Journal of Mathematical Sciences, Vol. 100, No. 6, 2000

MAPPINGS OF BOUNDED VARIATION WITH VALUES IN
A METRIC SPACE: GENERALIZATIONS

V. V. Chistyakov UDC 517.988.52; 517.983.6

1. Introduction

The present paper addresses the theory of mappings f : I — X of bounded (®,0)-variation (see the
definition in Sec. 2) which are defined on a compact interval I of the real line R and take values in a metric
or normed space X. We prove the structural theorem for these mappings (Lemma 4 and Theorem 5) and
establish a compactness theorem in the space of mappings of bounded (®, o)-variation (Theorem 6), which
in the classical case (X = R, ®(p) = p, and o(t) = t) reduces to the well-known Helly selection principle
([13], Chap. 8, Sec. 4). We study properties of differentiability in the weak and strong senses for these
mappings (Theorem 7) and generalize criteria due to Riesz [14], Medvedev [11] and the author [6] for the
case of reflexive Banach space- and metric space-valued mappings (Corollaries 9 and 10). We show that any
absolutely continuous mapping f : I — X from I into a metric space X is a mapping of bounded (&, o)-
variation with an appropriately chosen function & such that ®(p)/p — oo as p — oo for any continuously
differentiable function ¢ : I — R such that ¢/ > 0 (Corollary 11). We prove an explicit formula for the
(P, o)-variation of a smooth mapping (Theorem 12). Finally, we show (Theorem 13) that any set-valued
mapping with compact graph from a compact interval of the real line into subsets of a Banach space X that
is of bounded (®,o)-variation with respect to the Hausdorff metric admits a regular selection of bounded
(®, o0)-variation with respect to the original norm in X (this result generalizes the previous results of the
author on the existence of regular selections of set-valued mappings of bounded variation [2]-[6]).

The short version of the main results of the present paper was presented at the International Conference
Dedicated to the 90th Anniversary of the Birth of L. S. Pontryagin, August, 31-September, 6, Moscow, 1998
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2. Definitions

In what follows, we assume that X and Y are metric spaces with respective distance functions dx(-,-)
and dy(-,-) that will, for the sake of brevity, be denoted by the same symbol d(-,-). Let M be the set of
all continuous convex functions ® : [0, 00[ — [0,00[ such that ®(p) = 0 if and only if p = 0. The set of all
functions ® € M with lim,_,. ®(p)/p = oo will be denoted by N. Suppose that o : I — Y is a fixed injective
mapping from the compact interval J = [a,b] C R (@ < b) into Y (later on, the assumptions on o will be
made more strict—see (4), (8) and (17)).

Given a mapping f : I — X, a partition T = {t,}12, of the interval I (i.e., a =y < t; < ... < tpoy <

= b), and a function & € M, we set

Vaolf, T Z@(—ﬁ—(?)—ﬂt—%) d(o(t), o (tior).

The supremum of Vg ,[f, T] with respect to all partitions T of the interval I will be denoted by Vs o(f, 1),
or simply by Vi ,(f) if I is clear, and will be called the (total) ®-variation of f with respect to o, or the

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya, Tematicheskie Obzory,
Vol. 61, Pontryagin Conference-2, Nonsmooth Analysis and Optimization, 1999.
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(®, 0)-variation of f on I. We denote by
BVeo(I; X)={f:1—= X | Voo(f) < oo}

the set of all mappings from I into X of bounded (®, ¢)-variation.

In the special case where ®(p) = p, Y = R, and o(t) = t, amapping f : I — X of bounded (@, o)-variation
will be called a mapping of bounded variation (in the classical sense of C.Jordan), its total (&, o)-variation
will be written as V,(f,I) or Vi(f), and the set of all these mappings will be denoted by BV;(; X).

A mapping f : I — X is said to be o-absolutely continuous if, for any € > 0, there exists §(¢) > 0 such that
fa<a <b <ay<b<...<a,<b, <band XL, d(o(h;),0(a;)) < d(¢), then 37, d(f(bs), f(as)) < e.
We set '
AC,(I; Xy ={f : I - X | f is o-absolutely continuous}.

If Y =R and o(t) = t, o-absolutely continuous mappings will simply be called absolutely continuous and the
set of all these mappings will be denoted, as usual, by AC(I; X).

A mapping f : E C R — X is called o-Lipschitzian if the following quantity, which is called the
o-Lipschitz constant of f, is finite:

aft), f(s))
d(o(t),a(s))

The set of all o-Lipschitzian mappings from £ into X is denoted by

Lipc,(f)zsup{ t,seE,t#s}.

CoUE; X) = {f: E— X | Lip,(f) < oo}.

In particular, if Y = R and o(t) = ¢, we call mappings from C%*(E; X) Lipschitzian (or Lipschitz continuous),
and we drop the subscript ¢ in the notation of Lip(f)—the Lipschitz constant of f—and of C*!(E; X).

In the sequel we are going to make use of Jensen’s inequalities for convex continuous functions ¢ € M,
which we now recall (e.g., [13], Chap. 10, Sec. 5):

(a) Jensen’s inequality for sums: if {a;}2.; and {z;}2, are nonnegative numbers and 37, o; > 0, then

Z?:l Q;T; Z?:x az’q’(l'i) .
v B el W

(b) Jensen’s integral inequality: if o : [a,b] — R and z : [a,b] — R are nonnegative Lebesgue integrable
functions and [° a(t)dt > 0, then (in the case where all the integrals exist) we have

" (fa” a(t)z(t) dt) _ R2a®)d(z(t)) dt
Pa@ydt /= fa@)d

(2)

3. Relations Between Functional Spaces

We begin with the following general proposition on embeddings of the above function spaces, which is
valid under the assumptions given above.

Proposition 1. (a) C(I; X) ¢ AC,(I; X).
(b) If 0 € BVi(I;Y), then COYI; X) C BVs,(I;X) C BVi(I; X) for all ® € M and

V g ?
WD) e -0 (el bS) fe BV (1), ®)
where I = [a,b] and & : [0,00[ — [0, 00| is the inverse function of .
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(c) If ® € N, then BVa o(I; X) € AC,(I; X)

(d) The inclusion AC,(I; X) C BVi(I; X) holds if o : I — Y is continuous and satisfies the condition
a,[s,t]) = d(o(t),0(s))

vt,sel, s<t. (4)
In particular, the above inclusion holds if o : I — R is continuous and strictly increasing. (Condition (4) will
be discussed below; see Remark 1.)

Proof.

(a) For f € C¥Y(I; X) and € > 0, we set §(¢) = ¢/ max{1,Lip,(f)} > 0. ffa < a; < b < ap < by
.. a, <b, <band T, d(a(h;),0(a;)) < d{c), then

n

S d(F(be), £(@) < Lipy(f) - 3. d(o(bs), 0(as)) < Lip, () - 5(¢) < €
=1 =1
It follows that f € AC,(I; X).

(b) 1. For any partition T = {¢;}%, of I and any f € C%!(I; X), we have
Vaolf T) < (Lipg(f)) - 3~ dlo(t), 0(ti-1)) < B(Lipy (1)) - Vo (o).
i=1

The first inclusion in (b} thus follows

Let f:1 — X be of bounded (®, ¢)-variation and T = {¢;}72, be a partition of I. Applying Jensen’s
inequality (1) for sums with

o = d(o(t), o(tir),  @= %H i=1,...m,
we obtain

YL d(f(t), fti1))
q’(z;': T

1

oy d(o(t), o(ti-1)) f Z (d(o’( )a(tz_l)))d(a(t’)’ (tiz1))
1

Vo {f, ).
T diot o) D
It follows, by taking the inverse function ®~!, that

f,T] Zd(f(t) f(tio1))

< {Z:ll d(U(ti),U(ti_l))} .@—1( Voo (f, 1)

Zi:] d(O (ti), U(ti—l))) (5)
-1 V »O'(fv I)
S Vl(o-Y I) ’ @ (d(—‘ Cé(b), O(a)))’

and it remains to take the supremum over all partitions T of I
(C)Leta§a1<b1§a2<b2

n

< an, < b, <b. Asin (5), for a mapping f € BV ,(I; X), we have
V o b
S d( (), £(a) < {Tidlo (), 0(e)} - @7 (s w0 ©)

Setting v = Vp »(f, I} and taking into account that lim,,., ®(p)/p = oo, we obtain

-1 — H —
tlug()t@ (v/t) = vphrn p/®(p) =0.
2702
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Hence, for any e > 0, there exists §(¢) > O such that ¢t ®~!(v/t) < e for 0 < t < §(e). Then inequality (6)
implies the following:

if Zd (b;),0(a:)) < é(g), then Zd x), fa;)) <,

and, therefore, f € AC,(I; X).

(d) Let f € AC,(I;X). Let € > 0 be fixed, and let 6(¢) > 0 be the number from the definition of
o-absolute continuity of f. Since & is uniformly continuous on I, there exists a partition T = {t;}, of ]
such that

do(t),o(ti-1)) < 8(¢) Vi=1,...,m.

Now, if T; = {t; ;}]%, is a partition of the closed interval I; = [t;_1, ], then by virtue of (4) and the additivity
of Vi(o, ), we have

Zd (ti3), 0 (tis-1)) = d(o(t:), o (timr)) < 8(e),

so that by the g-absolute continuity of f, it follows that

Zd w)f i,7- 1))<E

Since the partition T; of I; is arbitrary, we have V|(f,[;) < e for all i = 1,...,m, and it remains to use the
additivity property of V,(f, -):

Vi(f,I) = }:Vl(f,f) < me.

i=1

Thus, f € BWW(I; X).

Remark 1. Condition (4) does not, in fact, bring any generality as compared to the case where o is real-
valued. By this we mean that if 0 : [ — Y is injective and satisfies (4), then setting o,(¢) = Vi(o, [a,t]),
t € I, we find that o, : I — R is strictly increasing and bounded and satisfies for s, ¢t € I, s < ¢, the following
relations:

01(t) — o1(s) = Va(0, [a,1]) = Vi(o, [a, ]) = Vi(0, [, 2]) = d(o (), o(s))-

Hence, in the sequel, we will assume that
g:I - R is strictly increasing and bounded. (8)

However, to make sure that condition (4) naturally arises in different contexts, we are going to keep it for a
while (until after Theorem 5).

The embeddings in Proposition 1 are depicted in the following diagram:

COMI; X) ——ULQLBV%(I;X) _9€BVI__ By x)

contmuous

AC@ ( ]’) X) mcreasmg
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4. Properties of the (&, 0)-Variation

Proposition 2. Assume that & € M and o satisfies ({) or (8). Then, for any mapping f : I — X, we
have

(@) Vaolf, T) < Vaolf, TU{t}] f T is a partition of I and t € I\ T;

(b) Vool f,T1] < Vaolf, To] if Ty and T, are partitions of I and Ty C Ty;

(¢) Vool f, T) = Vo o|f, T for any partition T of I (so that Vp,(f, -) extends Vi ,[f, -] onto all subsets
of I);

(d) the quantity Vg ,(f,I) is equal to the supremum of Vo ,[f,T| taken over all partitions T of I such
that every T contains the same finite subset of points from I.

Proof. (a) Let T = {t;}7, and tx—1 < t < t; for some k € {1,...,m}. Setting

U; = Uy(f) = @(%)d(a(ti),a(ti_l)), i=1,...,m, (9)

we have

> ), (10)

t=k+1

Vaolf, T] = (k\; Ui) +Up + (

where we set the first or the last sum equal to zero if £ = 1 or k£ = m, respéctively. Applying Jensen’s
inequality (1) with oy = d(o(t), o(te-1)), a2 = d(o(ty), o(t)), and

5= W), fte1)) 2 = U (), f(8))
Pdlo(t),o(ten))” T d(o(te),o(2)’

and noting that, by (4), oy + oy = d(o(t), o(tk-1)), we find that
q,(d(f(t), f(te-1)) + d(f (), F(2))
d(a(t), o(tk-1)) + d(o(te), o(t))

d(7 (), F(tx-)
(T

Thus, (10) implies Va o[f, T1 < Vo o[ f, T U {t}].
(b) follows by induction from (a). Items (c¢) and (d) are consequences of (b).

Uk

IN

)d(a(tk),o(tk—l))

(f(te), £(2))

)d(a(t),a(tk_l)) + @(Z(U(m U(t))>d(a(tk), a(t)). (11)

Proposition 3. Let ® € M, and let o satisfy (4) or (8). For f:I=[a,b] = X, we have
(a) ifa < s <t < b, then Vo ,.(f,[s,%]) € Varo(f,[a,b]);
(b) ifa <t <b, then Vo o(f,[a,b]) = Vo o(f, [a,t]) + Vs .(f,{t,b]);
() tf fa:I—X,neN, and limp o d(fr(t), f(t)) =0 for allt € I, then

V@,U(fy I) S hﬂg}f\/@,d(fna I)'

Proof. By virtue of Proposition 2(b), assertion (a) is obvious.
(b) For a partition 7} of [a,t] and a partition T% of [t, ] we have:

Vool [, T1] + Vaolf, To] = Va o [f, T UT:] £ Ve (f,I).
Since T and T, are arbitrary, it follows that
Vo olf:la,t]) + Voo (f,[t, b)) < Voo l(f, 1)
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To prove the converse inequality, assume that T = {¢;}2, is a partition of I and that t,_; < ¢ < ¢ for
some k € {1,...,m}. According to (10) and (11) we have

Vaolf, T] < Vaolf, {t:}iZg U{tH + Vaolf, {t} U {t:}i4]
S V‘I’,d(f7 [a7 t]) —+ V@,o(.ﬂ [t7 b])

It remains to take into account the arbitrariness of 7.
(c) Fix a partition T' = {t;}72, of I. By the definition of Vs ,(f,,I) we have

Vo olfn, T) € Vao(fa,I) for all neN. (12)
Using notation (9), the continuity of d(-,-) and ®, and also the pointwise convergence of f, to f, we obtain
Vool fas TV = Vool £, T = Y _{Ui(fa) = Ui(/)} =0 as n— oo
=1
Taking the limit inferior in both sides of inequality (12) we arrive at the inequality
V@,a{fy T] < h}}l)lor.}f V@,a(fn: I)
for any partition T of I.

Remark 2. In Proposition 3, condition (4) was actually used only in (a) and (b).

5. A Structural Theorem

The following lemma holds for arbitrary injective mappings ¢ : I — Y. It presents examples of mappings
of bounded (@, ¢)-variation.

Lemma 4. Assume that ¢ : I = R, J = @(I) is the image of ¢, g € C%}(J; X), Lip(g) < 1, and define
f(@) =gle(t)), t € I.

(a) If p € COI(I;R), then f € C2X(I; X) and Lip,(f) < Lip, ().

(b) If e M and o€ BVs ;(I;R), then fe€ BVs ,(I; X) and Vg ,(f) <Va.(¢).

(c) If o € AC,(I;R), then f € AC,(I; X) and for any & > 0 the number §;(¢) > 0 from the definition
of the g-absolute continuity of f can be chosen to be equal to the one from the definition of the o-absolute
continuity of ¢ (in symbols, 65(-) = d,(-)).

Proof. (a) For all ¢, s € I, we have

d(f(t), f(s)) = d(g((t)), 9((5))) < Lip(g)lee(t) — ¢(s)|
< Lip(g) Lip,(¢)d(a(t),o(s)) < Lip,(p)d(o(t), o(s)).
(b) If T = {t;}7, is a partition of I, we obtain

d(o(t:), o(ti-1))

(c)Let e >0,a<a; <b <a,<by<...<a, <b, <b, and let T2, d(o(b;),0(a;)) < d,(c), where
d,(€) is the number from the definition of the o-absolute continuity of . We have

Veuls, T) < 38 (Linlo) Jalo(t), (t-1) < Vo).

n

S d(7(5e), £(as)) < Lip(g) 3 l(bs) — (as)] < Lip(g) ¢ < c.

i=1 =1
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Remark 3. In Lemma 4(b), the condition Lip(g) < 1 is particularly important.

It turns out that under condition (4) (or equivalently, under condition (8)), mappings f of bounded
variation are decomposable as f = g o ¢ in the same way as in Lemma 4. More precisely, we have the
following:

Theorem 5 (structural theorem). Let f € BVi(I;X). Seto(t) = Vi(f,[a,t]) ift € I, and let J = p(I).
Then ¢ : I — [0,00[ is a bounded nondecreasing function, and there ezists a mapping g € C%'(J; X) with
Lip(g) < 1 such that f(t) = g(p(t)) for allt € I.

Moreover, if o satisfies (4) or (8), then we have

(a) if f € COY(I; X), then ¢ € CO}(I;R) and Lip,(¢) = Lip,(f)

(b) if @€ M and f € BVg ,(I; X), then ¢ € BVy ,(I;R) and Vs ,(¢) = Vo . (f)

() if o is continuous and f € AC,(I; X), then ¢ € AC,(I;R) and 6,(-) = &;(-).

Proof. The first part of this theorem is proved in {2], Theorem 3.1 and Lemma 3.3. Taking into account
the embeddings in Proposition 1, we are going to verify that (a), (b), and (c) hold.
(a) If t, s € I, s < t, then for any partition T = {¢;}7, of [s, ] we have

Vilf, T] Zd (2:), f(t:-1)) < Lip,( f)Zd(O' ti-1))

< Lip,(f) - Vi(a, [s,]),
so that Vi(f,[s,t]) < Lip,(f) - Vi(o, [s,]). In view of (4), we obtain
lo(t) — @(s)l = Wi(f, [a,t]) = Va(f, [a, s]) = V(¥ [s, ¢])
< Lip,(f) - Va(a, [s,1]) = Lip,(f) - d(a (), o(s)).

It follows that Lip, (¢} < Lip,(f). The last inequality is, actually, an equality, as can be seen from Lemma 4(a).
(b) Let T = {t:}72, be a partition of I and I; = [t;—1,t], ¢ = 1,...,m. Applying (3), we have

Ve o(f, I;) )

(6 — o)l = Vo( ) < Vilon 1) - 8- (m

and hence,

VeoloT) = 3¢ (M0l ato(e), o(ti)

Vi(o, L) Vool 1)
<Z¢(d(a(t) o) (d(o@),a(t,-_m))d(”(tf)’f’(ti—l))-

Condition (4) and Proposition 3(b) then imply

Voole, T} < Zqu(f,I) = Voo (f, ).

It follows that Ve ,{w, ) < Vs ,(f,I). Now Lemma 4(b) and the relation f = g o ¢ with Lip{g) < 1 yield
Va,0(p) = Vo o(f)-

(c) By Proposition 1(d), the function I 3 ¢ =~ ©(t) = Vi(f,[a,t]) is well defined. Let € > 0, a < @y <
by <ay<b <...<a, <by, <b,and let T7_; d(o(b;),o(a;)) < df(e), where d7(¢) > 0 is the number from
the definition of the o-absolute continuity of f. For any i € {1,...,n} and any a; < Vi(f, [a;, b;]), there exists
a partition T; = {t,;}72, of [a;, b such that Vi[f,T;] > ;. Since

> 5" dlo(t,),o(ts5-1) = 3ot o) < 856),
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by virtue of (4) the o-absolute continuity of f implies

S S SHILT = 35 dlftas), fltg)) < o

Passing to the limit a; — V; ([, [a;, b;]), we obtain
Z lo(bs) — p(a;)| = Zvl(f, [ai,bi]) <g
=1 i=1

so that we can set d,(g) = d5(¢).
From now on, we assume that o satisfies (8). In this case, the main estimate (3) takes the form

V@,a(f: [a’v b])

V(f, [0, 8]) < (018) —o(@)) - &7 (TELTET), f € BlaolLiX). (13)

6. A Selection Principle

Theorem 6 (selection principle). Assume that K is ¢ compact subset of a metric space X, $ e M, o
satisfies (8), and F is an infinite family of continuous mappings from I into K such that

vi=sup Ve (f,I) < co. (14)
feF

Then there ezists a sequence of mappings {132, C F that converges pointwise on I as n — oo to a mapping
f € BV o(I; X) such that Ve o(f,I) < v.

If X is a Banach space, then mappings from F need not be continuous.

If® € N and o is continuous, we can assume that X is a complete metric space, a family F of mappings
from I into X is such that the sets {f(t) | f € F} are precompact in X for allt € I, and (14) holds. Then
the convergence of continuous mappings f, to f is uniform.

Proof. We are going to apply a variant of Helly’s selection principle from [2], Theorem 7.1. To this end, we
have to verify that the family {Vi(f,I) | f € F} is bounded. This is a consequence of (13):

v

(£, D) < (00) @) (o) Ve T

By the Helly selection principle (referred to above), a sequence of mappings {f,}52, C F converges pointwise
on I as n — oo to a mapping f € BV (I; X). Actually, f € BVs ,(I; X), since, by Proposition 3(c), we have
V@,a(fv-[) S liyﬂg}fvé,a(fm]) S v. (15)

Assume now that ® € N and o is continuous. If t, s € I, s < ¢, by the definition of V3 ,(f,I) and
from (13), we have for any f € F

A £5) < (01 = o(ee™ (L)
< (o(t) - o(s))qu(?‘_(t)_;_(}m). (16)

Since ® € N, (7) implies that for any ¢ > 0, there exists §(¢) = &(e,v) > 0 such that p®~!{v/p) < ¢
for all 0 < p < é§(e). Since o is continuous, there exists §;(¢) > 0 such that if 0 < ¢ — s < §;(¢), then
a(t) — o(s) < d(¢). This and (16) yield that sup,.»d(f(t), f(s)) < e for all 0 < t — s < d,(¢). Hence, we
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have shown that the family F is equicontinuous. By Arzela-Ascoli’s theorem, F is precompact in the space of
continuous mappings from [ into K equipped with the uniform metric. It follows that there exists a uniformly
convergent sequence of mappings {f,}3.; C F whose uniform limit we denote by f. From (15), we conclude
that f € BVs o(I; X).

If X is a Banach space, then we can apply a refined Helly’s selection principle from [3], Theorem 5.1, to
obtain what was desired.

Remark 4. If ¢ is continuous, a theorem similar to Theorem 6 with the uniform convergence assertion
holds for a family F C CO'(I; K) if supsc x Lip,(f) < oo, and for a family F C AC,(I; K), if we assume that
infser 8f(e) > O for all € > 0, where d;(¢) is the number from the definition of o-absolute continuity of f.

7. Differentiability Properties

If X is a normed vector space (over R or C), we denote by C'(I; X) the vector space of all continuously
differentiable mappings f whose strong derivative (with respect to the norm in X) evaluated at ¢ € I is denoted
by f'(t) € X. The following abbreviations are commonly used: a.e.=almost everywhere (with respect to the
Lebesgue measure on I), a.a. = almost all, etc.

From now on (except for Lemma 8), we will assume that (cf. (8))

o€ CYI;R) and o'(t) >0 for all tel. (17

Theorem 7. Let X be a reflerive Banach space with norm || - ||, I = [a,b], ® € M, o satisfy (17), and let
f € BV o(I; X). Then f is a.e. weakly differentiable on I (this is to be made precise in the proof), ils weak
derivative t — f*(t) is strongly measurable, and

fooe(Lly a < v i,

If, moreover, ® € N, then f € AC(I; X) is a.e. strongly differentiable on I, its strong derivative t — f'(t)
is strongly measurable, f can be written in the form

t
i) =f@+ [ frydr foral  tel (18)
(with the Bochner integral on the right hand side), and the following equality holds:
£ @)l
V. 19
boll1) = [l ()2 (2550 e (19)

On the other hand, if f € AC(I; X) and its strongly measurable strong derivative t — f'(t), defined a.e. on I,
is such that [°o'(t)®(||f/(t)||/a’(t)) dt < oo, then f € BVy  (I; X).

In order to prove Theorem 7, we need a lemma.

Lemma 8. If X is a normed vector space with the norm || - ||, I = [a,b], ® € M, o satisfies (8), and
f € BV (I, X), then for any 0 < h < b— a, we have

b_hO'(t + h) - O'(t) ”f(t + h) — f(t)” '
/ h q)( U(t + h) — O'(t) ) dt < V‘I),a'(fy [CL, b]) (20)

a

2708



Proof. The function ¢t = Vi ,(f,[a,t]) is nondecreasing and bounded on /, so that it is Riemann integrable
onI. Fix0 < h < b—a. Since f € BVi(I; X), it is continuous outside, possibly, a countable subset of J
(cf. [2], Theorem 4.1), and hence, the function [a,b — A] 3 ¢t > || f(t + &) — f(2)|| has the same continuity
properties. Using Proposition 3(b), we have

a(t+h)—a(t) o (IfE+R) - fDI 1
) ¢<aa+m—a@y>§EWJM#J+M)

(Voo [0, + ) = Vi (£, [a,1]):

Now it suffices to integrate this inequality with respect to t € [a,b— h]:

b=k b a +h
a/ (t+h2l (t)q,(II g:i}g_a(gll) (/h / )V% Sl
< %b—/i Ve o(f, [a,t]) dt < Vs (f,[a,b]).

Proof of Theorem 7. 1. Proposition 1(b) yields f € BV,(I; X). By Theorem 3.3 from [1], Chap. 1, Sec. 3,
the mapping f is a.e. weakly differentiable on I in the sense that there exists a mapping ¢ — f*(¢) (the weak
derivative of f), defined a.e. on I, such that for a.a. t € I we have

k) —

(a:",f-(t—i—}%——&—f'(t)) -0 as R3h—>0 Vz"eX’, (21)
where X* is the strong dual of X and (-, - ) is the pairing between X* and X; the weak derivative f* is strongly
measurable and belongs to the Banach space L'(I; X) of Bochner integrable mappings from I into X. Since
(f(t + h) — f(t))/h weakly converges to f*(t) as h — 0 for a.a. t € I by (21), it follows that

fit+h) = £(1)
=

Hf‘(t)“gliini(x))f‘ for aa tel.

Using Fatou’s lemma and applying Lemma 8, we obtain

b bh

' £ @l o a(t+h)—a(t) (Hf(t+h)—f(t)ll>

—— <
a/o(t)d)( (D) )dt—hin—glfa/ A ¢ SETh) = o) dt
< V@,a’(fv [a7 b]) (22)

2. Assume that ® € M. Then f € AC,(I; X) by Proposition 1(c), so that, since (17) holds, f € AC(I; X).
According to Theorem 3.4 from [1], Chap. 1, Sec. 3, the mapping f is a.e. strongly differentiable on I (with the
strong derivative f’ equal a.e. to the weak derivative f*), it can be written in the form (18), and (22) takes

place. Now, using (18) and Jensen’s integral inequality (2), we obtain the converse inequality for (22): if
T = {t;}, is a partition of I, then

Voolf, T ié(ﬂ{—%—:—gg—:gﬂ) (o(t:) — oftio1))

m i dO{IF N/ B dty
;q)(, O @N/o" ()} ) ,

< % t
= Jeiy o' (t)dt !

o(t)dt

@ & 7

3. If the last condition of the theorem is fulfilled, then calculations done at the end of step 2 prove that
f is of bounded (&, o)-variation.
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Remark 5. Without the reflexivity assumption on X one can find Lipschitz continuous mappingsf €
C%(I; X) that have no point of (weak or strong) differentiability on the interval ]a,b[, the interior of I (cf.
[10] or [4], Sec. 5).

The following corollary is a generalization of the criteria due to Riesz [14] (X =R, ®(p) = 07, ¢ > 1,
o(t) = t), Medvedev [11] (X =R, ® € N/, o(t) = t), and the author [5] (X a reflexive Banach space, & € N,
o(t) =t):

Corollary 9. If X is a reflezive Banach space, ® € N, and o satisfies (17), then

fE€BVe (I;X) <= feAC(;X) and /{ a'(t)q»(”j: :g;”)dt < .

In view of Theorem 5(b), Corollary 9 can be generalized for arbitrary metric spaces X as follows:

Corollary 10. Let X be a metric space, ® € N, o satisfy (17), f € BV(I; X), and ¢(t) = Vi(f,[a,t]),
tel. Then

f€ BV (I;X) &= ¢ AC(I;R) and /Ia’(t)i)(lijggl)dt < 00.

Corollary 11. If X is a metric space and ¢ satisfies (17), then

AC,(; X) = U BVs o(I; X).
deN

Proof. The inclusion O was obtained in Proposition 1(c). Let us show that for any f € AC,(I; X), there
exists a function $ € A depending on f such that f € BVs(I;X). If ) = Vi(f,{a,t]), t € I, then
@ € AC,(I;R) by Theorem 5(c), and since o € C*(I; R), we have ¢ € AC(I;R). Therefore, the derivative
¢’ € LY(I;R). By Corollary 10, it suffices to prove that [; o'(t)®(|¢'(£)|/o’(¢)) dt < oo. To this end, consider
thesets J, = {t € I | (n—-1)o’(t) < |¢'(t)] < no'(t)}, n € N. The sets J, are pairwise disjoint, U2, J. = [a,b],
and

ni:;n/h o'(t)dt < Lb [&'(t)] dt + (a(b) — o{a)) < .

Let {p.}3, be an increasing sequence of real numbers such that p; > 1, limye pn = o0, and

i Pnt /Jn o'(t) dt < oc. (23)

Setting
= T if 0<7<1,
(I)(T)—{pn if n<Tt<n+1,neN,

and ®(p) = ff &(r)dr, p > 0, we find that & € A (and moreover, Il)ir% &(p)/p = 0). Since ®(n) = fy &(7)dr <

0< 71 <00,

Prn -, we have by (23) that

/: o—’(t)cb(lfjggl) dt = i} /J a'(t)@(li:gil) dt

Sngl@(n)/ha(t)dtSgpnn/Jna(t)dt<oo,

which was to be proved.
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8. (®,0)-Variation of a Smooth Mapping

Theorem 12. Assume that X is a (not necessarily complete) normed vector space with the norm || - ||,
® € M, and o satisfies (17). Then, for any f € C}(I; X), formula (19) holds.

Proof. 1. To begin with, assume that ® € A. By Theorem 5(b), we know that Vs ,(f) = Vs ,(¢), where
o(t) = Vi(f,[a,1]), t € I. From [2], Theorem 8.7(b), it follows that ¢(t) = [! ||f'(7)|| dr for all t € I. Since R
is a reflexive Banach space, formula (19) yields

Voo(f) = Voolp) = / (t)<I> t)] dt _/ o' (£)® ”f'(t )t

However, the general case, & € M, ought to be considered separately.
2. If X is a Banach space, then the calculations in step 2 of the proof of Theorem 7 imply that

Voo (0 < [ a0l e (24)
Here the completeness of X was used for the existence of the X-valued integral fti*_l flit)de. If X is not
complete, we embed X into its completion and note that the norms of elements of X evaluated in X and in
the completion of X are the same. This proves that (24) is also valid without the completeness of X.

The converse inequality will immediately follow from (20) if we show that

b—h ,
lim /0(t+h)—o(t)¢<||f(t+h)—f(t)ll> / ,(t)(b(llf (t)]|)

h+0 J h ot +h) —o(b) (£)

We set Ay f(t) = (f(t+h) — f(t))/h and Apo(t) = (o(t + h) — o(t))/h. We have
\AhO'(t) . @(Ahf(t)) - g’(t) . q)( ”f/(t)”)'

Ana(t) o’(t)
< 180000 o528 - o (L5 |+ tavott - 01 - 2 (1530,
Hence,
b—h AnF(t b f(t
[ ot #(Lya— [o)-a( L) a
Anf(2) [FMQL
< / Bno (o) - Aho(t) - )|

O gy [ o LLON
+/|Aho(t)_g(t)| ( et )dt+b_/h o' ()2 (F o'() ) dt.

The three integrals on the right-hand side tend to zero as h — +0.

9. Regular Selections of Set-Valued Mappings

Now we turn to the existence of regular selections of set-valued mappings. First, a few definitions are in
order.
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If A and B are nonempty subsets of a metric space (X, d), the excess of A over B is defined by

e(A, B) = supdist(z, B), where dist(z, B) = inf d(z,y),
€A yeB

and the Hausdorff distance between A and B is defined by
D(A, B) = max {e(A, B), e(B, A)}.

The mapping D is a metric (called the Hausdorff metric) on the set of all nonempty closed bounded (and, in
particular, compact) subsets of X.

Given I = [a,b], a set-valued mapping from I into X is a mapping F : I — 2%, where 2X is the class of
all subsets of X, such that F(t) C X for all t € I. The set Gr(F) = {(t,z) € I x X |z € F(t)} is called the
graph of F and the set R(F) = U,e; F(t) is called the range of F.

If a set-valued mapping F : I — 2% = 2%\ {&} has closed bounded or compact images F(¢) for all ¢t € I,
then, using the Hausdorff metric D, we can introduce the notions of set-valued mappings of bounded (®, o)-
variation, o-absolutely continuous set-valued mappings, and o-Lipschitz set-valued mappings ($ € M and
o satisfies (17)) in a similar manner as was previously done for metric-space valued mappings. The respective
classes of set-valued mappings will be denoted by BVa ,(I;2%), AC,(I;2%), and Co'(I;2%) = CO(I;2%).
The total (®, o)-variation of ' : I — 2% will still be denoted by Vs ,(F, I) and the Lipschitz constant of F by
Lip(F). In view of Corollary 11, o-absolutely continuous mappings are of no interest any more, and hence,
we do not consider them in the sequel.

By a reqular selection of a set-valued mapping F : I — 2X we mean a (single-valued) mapping f: [ — X
such that f(t) € F(t) for all t € I. Moreover, the mapping f should have the same “regularity” properties
(relative to the variation) as the initial set-valued mapping F'—this is made precise in the following theorem:

Theorem 13 (existence of regular selections). Assume that X is a Banach space with the norm || - ||,
® € M, and o satisfies (17). If the graph Gr(F) of the set-valued mapping F € BVa(I;2%) is compact
(and hence, the images F(t) are compact subsets of X for allt € I), then, for any ty € I and x5 € F(ty),
there ezists a mapping f € BVs o(I; X), a regqular selection of F such that f(t) € F(t) at all points t € I
where F is continuous (the set of these points is at most countable), f(to) = zo, Vo o(f, 1) < Vs (F,I) and
Vi(£, 1) < Vo(F, 1),

Moreover, if F is continuous or ® € N, then the selection f is continuous as well and f(t) € F(t) for
alltel.

Proof. 1. For each n € N, let T}, = {7}, be a partition of the closed interval I = [a,b] (i.e., a = t§ < 1] <
... <t <ttt =b) with the properties

(i) to € Ty, ie., to = ti,, for some k(n) € {0,1, ...,n};
(i) if MTo) = maxi<icn(t? — t7.1), then lim, o0 A(T5) = 0.

First we define elements z7 € F(t7),n € N,i=0,1,...,n, inductively as follows. To begin with, assume that
n&€Nanda <ty <b.

(a) Put %, = zo.

(b) If i € {1,...,k(n)} and if 27 € F(t7) is already chosen, pick an element 2} , € F(¢7_,) such that
ll27 — 2yl = dist(27, F(5-1))-

(¢) Ifie {k(n)+1,...,n}and if 27, € F(t},) is already chosen, pick an element z} € F(t}) such that
lzfy — 27| = dist(z].,, F(27))-
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Now, if to = a, so that k(n) = 0, then we use only (a) and (c) to define £}, and if o = b, so that k(n) = n,
then we define z} according to (a) and (b).
We define a sequence of mappings f,, : I — X, n € N, as follows:

o(t) = o(ty,)
a(t}) = o(ti)

Note that f,(t7) = 27, fa(t?,) = 7, and, in particular, f,(to) = 2o for all n € N. Note also that from (b)
and (c) and the definition of D, we have :

fat) =iy (z7 —ziy), tefti, 8], i=1,...,n (25)

lof — 2l < D(F(E), F(¢-1)), neN, i=1..,n (26)

All mappings f, : I -+ X are continuous, and the restriction of f, to every closed interval [t7_,,27] is
continuously differentiable (see (17)). Taking into account that

a'(t)
o(tf) —o(t1)

and applying Proposition 3(b), Theorem 12, and inequality (26}, we find that

fat) = (af -2, i LSt

Ve o (fr, 1) ZVq,a Ty [E21, 81 )_Z/ I(t)q)(“fll((tt))”)

=1
- % oo

n

- zé(%zzgi)) (o(t) = o(61)

=1

F 7
< oA o) - o)

= Voo lF, T3] < Vao(F,I) <00 YneN (27)

By Proposition 1(b), the mapping F is of bounded Jordan variation, and hence, the calculations above with
®(p) = p and o(t) = t also provide the following estimate:

Vi(fn, 1) SVI(F,I) for all neN. (28)

2. Assume that ® € M. Let us show that the sequence {f.(t)}5, is precompact in X for all ¢ € I.
To this end, fix t € I. For any n € N, there exists a number i(n) € {1, ...,n} depending also on ¢ such
that ],,_, <t < tf,,. Condition (ii) above implies that the sequences £, , and ¢, tend to ¢ as n — oo.

From (25), (26), and the (absolute) continuity of F°, we have

I o SO R
1 fa(t) = 2imll = (E) — 7 iy 1)” )~ Timy-1ll
< D(F(tin), F(tin-1)) =0 as n— oo (29)

Since the graph of F' is compact and (t]i,, Zi(,)) € Gr(F), there exists a subsequence of {(Ey Timy ) 1o

(which will be denoted by the same symbol as the sequence itself) that converges to a point (7, z) € Gr(F) as
n — co. From lim, e t,, = t, it follows that 7 = ¢, so that z € F (t). At the same time, lim, o0 23,y =
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in X. Relation {29) now implies that lim,_ fn(t) = z in X, where z € F(¢); this proves the precompactness
of the sequence {f,(t)}2,,.

Now we can apply a version of the selection principle (Theorem 6) with & € A/ there exists a subsequence
of { fn}32; (which will be denoted by the same symbol as well) which, uniformly on I, converges to a mapping

n=]

f € BV o(I; X). Clearly, f(to) = zo, and Proposition 3(c), (27), and (28) yield
Vo olf, 1) Voo (F,I) and  W(f,I) S V(F). (30)

It remains to show that f(t) € F(t) for all t € I. For a fixed t, from the argument on the precompactness
above we have that 3z € F(t) such that lim, ,o, fo(f) = z in X. From the definition of f, we find that
lim, o0 fa(t) = f(t) in X, so that f(t) = z € F(t). Therefore, we are through with the case & € N.

3. Assume that ® € M and F € BV, ,(I;2%) is continuous. We are going to apply the following result
due to Mordukhovich [12], Supplement, Theorem 1.8: if, under the conditions of Theorem 13, the set-valued
mapping G = F € C%'(I;2%), then 3g € C%(I; X) such that g(t) € G(t) for all t € I, g(to) = zo, and
Lip(g) < Lip(G).

According to Theorem 5(b), F' can be decomposed as F = G o ¢, where the continuous function ¢(t) =
Vi(F,[a,t]), t € I, belongs to BV ,(I;R), the set-valued mapping G : J = ¢(I) — 2% belongs to C%!(J; 2%),
Lip(G) <1, and Vi ,(¢, I) = Vs ,(F, I). Since the graph of F' is compact, the graph of G is compact as well.
Noting that zo € F (o) = G(70), where 75 = ¢(to), we can apply the result cited above: 3g € C®*(J; X) such
that g(70) = xo, g(7) € G(7) for all 7 € J and Lip(g) < Lip(G) < 1. Now, set f = go . Lemma 4(b) gives
that f € BV, (I; X) is continuous and

Vfb,u(f, I) < VCI’,G(‘% I) = V4>,0'(F7 I)

Similarly, Vi(f,I) < Vi(F,I). Finally, we have f(to) = g(@(to)) = g(70) = zo and f(t) = g(p(t)) € G(p(t)) =
F(tyforallte I.

4. Consider the general case where ® € M and F € BV} ,(I; 2%). We start by arguing as in step 1 down
to inequality (28). It is seen from (25) that all the images f,(I) are contained in the closed convex hull o R(F')
of the range R(F), and since the graph Gr(F) is compact in I x X, we have that R(F) is compact in X,
and hence, by Lemma 6.2 in [4], the set TOR(F) is compact in X as well. Applying the selection principle
(Theorem 6) to the sequence F = {f,}32;, we find a subsequence of {f,}52, (denoted by the same symbol)
which converges pointwise on I to a mapping f € BVy ,(I; X). Clearly, f(ts) = %o, and inequalities (30) hold.
If ¢t € I is a point of continuity of F, then f(¢) € F(¢): in fact, by (29), from the precompactness argument
of step 2 we have limp—e fn{t) = z € F(t), and lim,_, fr(t) = f(t) holds by the construction. We conclude
that f(t) = z € F(t). This ends the proof.

10. Concluding Remarks

Theorem 13 extends the existence results for selections of non-convex valued set-valued mappings of
bounded Jordan variation presented in [8, 9] and [15] in the context of a finite-dimensional space X (obtaining
only continuous selections) and in (2, 3] (®(p) = p, o(t) =), [4] (B(p) = 0%, ¢ > 1, 0(t) =t), [5] (P € N,
o(t) =t), and [6] (P € M, o(t) =t), where X is a general Banach space. Theorem 13 can be generalized to
the case where [ is a bounded or unbounded, open or half-open interval of the real line R.
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