoints t1, t2 and t3, t4 are disjoint;
(E3) each equivalence class of ∼ is totally disconnected.

A lamination ∼ admits a canonical extension onto C: its classes are
either convex hulls of classes of ∼, or points which do not belong to such
convex hulls. By Moore’s Theorem the space C/ ∼ is homeomorphic
to C. The quotient map p∼ : S1 → S1/ ∼ extends to the plane with
the only non-trivial point-preimages (fibers) being the convex hulls of
∼-classes. From now on we will always consider such extensions of the
quotient map.

Definition 4.2 (Laminations and dynamics). A lamination ∼ is called
(σd-)invariant if:
(D1) ∼ is forward invariant: for a ∼-class g, the set σd(g) is a ∼-class;
(D2) for any ∼-class g, the map σd : g → σd(g) extends to S1 as an
orientation preserving covering map such that g is the full preimage of
σd(g) under this covering map.

For a σd-invariant lamination ∼ consider the topological Julia set
S1/ ∼= J∼ and the topological polynomial f∼ : J∼ → J∼ induced
by σd. One can extend f∼ to a branched-covering map f∼ : C → C
of degree d called a topological polynomial too. The map p∼ semi-
conjugates σd with f∼, at least on the unit circle and all leaves of ∼.
Unlike complex polynomials, topological polynomials can have periodic
critical points in their topological Julia sets. The complement K∼ of
the unique unbounded component U∞(J∼) of C \ J∼ is called the filled
topological Julia set. For a, b ∈ S1, let ab be the chord with endpoints a
and b. If A ⊂ S1 is closed, boundary chords of the convex hull CH(A)
of A are called edges of CH(A).

Definition 4.3 (Leaves and gaps). If A is a ∼-class, call an edge ab of
Bd(CH(A)) a leaf. All points of S1 are also called (degenerate) leaves.
The family L∼ of all leaves of ∼ is called the geometric lamination
(geolamination) generated by ∼. Let L+

∼ be the union of all leaves of
L∼. The closure of a non-empty component of D \ L+

∼ is called a gap
of ∼. Leaves and gaps of L∼ are called L∼-sets ; a leaf which is not an
edge of a finite gap is called independent. If G is a gap or leaf, we call
the set G′ = S1 ∩G the basis of G.

Extend σd (keeping the notation) linearly over all individual chords
in D (e.g., over leaves of L∼); even though the extended σd is not well-
defined on the entire disk, it is well-defined on L+

∼. A gap or leaf U
14



is said to be (pre)periodic if σ◦m+k
d (U ′) = σ◦m

d (U ′) for some m > 0,
k > 0. If m above can be chosen to be 0, then U is called periodic; the
minimal number k above is called the period of U . If U is (pre)periodic
but not periodic then it is called preperiodic.

Definition 4.4 (Rotational sets and numbers). If g is a periodic non-
degenerate finite ∼-class of period n, the map σ◦n

d |g is conjugate (by a
conjugacy that preserves the cyclic order) to a rigid rotation Rρ by a
rational angle ρ on a finite Rρ-invariant subset of S1. The number ρ
is then called the rotation number of g. A gap G such that its basis
G′ is infinite is called a Fatou gap. A periodic Fatou gap G of period
n such that f ◦n

∼ |Bd(p∼(G)) is conjugate to an irrational rotation by an
angle ρ, is called a Siegel gap while ρ is called the rotation number of
G. Otherwise f ◦n

∼ |Bd(p∼(G)) is conjugate to a map σk with some k > 1
and G is called a Fatou gap of degree k. Siegel gaps and finite ∼-classes
with non-zero rotation number are called rotational sets.

Let X ⊂ C be a continuum, and let U∞(X) be the unbounded com-
ponent of C \ X. If X = Bd(U∞(X)), we call X unshielded. A con-
tinuous map φ : Y → Z is monotone if all fibers are continua. Let
A be a continuum. A monotone onto map φ : A → Yφ,A with locally
connected Yφ,A is called a finest (monotone) map if for any monotone
map ψ : A → L onto a locally connected continuum L there is a map
h : Yφ,A → L with ψ = h ◦ φ (then h is monotone because for x ∈ L,
we have h−1(x) = φ(ψ−1(x))). If φ : A → B, φ′ : A → B′ are two
finest maps, then the map associating points φ(x) ∈ B and φ′(x) ∈ B′

for every x ∈ A is a homeomorphism between B and B′. Hence all
sets Yφ,A are homeomorphic, all finest maps φ are the same up to a
homeomorphism, and we can talk of the finest model YA = Y of A and
the finest map φA = φ of A onto Y .

Theorem 4.5 (Theorem 1 [BCO11]). Let Q be an unshielded contin-
uum. Then there exist the finest map φ and the finest model Y of Q
given by a lamination ∼Q on S1 so that Y = S1/ ∼Q; moreover, φ can
be extended to a map φ : C → C which collapses only those comple-
mentary domains to Q whose boundaries are collapsed by φ, and is a
homeomorphism elsewhere in C \ Q. For y ∈ Y the fiber φ−1(y) coin-
cides with the topological hull of the union of impressions of all external
to Q rays with arguments from the set p−1

∼Q
(y).

Here p∼Q
is the quotient map of S1 onto Y ; we call ∼Q the finest

lamination. By a finest map we mean any extension of the finest map
of Q over C.
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Definition 4.6 (Critical leaves and gaps). A leaf of a lamination ∼ is
called critical if its endpoints have the same image. A gap G is said to
be critical if σd|G ′ is at least k-to-1 for some k > 1.

Lemma 4.7 is well known; we state it here without a proof.

Lemma 4.7. An edge of a periodic gap is either (pre)critical or
(pre)periodic.

In [BCO11], Theorem 4.5 is applied to polynomials with connected
Julia set which yields Theorem 4.8 (a similar earlier result is due to
Kiwi [Kiw04]).

Theorem 4.8 ([BCO11], Theorem 2). Let f be a complex polynomial
with connected Julia set and finest lamination ∼f=∼J(f). Then there
exists a topological polynomial f∼f

: C → C and a finest map φf : C →
C which semiconjugates f and f∼f

. If x ∈ J∼f
corresponds to a finite

periodic ∼f -class p
−1
∼f
(x) then the fiber φ−1

f (x) is a point. No periodic
Fatou domain of f of degree greater than 1 is collapsed by φf .

We need the following definition.

Definition 4.9. Call gaps finite or infinite if their bases are finite or
infinite; infinite ∼-classes have infinite gaps as their convex hulls (such
gaps will be called infinite gap-classes). By [BL02] all such gaps are
(pre)periodic, and periodic infinite gap-classes are Fatou gaps of degree
greater than 1. Call the corresponding fibers CS-fiber. Thus, if x ∈ J∼f

corresponds to an infinite gap-class p−1
∼f
(x) then the x-fiber φ−1

f (x) is
said to be a CS-fiber.

The following lemma explains the terminology.

Lemma 4.10 ([BOPT13b], Proposition 4.4). A periodic CS-fiber con-
tains either a Cremer point or a Siegel point.

The drawback of using the lamination ∼f to model the dynamics of f
is that ∼f may incompletely reflect the properties of repelling periodic
cutpoints of J(f). In a lot of cases this does not happen. Indeed,
if all ∼f -classes are finite then by Theorem 4.8 there is a one-to-one
correspondence between repelling and parabolic periodic cutpoints of
f and their preimages on the one hand and the (pre)periodic non-
degenerate classes of ∼f . However in the case when some ∼f -classes
are infinite this may no longer be the case.

E.g., suppose that a cubic polynomial f has a fixed repelling point
0 at which Rf (0) and Rf (

1
2
) land, and no more repelling periodic cut-

points. Moreover, suppose that in each “half-plane” created by the cut
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Rf (0) ∪ {0} ∪Rf (
1
2
) there is a fixed Cremer point. Denote these fixed

Cremer points by a and b. Then the thickening construction of Douady
and Hubbard [DH85] (see also [Mil00b] and, more specifically, [EY99])
shows that there are two quadratic-like Julia sets in J(f), namely Ja
(containing a) and Jb (containing b). Each of them corresponds to a
quadratic Julia set with a Cremer fixed point, and by [BO06] the only
monotone map of Ja (Jb) onto a locally connected continuum is a col-
lapse to one point. It follows that the only monotone map of J onto
a locally connected continuum is a collapse to one point. Hence the
lamination ∼f identifies all points of the circle and misses the fact that
f has a fixed repelling cutpoint 0.

Let F be a fiber associated with an infinite ∼f -class. We saw that
F may contain periodic repelling points cutting F such that the corre-
sponding leaves are not included in L∼f

. By Proposition 40 [BCO11]
there are at most finitely many repelling or parabolic cutpoints in F .
To each such point x we associate the convex hull of the set Arf (x).
We add the edges of such convex hulls to L∼f

. Then we add to L∼f
the

edges of gaps corresponding to preimages of such points. Finally, we
take the limit leaves of this family of leaves and add them to L∼f

. This
creates a new geolamination Lf called the geolamination generated by
f . In this way we combine L∼f

with the rational lamination defined
by Kiwi in [Kiw04]. In Lf we will distinguish between Fatou gaps cor-
responding to non-degenerate Fatou domains of f , infinite gaps of Lf

that are gap-classes of L∼f
, and infinite gaps H of ∼f such that H ∩S1

is one ∼f -class subdivided by finitely many finite gaps or leaves and
their preimages as in the definition of Lf .

Definition 4.11. A laminational pair is a pair {∼,L} where L ⊃ L∼ is
a geolamination obtained by adding to L∼ finitely many finite periodic
gaps or leaves inside the convex hull of each infinite ∼-class as well as
all their pullbacks and limits so that L is a geolamination.

Definition 4.12. A cubic laminational pair {∼,L} is cubioidal if L
has at most one rotational set and each periodic non-degenerate leaf of
L has an attached to it Fatou gap whose basis is not contained in one
∼-class.

There are two extreme cases for {∼f ,Lf}. First, ∼f may identify
no two points. Then J(f) is a Jordan curve, Lf has no leaves, and
[f ] ∈ CU. We call such laminational pair empty. Second, ∼f may
identify all points of S1 while Lf contains no leaves. By our Lemma 5.1
then again [f ] ∈ CU. We call such laminational pair degenerate. The
degenerate and the empty laminational pairs share the same geolami-
nation, are cubioidal, and correspond to polynomials f with [f ] ∈ CU,
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yet correspond to two very different types of dynamics. In all other
cases Lf includes some non-degenerate leaves.

5. Proof of Theorem C

Lemma 5.1 deals with the case when Lf has only degenerate leaves.
We will assume that 0 is a fixed point of f .

Lemma 5.1. If all leaves of Lf are degenerate then [f ] ∈ CU, and 0 is
the unique non-repelling periodic point of f . Moreover, if ∼f consists
of one class, then 0 is a Cremer or Siegel fixed point.

Proof. We may assume that ∼f consists of one class coinciding with
S1. By definition of Lf the map f has no repelling periodic cutpoints,
and, by Theorem 4.8, the polynomial f has no attracting or parabolic
periodic points. By Lemma 4.10, the point 0 is a fixed Cremer or Siegel
point. Suppose that there is a non-repelling periodic point x ̸= 0 of
f . Similar to the above x is also a Cremer or a Siegel periodic point.
Then by [Kiw00] there exists a repelling periodic point separating x
and 0, a contradiction. �
Lemma 5.2. If [f ] ∈ CU then L∼f

= Lf .

Before we prove Lemma 5.2, we need to recall a description of qua-
dratic (i.e., degree 2) invariant gaps given in [BOPT13a]. Let G be a
quadratic invariant gap of some σ3-invariant lamination. Then there
is a unique edge M of G (the major of G) separating the circle into
two arcs, one of which contains all vertices of G and is of length at
most 2

3
; the leaf M must be critical or periodic. Moreover, all edges of

G are iterated σ3-preimages of M . Suppose that a quadratic invariant
gap G is a gap of ∼f . By [BOPT13b, Theorem 7.7], if M = θ1θ2 is a
periodic major of G, then the external rays Rf (θ1), Rf (θ2) land at the

same point. This implies that if αβ is a (pre)periodic edge of G then
the external rays Rf (α), Rf (β) land at the same point.

Proof of Lemma 5.2. Suppose that [f ] ∈ CU and L∼f
̸= Lf . Then

f has a periodic CS-fiber F . By Lemma 4.10, there exists a Cremer
or Siegel periodic point y ∈ F . If F is not invariant then y is not
fixed contradicting Definition 1.1. Thus F is invariant, and we may
assume that y = 0 ∈ F is a fixed Cremer or Siegel point. As above, the
corresponding to F invariant Fatou gap G is of degree greater than 1.
If G is of degree 3 then G′ = S1. Since [f ] ∈ CU, the map f does not
have repelling periodic cutpoints. Since G′ = S1, hence F = J(f), by
Theorem 4.8, the map f cannot have parabolic periodic points. Hence
by definition in this case all leaves of Lf = L∼f

are degenerate. Assume
18



that G is of degree 2. Since [f ] ∈ CU has no repelling cutpoints, then
L∼f

̸= Lf implies that there is a parabolic periodic cutpoint x of F .
Since f is cubic, by the Fatou-Shishikura inequality, the union of the
orbit of x and the point 0 is the set of all non-repelling periodic points
of f . In particular, there are no other periodic cutpoints of F .

Let X̃ be the union of all rays landing at x and {x} itself. Some
edges of the convex hull X of Arf (x) are contained inside G (otherwise
x would not be a cutpoint of F ). Apply the map ψG which collapses
all edges of G to points. It semiconjugates σ3|Bd(G) to σ2 so that the
restriction of Lf onto G induces a σ2-invariant geolamination L2

f which
contains, by the above, some periodic leaves. By Proposition II.6.10b of
[Thu85], the lamination L2

f has an invariant gap H of non-zero rotation

number or the leaf H = 1
3
2
3
. Theorem II.5.3 of [Thu85] shows that if

H is a gap then either H is a Siegel gap, or it is a gap with countably
many vertices, or it is a finite gap. However in the first two cases it
follows that the lamination L2

f contains an isolated critical leaf. On

the other hand, the construction of L2
f implies that all non-degenerate

leaves of L2
f are either (pre)periodic with non-degenerate images, or

limits of (pre)periodic, a contradiction. Thus, either H = 1
3
2
3
, or H is

a finite gap of rational rotation number.
Consider the convex hull H1 of ψ−1

G (H ′). Then H1 has either the
same number of vertices as H, or twice as many vertices as H (if
vertices of H are ψG-images of edges of G). We want to prove that
there is an f -fixed point associated to H1 such that external rays of f
whose arguments are vertices of H1 land at that point. Indeed, suppose
otherwise. Then by definition of our laminations we may assume that
there are σ2-pullbacks of ψG(X) accumulating on each edge of H. Let
ℓ = ab be an edge of H. Then the corresponding σ3-pullbacks of X will
accumulate on the corresponding edge of a1b1 ofH1. The corresponding

cuts of F formed by the corresponding pullbacks of X̃ can be chosen
so that their “vertices” (i.e., corresponding pullbacks of x) converge to
a point yℓ belonging to the impression of Rf (a1) and the impression of
Rf (b1). Thus, impressions of Rf (a1) and Rf (b1) are non-disjoint.

If H1 and H have the same number of vertices, it follows that the
union K of all impressions of angles with arguments which are vertices
of H1 is a continuum. If H1 has twice as many vertices as H, for every
vertex l of H there is an edge ℓ = uv of H1 such that ψG(ℓ) = l. By
[BOPT13b, Theorem 7.7], the external rays Rf (u), Rf (v) land at the
same point. Hence in that case the union K of impressions of angles
which are vertices of H1 is a continuum too. Clearly, K is invariant
and separated from impressions of rays with arguments which are not
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vertices of H1 (either by the just discussed pullbacks of X̃, or by the
appropriate fibers approaching F ). By [BCO11, Lemma 37] then K is
a fixed repelling or parabolic point. Since [f ] ∈ CU, K is parabolic.
Since H, and hence H1, are of non-zero rotation number, the multiplier
at K is not one. On the other hand, x is a Cremer or Siegel point.
Thus, f has at least two periodic points of multiplier not equal to 1, a
contradiction with [f ] ∈ CU. This shows that L∼f

= Lf . �

Proof of Theorem C. In view of Lemma 5.2, it remains to prove that,
for [f ] ∈ CU, the lamination Lf = L∼f

is cubioidal. Let us prove
that Lf has at most one rotational set G, and G is invariant. Suppose
that G′ is a finite ∼f -class. Then, by Theorem 4.8, it corresponds to
a periodic repelling or parabolic cutpoint y(G) = y of J(f). Since
[f ] ∈ CU, then, by Definition 1.1(2), the point y is parabolic and by
Definition 1.1(3) y = 0. Hence Lf cannot have two finite rotational
classes. Now, if G is a Siegel gap of ∼f then there must exist a Siegel
periodic point y of f inside φ−1

f ◦ p∼f
(G); thus, y = 0. Hence Lf has

at most one rotational set G, and G is invariant.
Again, let G be a finite rotational ∼f -class. Since y(G) = y is a

cutpoint of J(f), by Definition 1.1(2), the point y is parabolic. Hence
there are parabolic domains attached to y. By Theorem 4.8 they are
not collapsed by φf . Hence along at least one cycle of edges of G such
that the period of the endpoints of these edges is, say, m, there are
Fatou gaps of period m attached to G and which do not correspond to
one ∼f -class as required in Definition 4.12. By [BOPT13a, Corollary
5.5] this implies that for every periodic leaf ℓ of Lf whose endpoints
are of period t there exists a Fatou gap of Lf of period t attached to ℓ.
It remains to prove that such gaps cannot be contained in convex hulls
of ∼f -classes.

By the above the only hypothetical situation which we need to con-
sider is as follows: there is a periodic finite gap or leaf G of Lf with
two cycles of edges on its boundary such that Fatou gaps which are not
convex hulls of a single ∼f -class are attached to one of these cycles of
edges while Fatou gaps which are convex hulls of a single ∼f -class are
attached to the other cycle of edges. Denote by H a Fatou gap which
is one ∼f -class attached to an edge of G; let F be the corresponding
CS-fiber. By Lemma 4.10 there is a Cremer or Siegel point x ∈ F .
Since [f ] ∈ CU, the point x = 0 is fixed and so H is invariant. Clearly,

the only way it can happen is when G = 01
2
, a contradiction since if 01

2
is a leaf of Lf then from at least one side it has an attached Fatou gap
which does not coincide with the convex hull of a ∼f -class as desired
(so that Lf is a CU-lamination). �
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We can partially reverse Theorem C. First we prove Lemma 5.3.

Lemma 5.3. If a cubic polynomial f has no repelling cutpoints then
it has a non-repelling fixed point.

Proof. Consider fixed external rays Rf (0) and Rf (1/2). If they land
at the same point w then by the assumptions w is non-repelling as
desired. Suppose that the ray Rf (0) lands at z, the ray Rf (1/2) lands
at y, and z ̸= y are repelling. By [GM93] there exists either an invariant
Fatou domain U or a fixed point x ∈ J(f) \ {y, z}. In the first case
f has either an attracting or a Siegel fixed point, and we are done.
In the second case there are two possibilities. First, a periodic ray R
may land at x. By the assumption about Rf (0), Rf (

1
2
) the ray R is

not invariant, hence x is a cutpoint. Since f does not have repelling
periodic cutpoints, x is parabolic and we are done. Second, suppose
that no periodic ray lands at x. Then x is a Cremer fixed point, and
we are done. �
Lemma 5.4. Suppose that (∼f ,Lf ) is a cubioidal laminational pair, f
has no repelling periodic cutpoints and at most one periodic attracting
point. Then [f ] ∈ CU.

Proof. By Lemma 5.3 we may assume that 0 is an f -fixed point,
|f ′(0)| 6 1, and if there is a fixed non-repelling point with multiplier
not equal to 1 then f ′(0) ̸= 1. By Definition 4.12, L∼f

= Lf . By
Definition 1.1 we need to show that all non-repelling periodic points
of f but perhaps 0 have multiplier 1. Assume the contrary: f has a
periodic non-repelling point x ̸= 0, whose multiplier is different from
1.

We need an observation concerning any parabolic point y of f . By
[Kiw02] either there is one cycle of rays landing at y, or there are two
cycles of rays landing at y. In the first case inside each wedge at y
there is a parabolic Fatou domain attached to y. In the second case a
priori it may happen that there is one cycle of Fatou domains attached
to y inside one cycle of wedges at y, and the other cycle of wedges at y
contains no Fatou domains attached to y inside them. However since
(∼f ,Lf ) is cubioidal, it follows that if there are two cycles of rays (and
hence wedges) at y, then there are two cycles of Fatou domains at y.
Now we can consider several cases.

(1) Assume that 0 is attracting. Then there is an invariant Fatou
domain U containing 0. If x is attracting, Cremer or Siegel then by
[Kiw00, Lemma 3.1] there exists a repelling periodic cutpoint, a contra-
diction. Assume that x is parabolic. Then the fact that the multiplier
at x is not 1 implies that x cannot be a boundary point of U . By the
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above there are two cases. First, there may be one cycle of rays and
one cycle of Fatou domains at x. Clearly, then we can find a point
from the orbit of x and a Fatou domain attached to it which can only
be separated from 0 by a repelling periodic cutpoint, a contradiction.
Second, there may be two cycles of Fatou domains at x. Together with
U they will form three cycles of Fatou domains of a cubic polynomial
f , a contradiction.

(2) Assume that 0 is Cremer or Siegel. If x is attracting, Cremer
or Siegel then by [Kiw00, Lemma 3.1] there exists a repelling periodic
cutpoint separating 0 and x in J(f), a contradiction. Suppose that x
is parabolic. As in (1), the fact that f is cubic implies that there is
exactly one cycle of Fatou domains at x. However this implies that
there will be one of Fatou domains at one of the points of the orbit of
x which can only be separated from 0 by a repelling periodic cutpoint
as in [Kiw00, Lemma 3.1], a contradiction.

(3) Assume that 0 is parabolic. By the above there are two subcases
here. First, assume that there are two cycles of Fatou domains at 0.
Let G be the convex hull of Arf (0). If G is a gap, then each cycle of
Fatou domains at 0 consists of at least two domains. If one of them is a
cycle of attracting Fatou domains, then we have at least two attracting
periodic points of f , a contradiction. If both are cycles of parabolic
domains then we cannot have a non-repelling periodic point x ̸= 0 by
the Fatou–Shishikura inequality. Thus, we may assume that G is a leaf.
Then having two cycles of Fatou domains at 0 (actually, each cycle in
this case consists of just one Fatou domain) means having two cycles

of Fatou gaps attached to G which implies that G = 01
2
. If both Fatou

domains at 0 are parabolic, we cannot have a non-repelling periodic
point x ̸= 0. Hence one of the Fatou domains at 0 is attracting and
the other one is parabolic. However in that case by our choice of f we
should have moved the attracting fixed point to 0, a contradiction.

Second, assume that there is one cycle of Fatou domains and one
cycle of rays landing at 0. Then it is easy to see (similar to the argu-
ments above) that there must exist a repelling cutpoint separating one
of these Fatou domains at 0 from a specifically chosen Fatou domain at
one of the points from the orbit of x. In any case, we get a contradiction
with the assumption that f has no repelling periodic cutpoints. �

6. Proof of the second part of Theorem B

We need to prove that LC ∩ CU = LC ∩ PHD
e

3 (LC is the set of
classes of polynomials with locally connected Julia sets). By the first
part of Theorem B, we have PHD

e

3 ⊂ CU. Hence we have to consider
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cubic polynomials f such that [f ] ∈ CU \ PHDe

3. By Theorem C, the
laminational pair (∼f ,Lf ) is cubioidal. We may assume that f ∈ Fnr.

6.1. Main analytic tools. According to [BOPT13b], there is a well-
defined principal critical point ω1(f) of f that depends holomorphically
on f at least in a small neighborhood of f in Fnr. If λ = f ′(0) is a root
of unity, then ω1 is in a parabolic domain attached to 0, in particular,
the orbit of ω1(f) converges to 0.

Theorem 6.1 ([BOPT13b], Theorem B). If f ∈ Fnr and [f ] ̸∈ PHD
e

3

then there are Jordan domains U∗ and V ∗ such that f : U∗ → V ∗ is a
quadratic-like map hybrid equivalent to z2 + c with c ∈ PHD2.

We will write J∗ for the Julia set of the quadratic-like map f : U∗ →
V ∗, and K∗ for the filled Julia set of this map. Theorem 6.1 implies
that in case J(f) is locally connected we may assume that L∼f

has
some non-degenerate leaves.

A stand-alone quadratic invariant gap U is a quadratic invariant gap
U of some lamination considered by itself (without the lamination).
We say that U is of regular critical type if the major M = θ1θ2 of U
is critical. If a gap U is of regular critical type, then there exists a
unique lamination such that U is its gap. Basically, this lamination
is obtained by taking pullbacks of U . This lamination is called the
canonical lamination of the gap U [BOPT13a].

We say that U is of periodic type if its major M = θ1θ2 is periodic
of some period k. Call such M a major (leaf) of periodic type.

6.2. The proof of the second part of Theorem B. By way of
contradiction, assume that f is a polynomial with a locally connected
Julia set J(f) such that [f ] ∈ CU\PHDe

3. Recall that there are Jordan
domains U∗ and V ∗ such that f : U∗ → V ∗ is a quadratic-like map
with a connected filled Julia set K∗. Define a subset G′ ⊂ S1 as the
set of arguments of all external rays of f landing in K∗; and set G to
be the convex hull of G′.

Since J(f) is locally connected, there is an invariant lamination
∼f and a monotone map p : C → C, whose restriction to S1 semi-
conjugates σ3 with f |J(f), and whose fibers are points, leaves or finite
gaps of ∼f .

Lemma 6.2. Consider a complementary component (a, b) of G′ in S1.
Then the rays Rf (a) and Rf (b) land at the same point.

Proof. Let us first prove that the chord ab cannot cross a leaf xy of ∼f .
Assume the contrary: xy ∈ L∼f

, where x ∈ (a, b) and y ∈ S1 \ [a, b].
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Then the union of K∗ ∪ Rf (a) ∪ Rf (b) separates Rf (x) from Rf (y).
Since the landing points of Rf (x) and Rf (y) coincide, this common
landing point must belong to K∗, a contradiction with x ∈ (a, b).

It follows that the chord ab is either a leaf of ∼f or is contained in
an infinite gap H of ∼f . Consider the latter case. Then p(Bd(H))
is the boundary of some Fatou component W of f . Consider X =
K∗ ∩ Bd(W ). Clearly, X is connected as if X is disconnected, then so
is K∗, a contradiction. On the other hand, no ray with the argument in
(a, b) lands inK∗. Hence, X is a closed subarc of Bd(W ) with endpoints
p(a) and p(b). By the properties of the locally connected Julia sets
for some numbers n < m the union

∪m
i=n f

i(X) is the boundary of a
periodic Fatou domain Q of f . Hence X is a subarc of the appropriate
pullback S ⊂ J∗ of Bd(Q), which is impossible. �

Lemma 6.3. The set G is a stand-alone quadratic invariant gap.

Proof. With every complementary component (a, b) of G′, we associate
the correspondingG-cut Γ(a, b) = Γ consisting of the raysRf (a), Rf (b),
and their common landing point (called the vertex of Γ). We claim that
the f -image of a G-cut is a G-cut. If v is not critical then f |K∗ is a
local homeomorphism near v. Hence, if K∗ is not locally separated by
Γ, then K∗ = f(K∗) cannot be locally separated by f(Γ). Assume now
that v is critical and f(Γ) is not a G-cut. Denote by W the wedge of
C with boundary G not containing points of K∗.

Consider two cases. First, let σ3(a) = σ3(b). ThenW contains points
mapped to K∗ and located arbitrarily close to v. This the definition
of polynomial-like map. Now, let σ3(a) ̸= σ3(b). Since f(Γ) is not a
G-cut, both components of f(Γ) contain points of K∗. Hence, again,
W contains points mapped to K∗ and located arbitrarily close to v, a
contradiction as above. �

Let M = ab be the major of G. If M is of regular critical type, then
both critical points of f are contained in K∗, a contradiction. Thus M
is of periodic type. The point p(M) is a periodic cutpoint of J(f). Since
[f ] ∈ CU, this point cannot be repelling. Therefore, p(M) is parabolic
of multiplier 1. The Jordan domain U∗ (U∗, use in the definition of
quadratic like map, intersects the immediate parabolic basin of p(M).
Since in an arbitrarily small neighborhood of p(M), there are points
of the immediate parabolic basin that stay in this neighborhood, these
points must lie in K∗. By the properties of Julia sets this implies that
the entire immediate parabolic basin of p(M) is a subset of K∗. It
follows that K∗ contains both critical points of f , a contradiction.
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(1999), 151–185

[Fat20] P. Fatou, Sur les equations functionnelles, Bull. Soc. Mat. France 48 (1920).
[GM93] L.R. Goldberg, J. Milnor, Fixed points of polynomial maps. Part II. Fixed
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