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Abstract—The results obtained in this paper are related to the Palis–Pugh problem on the existence
of an arc with finitely or countably many bifurcations which joins two Morse–Smale systems on a
closed smooth manifold Mn. Newhouse and Peixoto showed that such an arc joining flows exists
for any n and, moreover, it is simple. However, there exist isotopic diffeomorphisms which cannot
be joined by a simple arc. For n = 1, this is related to the presence of the Poincaré rotation number,
and for n = 2, to the possible existence of periodic points of different periods and heteroclinic orbits.
In this paper, for the dimension n = 3, a new obstruction to the existence of a simple arc is revealed,
which is related to the wild embedding of all separatrices of saddle points. Necessary and sufficient
conditions for a Morse–Smale diffeomorphism on the 3-sphere without heteroclinic intersections to
be joined by a simple arc with a “source-sink” diffeomorphism are also found.
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INTRODUCTION

This paper is devoted to solving the Palis–Pugh problem on the existence of an arc with finitely or
countably many bifurcations joining two Morse–Smale systems on a closed smooth manifold [1]. In [2],
Newhouse and Peixoto proved that any Morse–Smale vector fields are joined by a simple arc. Simplicity
means that the entire arc, except finitely many points, consists of Morse–Smale systems, and at the
exceptional points, a minimal (in a certain sense) deviation of the vector field from a Morse–Smale
system occurs.1

The situation with discrete dynamical systems is different. Two orientation-preserving Morse–Smale
diffeomorphisms on the circle can be joined by a simple arc (see Definition 1 below) if and only if
they have the same rotation number. As follows from results of Matsumoto [3] and Blanchard [4],
any orientable closed surface admits isotopic Morse–Smale diffeomorphisms which cannot be joined
by a simple arc. We say that two isotopic Morse–Smale diffeomorphism belong to the same simple
isotopy class if they can be joined by a simple arc. According to the paper [4], there exist infinitely many
simple isotopy classes of Morse–Smale diffeomorphisms on any orientable surface inside an isotopy
class admitting Morse–Smale diffeomorphisms.

The problem of the existence of a simple arc in dimension 3 is complicated by the presence of
Morse–Smale diffeomorphisms whose saddle periodic points have separatrices wildly embedded in the
underlying manifold. The first “wild” example was constructed by Pixton in [5]. This diffeomorphism
belongs to the class (which we called the Pixton class in [6]) formed by those three-dimensional Morse–
Smale diffeomorphisms whose nonwandering set consists of precisely four points, namely, two sinks, a
source, and a saddle (see Fig. 1). According to [7], any Pixton diffeomorphism is joined by a simple arc
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1In [2], the notion of a simple arc in the space of vector fields on a given manifold was expounded. In Sec. 1 of this paper, we
give a rigorous definition of a simple arc in the space of diffeomorphisms, which is ideologically similar to the corresponding
definition for flows.
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to a source-sink diffeomorphism. This is caused by the fact that, for any diffeomorphism from the Pixton
class, at least one one-dimensional separatrix of its saddle point is tame [8]. By using the connected sum
of two 3-spheres on which diffeomorphisms from the Pixton class with wildly embedded separatrices
are defined, it is easy to construct a diffeomorphism for which all separatrices of all saddles are wildly
embedded (see Fig. 1, in which the 3-balls used to obtain the connected sum are shaded); we prove
that such a diffeomorphism is not joined by a simple arc to any source-sink diffeomorphism. The main
result of this paper is a criterion for the existence of a simple arc joining a Morse–Smale diffeomorphism
without heteroclinic intersections to a source-sink diffeomorphism.

Fig. 1. A connected sum of two Pixton diffeomorphisms.

The key technical point in the solution of the problem stated above is the statement proved in Sec. 3
that any diffeomorphism from the class under consideration different from a source-sink diffeomorphism
has a sink or a source periodic point whose domain of attraction or repulsion contains a unique saddle
separatrix; moreover, this separatrix is one-dimensional and tame. This fact allows us to apply a
nontrivial result of [7] to construct a simple arc from the given diffeomorphism to a Morse–Smale
diffeomorphism whose saddle periodic orbits are fewer by one than those of the initial diffeomorphism.2

1. STATEMENT OF THE RESULTS

Let Diff(Mn) be the space of diffeomorphisms on a closed manifold Mn endowed with the
C1-topology. A smooth arc in Diff(Mn) is defined as a smooth map ξ : Mn × [0, 1] → Mn or,
equivalently, as a family of diffeomorphisms

{ξt ∈ Diff(Mn), t ∈ [0, 1]}
smoothly depending on t.

Let KS(Mn) be the set of all Kupka–Smale diffeomorphisms, i.e., diffeomorphisms whose periodic
orbits are hyperbolic and have transversal stable and unstable manifolds. The Kupka–Smale diffeomor-
phisms with finite nonwandering set form the set MS(Mn) of Morse–Smale diffeomorphisms. For a
smooth arc ξ, the set

B(ξ) = {b ∈ [0, 1], ξb /∈ KS(Mn)}
is called the bifurcation set. According to [9], for a generic set of arcs (which is the intersection of open
dense subsets in the space of smooth arcs), the bifurcation set is countable, and each diffeomorphism ξb

2In [7], it was proved that any Morse–Smale diffeomorphism without heteroclinic intersections whose nonwandering set
consists of four fixed points is joined by a simple arc with a source-sink diffeomorphism by means of a saddle-node
bifurcation.
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with b ∈ B(ξ) experiences one of the following bifurcations up to the direction of motion along the arc:
a saddle-node bifurcation, a period doubling, a Hopf bifurcation, and a heteroclinic tangency (precise
definitions of these bifurcations are given in Sec. 2 below).

Definition 1. An arc ξ is said to be simple if the bifurcation set B(ξ) is finite, ξt ∈ MS(Mn) for any
t ∈ ([0, 1] \ B(ξ)), and the bifurcations are of one of the following types:

• saddle-node3;

• period doubling;

• heteroclinic tangency.

The simplest Morse–Smale diffeomorphism is a source-sink diffeomorphism. The nonwandering
set of such a diffeomorphism consists of two points, a source and a sink, and the ambient manifold is
homeomorphic to the sphere. In [7], it was proved that all source-sink diffeomorphisms on S

3 belong
to the same simple isotopy class, which we denote by INS . In this paper, we show that this class is not
exhausted by source-sink diffeomorphisms and describe all diffeomorphisms in this class which have no
heteroclinic intersections (that is, no intersections of stable and unstable manifolds of different saddle
points).

Let f ∈ MS(M3) be a diffeomorphism with a saddle point σ, and let �u
σ be an unstable separatrix

of this point (that is, a connected component of the set W u
σ \ σ). A number per(�u

σ) ∈ N is called the
period of the separatrix �u

σ if fper(�u
σ)(�u

σ) = �u
σ and fm(�u

σ) �= �u
σ for any positive integer m < per(�u

σ). If
the separatrix �u

σ does not participate in heteroclinic intersections, then cl(�u
σ) \ (�u

σ ∪ σ) = {ω}, where
ω is a sink periodic point (see, e.g., Proposition 2.1.3 in the book [6]). Moreover, if dim W u

σ = 1, then
cl(�u

σ) is a topologically embedded4 arc in M3. The set �u
σ ∪ σ is a smooth submanifold of M3. However,

the manifold cl(�u
σ) may be wild at the point ω; in this case, the separatrix �u

σ is said to be wild, and
otherwise, it is said to be tame. The tameness and the wildness of a stable one-dimensional separatrix
are defined in a similar way.

Recall that the dynamics of any cascade f ∈ MS(M3) can be represented as follows (see, e.g.,
Chap. 2.2 in the book [6]). Let Ωq

f , q = 0, 1, 2, 3, denote the set of periodic points p for which we have
dim W u

p = q. Then Af = W u
Ω0

f∪Ω1
f

is a connected attractor, and Rf = W s
Ω3

f∪Ω2
f

is a connected repeller

with topological dimension at most 1. The sets Af and Rf do not intersect, and each point from the set
Vf = M3 \ (Af ∪ Rf ) is wandering and moves from Rf to Af under the action of f .

We say that Af and Rf are separated by a 2-sphere if there exists a smooth 2-sphere Σf ⊂ Vf such
that Af and Rf belong to different connected components of M3 \ Σf (see Fig. 2).

Let MS0(M3) denote the class of Morse–Smale diffeomorphisms without heteroclinic intersections
on a 3-manifold M3. The main result of this paper is the following theorem.

Theorem 1. A diffeomorphism f ∈ MS0(S3) belongs to the class INS if and only if the attrac-
tor Af and the repeller Rf are separated by a 2-sphere.

In Sec. 5, we prove that the diffeomorphism whose phase portrait is described at the end of the
introduction (see Fig. 1) is not joined by a simple arc with a source-sink diffeomorphism.

3A saddle-node bifurcation consists in the disappearance of two hyperbolic periodic orbits of the same period. In this paper,
we assume that one of these orbits is a node and the other is a saddle.

4A C0 map g : B → X is called a topological embedding of a topological manifold B into a manifold X if it is a
homeomorphism between B and the subspace g(B) with the topology induced from X. In this case, the image A = g(B)
is called a topologically embedded manifold. Note that a topologically embedded manifold is not generally a topological
submanifold. If A is a submanifold, then it is said to be tame, or tamely embedded; otherwise, A is said to be wild, or
wildly embedded, and the points at which the conditions in the definition of a topological submanifold are violated are
called points of wildness.
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Fig. 2. A diffeomorphism f ∈ MS(M3) with attractor Af and repeller Rf separated by a 2-sphere.

2. BIFURCATIONS ON A TYPICAL ARC

To describe the bifurcation set of a typical arc, we need the following notion.
Let p be a fixed point of a diffeomorphism f : Mn → Mn. The differential Dfp induces the decompo-

sition

TpM
n = Eu ⊕ Ec ⊕ Es

of the tangent space TpM
n into the direct sum of invariant subspaces. The eigenvalues of the linear

maps Dfp|Eu , Dfp|Ec , and Dfp|Es are, respectively, inside, on the boundary, and outside the unit disk.
In particular, if dim Ec = 0, then the point p is hyperbolic. Otherwise, there exists a smooth invariant
submanifold W c

p of Mn which is tangent to Ec at p. This submanifold is called a central manifold of the
nonhyperbolic fixed point p. It is determined not uniquely, but the maps f |W c

p
and f |

fW c
p

are topologically

conjugate for any central manifolds W c
p and ˜W c

p . In addition, for the point p, the smooth stable manifold

W s
p =

{

y ∈ Mn : lim
k→+∞

fk(y) = p
}

and the smooth unstable manifold

W u
p =

{

y ∈ Mn : lim
k→−∞

fk(y) = p
}

are defined (see, e.g., [10]). The central, stable, and unstable manifolds of a periodic point of period k
are the corresponding manifolds of this point treated as a fixed point of the diffeomorphism fk.

To define the quasi-transversal intersection of submanifolds, we need the notion of quadratic
differential of a map h : A → B at a point x ∈ A, where A and B are smooth manifolds. Recall that
the cokernel of the first differential hx : TxA → Tf(x)B is defined as the quotient space

Coker hx = Th(x)B/hx(TxA).

In local coordinates X : TxA → A, Y : Th(x)B → B, in which

X(0) = x, Y (0) = h(x),
d

dt

∣

∣

∣

∣

t=0

X(ζt) = ζ,
d

dt

∣

∣

∣

∣

t=0

Y (ζt) = ζ,

the map h is written in the form

ϕ : TxA → Th(x)B, where ϕ = Y −1hX.

The restriction of ϕ to the kernel Ker hx consists of l functions ϕ1, . . . , ϕl ∈ Coker hx, each of which
depends on k variables η1, . . . , ηk ∈ Ker hx. The quadratic differential of h at the point x is, by
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definition, the map hxx : Ker hx → Coker hx written in the local coordinates η1, . . . , ηk and ϕ1, . . . , ϕl
as

(hxx(η1, . . . , ηk))r =
1
2

k
∑

i,j=1

∂2ϕr

∂ζi ∂ζj
ηiηj, r = 1, . . . , l

(see [11] for details).

Now, suppose that N1 and N2 are smooth submanifolds of a manifold Mn, x ∈ (N1 ∩ N2), D1 is a
locally normal complement to N1 at x, and q : Mn → D1 is the natural projection along N1. We set
g = q|N2 . The manifolds N1 and N2 are said to have quasi-transversal intersection at the point x if the
space Coker gx is homeomorphic to R and one of the following conditions holds:

(a) dim N1 + dimN2 ≥ n and the quadratic differential gxx is nondegenerate;

(b) dim N1 + dimN2 = n − 1 and TxN1 ∩ TxN2 = {0}.

For a generic set of arcs ξ, each diffeomorphism ξb, b ∈ B(ξ), experiences one of the bifurcations
described below up to the direction of motion along the arc. In the explaining figures, the double arrows
schematically show the directions of motion corresponding to exponential contraction and expansion,
and the single arrows indicate the directions of motion on a central manifold of a nonhyperbolic point.

We proceed to the description of the possible types of bifurcations.

(1) All periodic orbits of the diffeomorphism ξb are hyperbolic except one orbit Op of a point p of
period k, for which (Dfk)p has one eigenvalue λ = 1 and all of the other eigenvalues of (Dfk)p differ from
1 in absolute value. The stable and unstable manifolds of different periodic orbits of the diffeomorphism ξb

intersect transversally, and W s
p ∩ W u

p = {p}. The passage through ξb is accompanied by the merging
and subsequent disappearance of hyperbolic periodic points of the same period. Such a bifurcation is
called a saddle-node bifurcation (see Fig. 3).

Fig. 3. A saddle-node bifurcation.

(2) All periodic orbits of the diffeomorphism ξb are hyperbolic except one orbit Op of period k, for
which all eigenvalues (Dfk)p has one eigenvalue λ = −1 and all of the other eigenvalues of (Dfk)p are
different from 1 in absolute value. The stable and unstable manifolds of different periodic orbits of the
diffeomorphism ξb intersect transversally, and W s

p ∩W u
p = {p}. Under the passage through ξb along the

central manifold, the attractor5 becomes a repeller, and a 2k-periodic hyperbolic orbit is born. Such a
bifurcation is called a period doubling (see Fig. 4).

5A compact set A ⊂ Mn is called an attractor for a diffeomorphism f : Mn → Mn if A has a neighborhood V for which
f(V ) ⊂ V and A =

T

n∈N
fn(V ). Such a neighborhood is said to be trapping. A set R ⊂ Mn is called a repeller for f if

this set is an attractor for f−1.
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Fig. 4. A period doubling bifurcation.

(3) All periodic orbits of the diffeomorphism ξb are hyperbolic, except one orbit Op of period k, for
which (Dfk)p has a pair of conjugate eigenvalues λ and λ̄, where λ = eiθ with 0 < θ < π, and all of the
other eigenvalues of (Dfk)p differ from 1 in absolute value. The stable and unstable manifolds of different
periodic orbits of the diffeomorphism ξb intersect transversally, and W s

p ∩ W u
p = {p}. Under the passage

through ξb, the attractor becomes a repeller, near which an invariant circle arises. Such a bifurcation is
called a Hopf (or Neimark–Sacker) bifurcation (see Fig. 5).

Fig. 5. A Hopf, or Neimark–Sacker, bifurcation.

(4) All periodic orbits of the diffeomorphism ξb are hyperbolic, their stable and unstable manifolds
have transversal intersection everywhere except on one trajectory, along which the intersection is quasi-
transversal. Such a bifurcation is called a heteroclinic tangency bifurcation (see Fig. 6).

Fig. 6. A heteroclinic tangency bifurcation.
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3. RELATIONSHIP BETWEEN TAME SEPARATRICES AND SIMPLE ARCS

3.1. A Tameness Condition for a One-Dimensional Separatrix

We begin this subsection with definitions and facts necessary for understanding what follows;
exhaustive information can be found in Chap. 2.1 of the book [6].

Let f ∈ MS(M3), and let σ be a saddle point of f such that the unstable separatrix �u
σ does not

participate in heteroclinic intersections. Then cl(�u
σ) \ (�u

σ ∪ σ) = {ω}, where ω is a sink periodic point.
The type of embedding of the separatrix �u

σ is determined by passing to the orbit space.
We set

Vω = W s
Oω

\ Oω and ̂Vω = Vω/f.

Then the natural projection pω : Vω → ̂Vω is a covering. Since the diffeomorphism fper(ω)|W s
ω

is

topologically conjugate to a homothety of R
3, it follows that the manifold ̂Vω is homeomorphic to S

2 × S
1,

and since W u
σ is a smooth submanifold of M3 and the diffeomorphism fper(σ)|W u

σ
is topologically

conjugate to a homothety of R
dimW u

σ , it follows that the set ̂�u
σ = pω(�u

σ) is a homotopically nontrivial
smooth submanifold of ̂Vω, i.e., i

b�uσ∗
(π1(̂�u

σ)) �= 0, where i
b�uσ

: ̂�u
σ → ̂Vω is the inclusion map.

In the case dimW u
σ = 1, the manifold ̂�u

σ is a knot (a homeomorphic image of the circle). The knot ̂�u
σ

is said to be trivial if there exists a homeomorphism ϕ̂ : ̂Vω → S
2 × S

1 such that

ϕ̂(̂�u
σ) = {x} × S

1 for some x ∈ S
2.

Statement 1. If the knot ̂�u
σ is trivial in ̂Vω, then the one-dimensional separatrix �u

σ is tame and
has the same period as ω.

Proof. The first assertion of the statement follows from Theorem 4.2.2 in [6], according to which the
separatrix �u

σ is tamely embedded in M3 if and only if the knot ̂�u
σ is trivial in ̂Vω . To prove the second

assertion, note that, according to Proposition 4.1.2 in [6], the knot ̂�u
σ is trivial if and only if it has a tubular

neighborhood N(̂�u
σ) in ̂Vω such that the manifold ̂Vω \ N(̂�u

σ) is homeomorphic to the solid torus (that
is, to D

2 × S
1). It follows that, for the trivial knot ̂�u

σ, the group i
b�uσ∗

(π1(̂�u
σ)) is isomorphic to Z. The

manifold ̂Vω is homeomorphic to the quotient space (W s
ω \ ω)/fper(ω); hence the monodromy theorem

implies the existence of an arc γ ⊂ �u
σ (going from x to fper(ω)(x)) which is a lifting of the knot ̂�u

σ. Thus,
fper(ω)(�u

σ) = �u
σ. Since ω ∈ cl(�u

σ), it follows that per(�u
σ) ≥ per(ω) and, therefore, the separatrix �u

σ has
the same period as the sink ω.

A similar statement is valid for a stable saddle separatrix in the domain of repulsion of the source α.

3.2. Characteristic Spaces

Let f ∈ MS(M3). Recall that Ωq
f , q = 0, 1, 2, 3, denotes the set of periodic points p for which

dim W u
p = q and

Af = W u
Ω0

f∪Ω1
f
, Rf = W s

Ω3
f∪Ω2

f
, Vf = M3 \ (Af ∪ Rf ).

In [6], the orbit space ̂Vf = Vf/f is referred to as the characteristic space of f . Let pf : Vf → ̂Vf denote
the natural projection. As is known (see, e.g., Theorem 1.2 in [12]), the characteristic space is a simple
manifold6.

Statement 2. For any diffeomorphism f ∈ MS(M3), the attractor Af and the repeller Rf are
separated by a 2-sphere if and only if the space ̂Vf is diffeomorphic to S

2 × S
1.

6A smooth 3-manifold is said to be simple if it is either irreducible (that is, any smooth 2-sphere bounds a 3-ball in this
manifold) or homeomorphic to S

2 × S
1.
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Proof. Necessity. The separation of the attractor Af and the repeller Rf of a diffeomorphism
f ∈ MS(M3) by a 2-sphere means that there exists a smooth 2-sphere Σf ⊂ Vf such that Af and Rf

belong to different connected components of M3 \ Σf . The sphere Σf does not bound a 3-ball in Vf ;
therefore, the manifold Vf is not irreducible. By virtue of Theorem 3.15 in [13], the manifold ̂Vf is not
irreducible either. According to Theorem 1.2 in [12], ̂Vf is diffeomorphic to S

2 × S
1.

Sufficiency. Suppose that the manifold ̂Vf is diffeomorphic to S
2 × S

1. Then there is a diffeomorphism
β : Vf → S

2 × R between Vf and S
2 × R. Take a coordinate r ∈ R and let Σf = β−1(S2 × {r}). By

construction, the 2-sphere Σf separates Vf into two noncompact connected components, while the
manifold M3 = Vf ∪ Af ∪ Rf is compact. Since the sets Af and Rf are connected and disjoint, they
must be contained in different connected components of M3 \ Σf . Therefore, the 2-sphere Σf is as
required.

Now, take f ∈ MS0(M3). For a saddle point σ of f , let W 2
σ (W 1

σ ) denote the two-dimensional
(one-dimensional) invariant manifold of σ, and let ̂W 2

σ = pf (W 2
σ ). Then the set ̂W 2

σ is a homotopically
nontrivial smooth torus (a homotopically nontrivial Klein bottle) in the manifold ̂Vf , provided that the
diffeomorphism fper(σ) preserves (reverses) the orientation of W 2

σ (see, e.g., Proposition 2.1.5 in [6]).
We set

̂W 2
f =

⋃

σ∈(Ω1
f∪Ω2

f )

̂W 2
σ .

Choose a family {N(̂W 2
σ ), σ ∈ (Ω1

f ∪ Ω2
f )} of pairwise disjoint tubular neighborhoods7 of the surfaces

̂W 2
σ , σ ∈ (Ω1

f ∪ Ω2
f ).

In the case where the manifold ̂Vf is diffeomorphic to S
2 × S

1, we determine the type of embedding of
separatrices by using the following topological facts.

Fact 1. Any homotopically nontrivial smooth torus in the manifold S
2 × S

1 bounds a solid torus in
this manifold (see, e.g., Proposition 4.1.1 in [6]).

Fact 2. An orientable surface F properly embedded8 in a manifold X and different from the 2-sphere
is incompressible9 if and only if Ker(iF∗) = 0, where iF : F → X is the inclusion map [14].

Fact 3. If a 3-manifold X is irreducible, then a 2-torus T ⊂ X not contained in a 3-ball is
compressible if and only if it bounds a solid torus in X [14, Exercise 6].

Fact 4. A manifold is diffeomorphic to S
2 × S

1 if and only if it is obtained from two smooth solid tori by
attaching their boundaries to each other by means of a diffeomorphism taking meridians10 to meridians
(see, e.g., Proposition 7.1 in [15]).

Remark 1. Let T be a homotopically nontrivial smooth torus in the manifold S
2 × S

1. By Fact 3.2, the
torus T bounds a solid torus G; we refer to a meridian of G as a meridian of the torus T . If the torus T
bounds two solid tori, then, according to Fact 3.2, each meridian of one of them is a meridian of the other.

7A tubular neighborhood of a torus is a manifold diffeomorphic to T
2 × (0, 1); accordingly, its boundary consists of two

tori. A tubular neighborhood of a Klein bottle is a locally trivial bundle over the Klein bottle with fiber the interval; its
boundary consists of one torus.

8A surface F is said to be properly embedded in a manifold X if ∂X ∩ F = ∂F .
9A surface F properly embedded in X is said to be compressible in X in one of the following two cases:

(1) there exists a noncontractible simple closed curve c ⊂ int F and a smoothly embedded 2-disk D ⊂ int X for which
D ∩ F = ∂D = c;

(2) there exists a 3-ball B ⊂ intX for which F = ∂B.

A surface F is said to be incompressible in X if it is not compressible in X.
10A two-dimensional disk d in a solid torus G is called a meridian disk if ∂G ∩ d = ∂d and ∂d does not bound a disk in ∂G.

The boundary of a meridian disk is called a meridian.
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Statement 3. If a diffeomorphism f ∈ MS0(M3) is different from a source-sink diffeomorphism
and its characteristic space ̂Vf is diffeomorphic to S

2 × S
1, then there exists a saddle point σ∗ such

that at least one connected component of the set ̂Vf \ N(̂W 2
σ∗) is a solid torus disjoint from ̂W 2

f .

Proof. By Fact 3.2, for any saddle point σ, at least one connected component of the set ̂Vf \ N(̂W 2
σ ) is

a solid torus. Since the number of saddle points is finite and the Klein bottle is not embedded in the solid
torus11, it suffices to show that if a torus T is homotopically nontrivial in S

2 × S
1 and contained in a solid

torus G homotopically nontrivial in S
2 × S

1, then T bounds a solid torus in G.
Let a and b be generators of the fundamental group of the torus T . Since T is homotopically nontrivial

in S
2 × S

1, it follows that, up to the interchange of the generators, we have iT∗([a]) �= 0 and iT∗([b]) = 0,
where iT : T → S

2 × S
1 is the inclusion map. Let c be a generator of the fundamental group of the

solid torus G. Since G is homotopically nontrivial in S
2 × S

1 as well, it follows that iG∗([c]) �= 0,
where iG : G → S

2 × S
1 is the inclusion map; hence Ker(iG∗) = 0. Let jT : T → G denote the inclusion

map. Then iT = iGjT and, therefore, iT∗ = iG∗jT∗. The relations Ker(iT∗) �= 0 and Ker(iG∗) = 0 imply
Ker(jT∗) �= 0. According to Fact 3.2, the torus T is compressible in G. Since jT∗([a]) �= 0, it follows
that T is not contained in a 3-ball in G; thus, according to Fact 3.2, T bounds a solid torus in G.

Statement 4. Suppose that a diffeomorphism f ∈ MS0(M3) is not a source-sink diffeomorphism,
the characteristic space ̂Vf is diffeomorphic to S

2 × S
1, σ∗ is a saddle point satisfying the

conditions in Statement 3, and dim W u
σ∗ = 1 (dimW s

σ∗ = 1). Then there exists a sink point ω∗
(a source point α∗) for which the intersection

̂Vω∗ ∩ pω∗(W
u
Ω1

f∪Ω2
f
) (̂Vα∗ ∩ pα∗(W

s
Ω1

f∪Ω2
f
))

consists of only the trivial node ̂�u
σ∗ (̂�s

σ∗).

Proof. To be definite, suppose that dim W u
σ∗ = 1. We set

V0 =
⋃

ω∈Ω0
f

Vω and ̂V0 =
⋃

ω∈Ω0
f

̂Vω.

Then each connected component of the manifold ̂V0 is diffeomorphic to S
2 × S

1. To better understand
the passage from Vf to V0, note that V0 \ W u

Ω1
f

= Vf \ W s
Ω1

f
. Given a point σ ∈ Ω1

f , we set

Nσ = p−1
f (N(̂W 2

σ )) ∪ W u
Oσ

.

By construction, Nσ is an f-invariant neighborhood of the periodic orbit Oσ , which contains the set
W s

Oσ
∪W u

Oσ
(see Fig. 8 and the proof of the existence of such a neighborhood in [6, Theorem 2.1.2]). Let

NΩ1
f

=
⋃

σ∈Ω1
f

Nσ.

Then V0 \ NΩ1
f

= Vf \ NΩ1
f

.

We set ̂W 1
σ = p0(W 1

σ ). Note that ̂W 1
σ is a pair of knots (a knot) in the manifold ̂V0, provided that the

diffeomorphism fper(σ) preserves (reverses) the orientation of W 1
σ (see, e.g., Proposition 2.1.5 in [6]). Let

N(̂W 1
σ ) = p0(Nσ); then N(̂W 1

σ ) is a tubular neighborhood of ̂W 1
σ . We set

̂N2
Ω1

f
= pf (NΩ1

f
), ̂N1

Ω1
f

= p0(NΩ1
f
).

It follows from V0 \ NΩ1
f

= Vf \ NΩ1
f

that the manifold p0(V0 \ NΩ1
f
) is homeomorphic to pf (Vf \ NΩ1

f
).

Therefore, ̂V0 \ ̂N1
Ω1

f
is homeomorphic to ̂Vf \ ̂N2

Ω1
f

.

11If the Klein bottle were embedded in the solid torus, then it would be embedded in R
3, which is false.
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Fig. 7. An f-invariant neighborhood of the saddle point σ.

The passage from ̂Vf to ̂V0 consists in removing ̂N2
Ω1

f
from ̂Vf and attaching a solid torus to each

boundary of the resulting manifold by means of a diffeomorphism taking meridians to meridians. Such
a passage is shown in Fig. 8 (a) (in Fig. 8 (b)). By virtue of Statement 3, the set ̂Vf \ N(̂W 2

σ∗) has a

connected component G homeomorphic to the solid torus and disjoint from ̂W 2
f ; hence, attaching G

to a connected component N(̂�u
σ∗) of N(̂W 1

σ∗) which is homeomorphic to the solid torus, we obtain a

connected component ̂Vω∗ of ̂V0 for which

̂Vω∗ ∩ pω∗(W
u
Ω1

f∪Ω2
f
) = ̂�u

σ∗ .

Fig. 8. The passage from the space bVi to the space bVi−1.

3.3. The Existence of a Simple Arc Decreasing the Number of Periodic Orbits

Statement 5. Suppose that f ∈ MS0(M3) is not a source-sink diffeomorphism and the charac-
teristic space ̂Vf is homeomorphic to S

2 × S
1. Then the nonwandering set of f contains a nodal

point (a source or a sink) whose basin (the domain of attraction or repulsion) contains precisely
one separatrix of a saddle point; moreover, this separatrix is one-dimensional and tame.

Proof. The existence of a nodal point with the required properties is proved straightforwardly by
successively applying Statements 3, 4, and 1.
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Statement 6. If the nonwandering set of a diffeomorphism f ∈ MS0(M3) has a nodal point whose
basin contains precisely one separatrix of a saddle point and this separatrix is one-dimensional
and tame, then there exists a simple arc with a unique bifurcation point which joins f to a
diffeomorphism f ′ ∈ MS0(M3) such that the number of saddle orbits in its nonwandering set
is smaller by one than that in the nonwandering set of f .

Proof. Let σ and �σ be, respectively, a saddle point and its separatrix satisfying the conditions in the
statement. There are two possible cases:

(1) fper(σ)(�) = �;

(2) fper(σ)(�) �= �.

In case (1), the existence of a simple arc with the required properties is proved by using a saddle-node
bifurcation; the method of proof is described in detail in Sec. 4.3.2 of the book [6] (see also [7]) for the
case per(σ) = 1 and is easily generalized to the case per(σ) > 1. In case (2), the construction of the
required simple arc uses a period doubling bifurcation; it is described in [16] for per(σ) = 1 and is easily
generalized to the case per(σ) > 1.

4. A CRITERION FOR A MORSE–SMALE DIFFEOMORPHISM
WITHOUT HETEROCLINIC INTERSECTIONS TO BELONG TO THE CLASS INS

The proof of Theorem 1 is based on the following lemma.

Lemma 1. If diffeomorphisms f, f ′ ∈ MS0(M3) are joined by a simple arc, then the spaces ̂Vf

and ̂Vf ′ are homeomorphic.

Proof. Without loss of generality, we can assume that the diffeomorphisms f, f ′ ∈ MS0(S3) are
joined by a simple arc ξt with a unique bifurcation value ξb. Then, for t1, t2 < b or t1, t2 > b, the
diffeomorphisms ξt1 and ξt2 are topologically conjugate and, therefore, the orbit spaces ̂Vξt1

and ̂Vξt2

are homeomorphic. Note that it follows from the definition of a simple arc that either |Ω0
ξ0
| = |Ω0

ξt
| or

|Ω3
ξ0
| = |Ω3

ξt
| for any t ∈ [0, 1], where | · | denotes the cardinality of a set. To be definite, we suppose that

|Ω0
ξ0
| = |Ω0

ξt
| (in the other case, a similar argument is used). Then |Ω1

ξ0
| = |Ω1

ξt
| and Aξt = W u

Ω0
ξt
∪Ω1

ξt

is

an attractor for any t ∈ [0, 1]. We set

Vξt = W s
Aξt

∩Ωξt
\ Aξt and ̂Vξt = Vξt/ξt.

We shall prove the existence of an ε > 0 such that the manifolds ̂Vξt and ̂Vξb
are homeomorphic for

b ≤ t ≤ b + ε. A similar argument proves the existence if an ε̃ > 0 such that the manifolds ̂Vξt and ̂Vξb

are homeomorphic for b − ε̃ ≤ t ≤ b, which will complete the proof of the lemma.
By using methods of [12], we can construct a smooth trapping neighborhood Q of Aξb

which is
the body bounded by a surface. Choose a tubular neighborhood N of the surface ξb(∂Q) so that
N ∩ ∂Q = ∅. We set St = ξt(∂Q) for t ∈ [b, 1]. Let us prove the existence of an ε > 0 for which St ⊂ N
and the surface St separates the boundaries of N for b ≤ t ≤ b + ε.

To this end, we set

gt = ξtξ
−1
b |Sb

: Sb → St for t ∈ [b, 1].

By Thom’s homotopy extension theorem (see, e.g., Theorems 8.1.3 and 8.1.4 in the book [17]), there
exists an ε > 0 and a smooth isotopy

{Gt : M3 → M3, t ∈ [b, b + ε]}
satisfying the conditions Gb = id,

Gt|Sb
= gt|Sb

, Gt|M3\N = id |M3\N for any t ∈ [b, b + ε].
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We have Gt(N) = N and Gt(Sb) = St, which implies that the surface St separates the boundary of the
manifold N for b ≤ t ≤ b + ε.

Let

Kξt = Q \ int ξt(Q).

Then Kξt is a fundamental domain12 of the action of the diffeomorphism ξt on Vξt . The orbit space ̂Vξt is
homeomorphic to the topological space obtained from Kξt by identifying its boundaries by a means of a
diffeomorphism ξt (see, e.g., Statement 10.2.22 in [6]). Let us show that there exists a homeomorphism
ht : Kξb

→ Kξt between Kξt and Kξb
which satisfies the conditions

ht|∂Q = id |∂Q and ht|ξb(∂Q) = gt;

this will complete the proof of the lemma.
We set

R = Kξb
\ N and Pt = cl (Kξt \ R).

Note that Kξt = R ∪ Pt. We also set S = R ∩ Pt and St = ξt(∂Q). By construction, S and St are
diffeomorphic surfaces. Moreover, since St separates the boundaries of N for b ≤ t ≤ b + ε, it follows
that Pt is diffeomorphic to the manifold S × [0, 1] (see, e.g., Corollary 3.2 in [18] or Theorem 3.3
in [19]). Moreover, we can construct a family of diffeomorphisms νt : Pt → S × [0, 1] with the property
νt(s) = {s} × [0, 1] for s ∈ S so that this family is continuous in t ∈ [b, b + ε]. We set

μt = νtgtν
−1
b |S×{1} : S × {1} → S × {1}.

By construction, the map μt is isotopic to the identity map, which implies the existence of a diffeomor-
phism

qt : S × [0, 1] → S × [0, 1]

coinciding with the identity map on S × {0} and with μt on S × {1}. The map ht coinciding with the
identity map on R and with the diffeomorphism ν−1

t qtνb on Pb is as required.

Proof of Theorem 1. Let us prove Theorem 1, that is, show that a diffeomorphism f ∈ MS0(S3)
belongs to the class INS if and only if the attractor Af and the repeller Rf are separated by a 2-sphere.

Necessity. Suppose that a diffeomorphism f ∈ MS0(S3) belongs to the class INS . Since the
characteristic space ̂Vg of a source-sink diffeomorphism g : S

3 → S
3 is homeomorphic to S

2 × S
1 (see,

e.g., Theorem 2.2.1 in [6]), it follows by Lemma 1 that the characteristic space ̂Vf is homeomorphic to
S

2 × S
1. By Statement 2, the attractor Af and the repeller Rf are separated by a 2-sphere.

Sufficiency. Suppose that the attractor Af and the repeller Rf of a diffeomorphism f ∈ MS0(S3) are
separated by a 2-sphere. Then, by Statement 5, the nonwandering set of f contains a saddle point whose
one-dimensional separatrices l1 and l2 are contained in the basins of nodal points (sinks or sources)
a1 and a2, respectively; moreover, a1 �= a2, and at least one of the separatrices l1 and l2 is tame and
has the same period as the corresponding node. According to Statement 6, there exists a simple arc
with one bifurcation of saddle-node or period doubling type which joins the diffeomorphism f to some
diffeomorphism f ′ ∈ MS0(S3) for which the number of saddle orbits is smaller by one than that for f . By
Lemma 1, the characteristic space ̂Vf ′ is homeomorphic to S

2 × S
1, and by Statement 2, the attractor Af ′

and the repeller Rf ′ of the diffeomorphism f ′ are separated by a 2-sphere. Continuing, we construct the
required arc.

12A fundamental domain of the action of a map g on X is defined as a closed set Dg ⊂ X for which there exists a set eDg

with the following properties:

(1) cl( eDG) = DG;

(2) gk( eDG) ∩ eDG = ∅ for all k ∈ (Z \ {0});

(3)
S

k∈Z
gk( eDg) = X.
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5. AN EXAMPLE OF A DIFFEOMORPHISM f ∈ MS0(S3)
NOT BELONGING TO THE CLASS INS

Fig. 9. A realization of the diffeomorphism f .

In fact, such a diffeomorphism f is the connected sum of two Pixton diffeomorphisms, as shown in
Fig. 1. By virtue of Lemma 1 and Statement 2, to prove that such a diffeomorphism is not joined by a
simple arc with a source-sink diffeomorphism, it suffices to show that its characteristic space ̂Vf is not
homeomorphic to the manifold S

2 × S
1. To this end, note that f can be realized by using methods of [20]

from an abstract scheme S = (̂V , T s, T u) with the following structure. Consider a knot γ on the manifold
S

2 × S
1 (see Fig. 9, in which a development of γ is shown). We choose a tubular neighborhood V (γ)

of γ and attach two copies of the manifold S
2 × S

1 \ int V (γ) to each other along the boundary tori by
the identity map. The resulting manifold is ̂V , and the boundaries of a tubular neighborhood of the locus
of attachment are two-dimensional tori T s and T u. By construction, none of these tori bounds a solid
torus in ̂V , which means, according to Fact 3.2, that the manifold ̂V is not homeomorphic to S

2 × S
1.

Since ̂V is homeomorphic ̂Vf , the required assertion follows.
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