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1 Introduction

For the class of ordinally convex NTU games with nonlevel characteristic function sets the
ESOS set consists of the unique payoff vector belonging to the core [?] The axioms are
the following: the consistency à la Hart–Mas-Colell and the definition of the egalitarian
solution for the class of two-person games. Such system of axioms is generally accepted.
However, in the most similar characterizations the solution for two-person games has some
axiomatization itself.

The goal of this paper is to give an axiomatic characterization of the egalitarian bar-
gaining solution for bargaining problems whose weak Pareto boundary of the individual
rational set coincides with its Pareto boundary. Since two-person bargaining problems
coincides with two-person NTU games, we obtain the needed axiomatization of the egali-
tarian solution for two-person games.

Note that here the term ”egalitarian solution” will be used in the sense other than
already accepted. In fact, the known bargaining and NTU egalitarian solutions equalize
the surplus, not the payoffs themselves. Thus, it seems that such a name fits more to the
solution equalizing payoffs of the players up to some conditions.

The paper is organized as follows. We begin with bargaining solutions. In Section2
we define a class of bargaining problems and give a new axiomatic characterization for
the lexicographic egalitarian solution (LEG). In Section 3 we consider a class of ordinally
convex NTU games and define the LEG solution for this class. Then, by unifying the
axiomatization LEG for bargaining problems and the extension of Dutta’s theorem [?] for
convex TU games to the ordinally convex NTU games [?] we obtain the main result – the
new axiomatization of the LEG solution for the class of ordinally convex NTU games.
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2 Lexicographic egalitarian bargaining solution

2.1 Definitions and auxilitary results

Let N be an arbitrary finite set. We denote by n = |N | the number of elements in N,
and let RN be the n-dimensional Euclidian space. RN

+ , RN
++ denote the nonnegative and

strictly positive orthant of RN , respectively. Given x,y∈ RN , we write x=y, if x-y∈ RN
+ ,

x¿y, if x-∈ RN
++, and x≥y, if x=y, and x6=y. If x∈ RN , then for N ′ ⊂ N by xN ′ we denote

the projection of x on the space RN ′
.

A bargaining problem (BP) with a finite set N of agents is a pair B = 〈X, d〉, where
X ⊂ RN is a bargaining set. A point x ∈ X represents utility levels that can be reached
by the agents. The point d ∈ X is a disagreement or status quo point. It represents the
utility levels that the players will end up if they do not agree on another point. We will
denote by ΣN

d the class of BP with the disagreement point d, for which
1) X is a upper-bounded and closed subset of RN ;
2) there a point x ∈ X, x > d;
3) X is d-comprehensive, i.e. x ∈ X, d ≤ y ≤ x imply y ∈ X.
Let Σ =

⋃
P⊂N ΣP be the collection of BP with the zero disagreement point. Thus,

each class ΣP is determined by a collection of feasible bargaining sets satisfying conditions
1)–3):

ΣP = {X ⊂ RP
+ | 0 ∈ X}.

In the sequel we denote the d-comprehensive hull of X by ch(X).
4) X has a nonlevel Pareto boundary, i.e. its weak Pareto boundary coincides with the

Pareto boundary. We denote it by ∂X.

A bargaining solution F defined on ΣN
d is a mapping which associates with each BP

〈X, d〉 ∈ ΣN
d a unique point F (X, d) ∈ X interpreted as a prediction, or a recommended

outcome for that problem.
Give well-known axioms describing properties of bargaining solutions for a fixed pop-

ulation set N.

Pareto-optimality (PO). F (X, d) ∈ ∂X.
Individual rationality (IR). F (X, d) ∈ IR(X, d) = {x ∈ X |x ≥ d}.
Strict individual rationality (SIR). F (X, d) ∈ {x ∈ X | x > d}.
Independence of non-individually rational alternatives (INIR). F (X, d) = F (IR(X, d),d).
Anonymity (ANO). For each permutation π : N → N F (πX, πd) = πF (X, d), where
πX = {y ∈ X | y = πx, x ∈ X}, πx = (xπ1, xπ2 . . . , xπn).
Independence of Irrelevant Alternatives (IIA). If X ′ ⊂ X and F (X, d) ∈ X ′, then
F (X ′,d) = F (X, d).
Continuity (CONT). If Xm →m→∞ X in the Hausdorff topology, dm →m→∞ d, and
〈Xm,d〉,∈ ΣN

dm ,∀m, 〈X, d〉 ∈ ΣN
d 〉, then F (Xm,dm) → F (X, d).

Weak Continuity (WCONT) requires that the property Continuity given above would
hold only if limm→∞ F (Xm,dm) ∈ ∂X.
Independence of Identical Ordinal Transformations (IORD). For every monoton-
ically increasing function f : R → R f(F (X, d)) = F (f(X), f(d)), where for each x ∈ X
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f(x) = (f(x1), . . . , f(xn)),, f(X) = {y ∈ RN | y = f(x), x ∈ X}. Note that if 〈X, d〉 ∈ ΣN
d ,

then (f(X), f(d)) ∈ ΣN
f(d).

Note that the most bargaining solutions satisfy INIR. This is because of this axiom
follows from IR and IIA, and the last axioms are well-used. Thus, if a solution F satisfies
INIR, or IR+IIA, then without loss of generality we can consider the feasible sets IR(X)
in the definition of a class of BP instead of X.

The last property deals with variable population sets. Let N be an arbitrary finite set.
Consider the collection of bargaining problems

⋃
N ′⊂N

⋃
d ΣN ′

d , and let F be a BS for this
class
Consistency (CONS) if x= F (X, d, where X ⊂ RN , then for each N ′ ⊂ N xN ′ =
F (X|xN\N′ ,dN ′ , where X|xN\N′ ⊂ RN ′

is the section of X by xi, i ∈ N \N ′.

Bilateral consistency (BCONS) means the fulfilment of the consistency property only for
|N ′| = 2.

Consistency (bilateral consistency) says that a utility allocation is declares as a fiar co-
promise only if it is fair for any subset (two-person set) of agents involved in the bargaining
problem.

The Lexicographic egalitarian solution (LEG) for a class ΣN
d prescribies for each BP

〈X, d〉 ∈ ΣN
d the vector LEG(X, d) lexicographically maximal in the set IR(X, d) :

LEG(X, d) = arg max
x∈IR(X,d)

�lexmin . (1)

Let us show that the LEG is well-defined (it is not evident, because we did not supposed
convexity of bargaining sets X.)

Lemma 1 Given a BP (X, d) ∈ ΣN
d , where X satisfies the additional property 4),

x = LEG(X, d) ⇐⇒ x = (a1, . . . , a1︸ ︷︷ ︸
T1

, a2, . . . , a2,︸ ︷︷ ︸
T2

. . . am . . . , am︸ ︷︷ ︸
Tm

), (2)

where
a1 = max{max

i∈N
di,max{t | teN ∈ X}}, eN ∈ RN is the unit vector; (3)

aj = max{ max
j∈N\Rj−1

dj ,max{t | teN\Rj−1
∈ X|(a1eT1

,a2eT2
,...,aj−1eTj−1

)}}, j = 2, . . . ,m, (4)

where Rl =
⋃l

i=1 Ti, l = 1, . . . ,m.

Proof.
Note that conditions 1)–3) imply that all maximums in (??) and (??) are attained.
Prove the inequalities a1 ≥ a2 ≥ . . . ≥ am. If m ≥ 2, then by (??) and (??) the numbers

a1, . . . , am−1 are equal to some dj , and they are placed in a decreasing manner. If am = dj ,
then the claim has been proved. Let am = max{t | teTm ∈ X|(a1eT1

,...,am−1eTm−1
}. This

means that am < ak, k = 1, . . . ,m− 1. In fact, in the contrary, from the inequality am >
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am−1 the relation (a1, ...a2, ...am−1, am) ∈ X by property 4) would imply the existence a,′

am > a′ > am−1 such that x′ ∈ X, where

x′i =

{
xi, if i /∈ Tm−1, Tm,

a′, if i ∈ Tm−1 ∪ Tm.

However, by the definition of x in the right-hand side of (??) such a vector x′ cannot
belong to X.

Now let x satisfy the right-hand side of (??), and y= LEG(X, d). Then y�lexmin x.
If m = 1, then xi = xj = a1 for all i, j ∈ N and the vector x Lorenz (and, hence,
lexicographically) dominates all the vectors in X, hence, y = x.

Let m > 1. Then by Individual Rationality of y (??) yi ≥ ak = di = xi for all
i ∈ N \ Tm, i ∈ Tk. Therefore, by Pareto-optimality of x and y the inequality y 6= x
implies the existence of j ∈ N \ Tm such that yj < am = xj = mini∈N xi, and the relation
y �lexmin x is wrong. Therefore, LEG(X, d) =x.

Recall the result of Lensberg which we will use further. Note that the author considered
collective choice problems and thier solutions. Such problems are defined by bargaining
sets placed in the nonnegative orthants of Euclidean spaces. The zero point played a role
of a disagreement point, so we could reformulate his result in terms of bargaining problems
and bargaining solutions.

Lemma (Lensberg 1987).Let Σ0 be the class of BP with the zero disagreement point,
whose bargaining sets X are convex and satisfy 1)–3). If a bargaining solution F for this
class satisfies PO, CONT and CONS, then it satisfies IIA.

In the next subsection we give a modification of this Lemma (Lemma ??), where we
consider the class Σ =

⋃
P⊂N ΣP , and the result is established for the class Σ2 of two-

person bargaining problems.

2.2 Two-person bargaining problems

These are the simplest bargaining problems. However, they are of a big importance,
because all the characterizations of BS and the solutions of the NTU games as well with
the help of consistency, reduce the initial problem to that with two agents or players. Then
the characterizations of BS for two-person problems can help for the same problems and for
the characterization of solutions for NTU games with arbitrary finite sets of agents/players.

In this subsection we use the following notation:
Denote the class of bargaining problems with the set of agents P, disagreement point

d, and whose bargaining sets satisfy properties 1)–3) and 5) by ΣP
d , and ΣP =

⋃
d∈RP ,

and for |P | = 2 ΣP = Σ2.
Let (X, d) ∈ Σ2. Denote

x̄i = max
x=(x1,x2)∈X

xi, d′i = max
(x̄j ,xi)∈X

xi, i = 1, 2.

Xz = {(x1, x2) ∈ X |x1 ≥ z}, Xz = {(x1, x2) |x2 ≤ z}, Xy
z = {(x1, x2) ∈ X |x1 ≤ z, x2 ≤ y}.
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Instead of property 4) for two-person bargaining probelms we consider a weaker con-
dition:
5) For two-peson bargaining problems the Pareto boundary of X, ∂X, is a connected set.

The reason of consideration property 5) instead of 4) is the application of the IIA
axiom that can lead to bargaining sets with pieces of weak Pareto boundary.

There is a characterization of the LEG for the classes Σ2
d with disagreement points

with equal coordinates d = (d, . . . , d) following from Nielsen’s result in [?]:

heorem 1 (Nielsen 1983) The LEG is the unique bargaining solution for the class Σ2
0

satisfying PO, SIR, IIA and IORD.

Note that on the class Σ2
0 the LEG does satisfy SIR. However, for arbitrary d > 0 this

axiom does not hold. This is the reason of taking into consideration Axiom WCONT.

Lemma 2 Let Σ =
⋃

P⊂N ΣP be the class of BP, whose bargaining sets satisfy 1)–3) and
5).If F is a bargaining solution for the class Σ satisfies PO, BCONS, and WCONT, then
for the class Σ2 F satisfies IIA.

Proof. The proof follows that of Lemma 1 in [?]. In fact, this proof does not use convexity
of BS. Moreover, it does not depend on the choice of zero as the disagreement point.

Repeat the proof replacing CONT by WCONT taking into account the properties of the
bargaining sets. Let F be a BS for Σ satisfying PO, BCONT, and WCONS. P = {i, j} and
X, X ′ ∈ Σ2

d, X
′ ⊂ X, y = F (X, d) ∈ X ′. We must show that y = F (X ′,d) also. Assume

first that there is a neighborhood U of y such that

X ′ ∩ U = X ∩ U. (5)

Case 1. The weak Pareto boundary of X coincides with its Pareto boundary.
Let now k be an agent k 6= {i, j}, and let Q = {i, j, k}. Define X1 = X ′ × {ek}

and for all ε ≥ 0 let Cε be the cone with vertex (1 + ε)ek spanned by X1. Define T ε =
ch(Cε)∩ ch(S × {ek}) and U1 = U × {ek}, and note that for all ε ≥ 0, U1 ∩X1 ⊂ T ε and
T ε ∈ ΣQ.

Let z = F (T 0). We claim that z = (y, 1). Note that whatever z is, the projection T0|zk

of T0 on RP w.r.t. zk equals X, and by consistency of F zP = y. Since (y, 1) is the unique
Pareto optimal point of T0 whose projection of RP is y, we conclude by PO that z = (y, 1).

Consider now zε = (zε
P , zε

k) = F (T ε) ∈ ∂T ε. Let zε → ξ (by compactness of IR(X) we
can always choose a convergent subsequence from zε, and for simplicity of notation let it
be the sequence xε itself). Then by CONS and PO of F zε

P = F (T ε|zε
k
) ∈ ∂T ε|zε

k
. Since

T ε → T 0, T ε|zε
k
→ X ′, and ξP = limε→0 zε

P ∈ ∂X by the assumption of Case 1. Therefore,
by WCONT zε

P → zP = y. It is clear that zε
k → 1 implying ξ = z. In fact, in the contrary

zε
k < 1 for sufficiently small ε, and in this case zε /∈ ∂T ε.
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By PO there exists ε̄ > 0 such that zε ∈ U1 for all ε ∈ [0, ε̄]. But then zε = z for all
ε ∈ (0, ε̄) by the fact that zε → ε in U1 as ε → 0, which implies that F (X ′) = zP = y, the
desired conclusion.
Case 2. There are points on the weak Pareto boundary of X not belonging to ∂X. Since
the Pareto boundary ∂X is connected, these points belong to one or both intervals A1 =
[d1, a1]× x̄2, or A2 = x̄1× [d2, a2] for some a1, a2. Then T ε ∩ {xi = x̄i} /∈ ∂T ε, i = 1, 2 and
u ∈ ∂T ε −→ ui ≥ ai, i = 1, 2. Therefore, lim zε ∈ ∂T 0 and by WCONT limε→0 zε = z.
Further the proof coincide with that of Case 1.

To complete the proof, it suffices to observe that if X ′ does not satisfy condition (??)
above, then it can be approximated by a sequence of elements from ΣP that does. WCONT
may then be applied once more to conclude that F (S′) = F (S) in this case also.

Lemma 3 Let (X, d) ∈ Σ2 be an arbitrary BP with d2 > d′1 > d1, F be a bargaining
solution for Σ2 satisfying PO, IIA, ORD, and WCONT. Then F (X, d) = F (X, d′), where
d′ = (d′1, d2).

Proof. Let dn → d′1, dn > d1 be an arbitrary consequence, fn : R+ → R+ be continuous
increasing functions such that fn(x) → −∞ as x → −∞,

fn(x) =


arbitrary, if x < d1,

dn + (x−d1)(d′1−d1)
d′1−d1

, if x ∈ [d1, d
′
1],

x, if x > d′1.

Then for every y = (y1, y2) ∈ ∂IR(X) fn(y) = y for all n and by PO and IORD

F (fn(X), fn(d) = fn(F (X, d)) = F (X, d). (6)

It is clear that fn(X) = X, fn(d) → d′ as n →∞, and by WCONT and(??)

F (X, d) = F (X, d′).

orollary 1 Let for a BP (X, d) d′2 > d2 ≥ x̄′1. Then F (X, d) = F (X, (d1, d
′
2)).

The proof of the Corollary is the same as that of Lemma 3.
The next Theorem characterizing the Lexicographic Egalitarian solution for this class

is the extension of the similar result (Roth 1979, Nielsen 1983) to the class Σ2
0. The unique

axiom – WCONT – is neccesary to be added:

heorem 2 The lexicographic egalitarian solution is the only solution to the class Σ2 to
satisfy PO, IR, ANO, IORD, IIA, and WCONT.
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Proof. The proof is divided for several cases depending on the mutual location of bar-
gaining sets and disagreement points.

Let (X, d) ∈ Σ2 be an arbitrary BP. By condition 5) the Pareto boundary ∂X is
determined by a continuous decreasing function

ϕ : [d′1, x̄1] → [x̄2, d
′
2] for some d′i ≥ di, i = 1, 2. (7)

By ANO it suffices to consider only the case d1 ≤ d2.

1. d1 = d2 = d. From the proof of Theorem ?? it follows that if a bargaiing solution
F satisfies all the axioms stated in the Theorem except for SIR, than two solution satisfy
other axioms: they are LEG and

F1(X, d) =


(d′1, ϕ(d′1), if x2 ≥ x1 for all x ∈ ∂X,
(d2, ϕ(d2)), if x1 ≥ x2 for all x ∈ ∂X,

LEG(X, d) otherwise.

Let us show that the solution F1 does not satisfy WCONT. Consider a sequence Xn →
X, where in BSs Xn there are points xn with x1 < x2 and points yn with y1 > y2,
and in the BS X x2 ≥ x1 for all x ∈ X and LEG(X, d) = (x, x). Then F1(Xn,d) =
LEG(Xn,d) = (xn, xn) for some xn > d and xn → x as n → ∞. By WCONT we obtain
F1(X, d) = LEG(X, d) 6= F1(X, d).

Before we consider other cases note that by Lemma 3 without loss of generality we
may suppose that d1 = d′1. For simplicity of notation in the sequel we will uppose this
equality holds.

2. x̄1 ≤ d2. In this case the domains of individual utilities [d1, x̄1], [d2, x̄2] may have at
most the unique common point (x̄1, x̄1) when x̄1 = d2 or they do not intersect. Consider an
arbitrary increasing function f1 : [d1, x̄1] → [d1, x̄1] having only two fixed points f1(d1) =
d1, f1(x̄1) = x̄1. Therefore, the function f2 = ϕ(f1(ϕ−1)) : [d2, x̄2] → [d2, x̄2] is increasing
and has the fixed points f2(d2) = d2, f2(x̄2) = x̄2. Define the increasing function f : R+ →
R+ by

f(x) =


x, if x /∈ (d1, x̄1) ∪ (d2, x̄2),
f1(x), if x ∈ [d1, x̄1],
f2(x), if x ∈ [d2, x̄2].

Then f(X) = X, f(d) = d, and by IORD F (X, d) = f(F (X, d)). Therefore F (X, d) may
only be equal to extreme points of ∂X : F (X, d) = (x̄1, d

′
2) = LEG(X, d) or F (X, d) =

(d1, x̄2).
The next step is to show the unique possibility: F (X, d) = LEG(X, d). Let a BP

(X, d) satisfy the conditions of Case 2. d1 = (d1, d1),dy = (d1, y) for y ∈ [d1, d2].
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Fig.1
Consider the BP (X, d1), This BP satisfies Case 1, F (X, d1) = LEG(X, d1). The

BPs (X, dy) for y ∈ [x̄1, d2] satisfy the conditions of Case 2, so for these y F (X, dy) =
LEG(X, dy) or F (X, dy) = (d′1, x̄2).

Consider now the BPs (X, dy) for y ∈ [d1, x̄1]. By the proof similar to that in Case 2
we obtain that either F (X, dy) = (d′1, x̄2), or F1(X, dy) ∈ [y, x̄1]. In the last case by IIA

F (X, dy) = F (Xϕ(y),dy), (8)

and by Lemma 3
F (Xϕ(y),dy) = F (X, y) (9)

where y = (y, y) The BP (X, y) satisfies Case 1, and

F (X, y) = LEG(X, y). (10)

Therefore, equalities (??)–(??) imply

F (X, dy) = LEG(X, dy) = (x̄1, d
′
2) = LEG(X, d) for y ∈ [d1, x̄1]. (11)

Thus, for y = x̄1 we have equality (??), and for y ∈ (x̄1, d2] except for equality (??)
there may be the possibility F (Xdy ,dy) = (d1, x̄2). However, by WCONT the last equality
is impossible, and since for y = d2 we have dy = d, we have proved the required uniqueness:
F (X, d) = LEG(X, d).

3. d1 < d2 < x̄1.
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3a. x̄2 ≥ x̄1.

This case can be divided more on two subcases:
3a1. a1 = ϕ−1(x̄1) ≤ d2.

-
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a1d′1 d2 x̄2x̄1

Fig.2

Similar to Case 2 we can consider an arbitrary increasing function f1 mapping the
interval [d1, a1] onto itself such than f1(d1) = d1, f1(a1) = a1, and f2 = ϕ(f1(ϕ−1)) maps
the interval [x̄1, x̄2] onto itself. Then the function

f(x) =


f1(x) for x ∈ [d1, a1],
f2(x), for x ∈ [x̄1, x̄2],
x, for other x

maps X onto itself, and by IORD we obtain that F1(X, d) /∈ (d1, a1). Therefore, either

F (X, d) = (d1, x̄2), (12)

or
F1(X, d) ∈ [a1, x̄1]. (13)

If (??) holds, then by IIA F (X, d) = F (Xd1,a1,,d), where

Xd1,a1 = {(x1, x2) ∈ X | d1 ≤ x1 ≤ a1}.

The BP (Xa1 ,d) satisfies Case 2, hence,

F (X, d) = F (Xd,a1 ,d) = LEG(Xa1 ,d),

that contradicts (??).
Therefore, relation (??) takes place. Denote d = (a1, d2). By IIA we have

F (X, d) = F (X x̄1 ,d′), (14)

and by Lemma ??
F (X̄ x̄1 ,d) = F (X x̄1 , d). (15)
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Further, either
F1(X x̄1 , d) ∈ [a1, d2), (16)

or
F1(X x̄1 , d) ∈ [d2, x̄1]. (17)

In the first case (??) by IIA
F (X x̄1 , d) = F (Xd2 , d).

The BP (Xd2 , d) satisfies Case 2, hence F (Xd2 , d) = LEG(Xd2 , d), that contradicts (??),
Therefore, relation (??) holds. Then, similarly to constructions above we obtain that

F (X x̄1 , d) = F (X x̄1 ,d2) = LEG(X x̄1 ,d2) = LEG(X, d), (18)

and equalities (??),(??, and (??), imply

F (X, d) = LEG(X, d).

3a2. a1 = ϕ−1(x̄1) > d2.
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Since [d1, d2]∩ [x̄1, x̄2] = ∅, we can, as in Case 2, take an arbitrary increasing function

f1 : [d1, d2] → [d1, d2] with fixed ends f1(d1) = d1, f1(d2) = d2, and then define the function
f : R+ → R+ as follows:

f(x) =


x, if x /∈ (d1, d2) ∪ (ϕ(d2), x̄′2),
f1(x), if x ∈ [d1, d2],
ϕ(f1(ϕ−1)), if x ∈ [ϕ(d2), x̄′2].

Then by IORD f(F (X, d)) = F (f(X),d), implying F1(X, d) /∈ (d1, d2). Therefore, either

F (X, d) = (d1, x̄2), (19)
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or
F1(X, d) ≥ d2. (20)

Let (??) hold. Consider an arbitrary continuous decreasing function φ : [d1, d2] →
[d2, x̄2], φ(d1) = x̄2, φ(d2) = d2 such that for all such that for all x ∈ [d1, d2] φ(x) ≤ ϕ(x).
Then by IIA

F (X, d) = F (Xφ,d), (21)

where
Xφ = {(x,x2) ∈ X x̄2 |x1 ∈ [d1, d2], x2 ≤ φ(x1)}.

The BP (Xφ,d) satisfies Case 2, hence,

F (Xφ,d) = LEG(Xφ,d), (22)

and the last equality contradicts (??) and (??).
Let now (??) hold. By IIA

F (X, d) = F (Xϕ(d2),d), (23)

and by Corollary to Lemma 3

F (Xϕ(d2),d) = F (X, d2). (24)

The BP (X, d2) satisfies Case 2, hence (??),(??) imply

F (X, d) = F (X, d2) = LEG(X, d2) = LEG(X, d).

3b.x̄1 > x̄2.

-
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Since [x̄2, x̄1] ∩ [d2, x̄2] = x2, similar to Case 3a, by considering arbitrary increasing
functions f1 : [x̄2, x̄1] → [x̄2, x̄1] with fixed ends and the functions f2 = ϕ(f1(ϕ−1)), we
obtain that F1(X, d) /∈ (x̄2, x̄1). Thus, by IIA either

F (X, d) = (x̄1, ϕ(x̄1)), (25)
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or
F (X, d) = F (Xx̄2 ,d). (26)

Let (??) hold. Then by IIA

F (X, d) = F (Xx̄2 ,d) = F (Xϕ(x̄2),d). (27)

By Lemma 3
F (Xϕ(x̄2),d) = F (Xϕ(x̄2),d2). (28)

The BP (Xϕ(x̄2),d2) satisfies Case 1, and we obtain

F (Xϕ(x̄2),d2) = LEG(Xϕ(x̄2),d2), (29)

that inconsistent with (??).
Therefore, equality (??) takes place. The BP (Xx̄2 ,d) satisfies Case 3a implying

F (Xx̄2 ,d) = LEG(Xx̄2 ,d) = LEG(X, d) = F (X, d).

orollary 2 Theorem 1 holds, if property 5) of the class Σ2 is replaced by property 4).

3 Egalitarian solution for ordinally convex NTU games

In [?] the egalitarian solution a class of ordinally convex NTU games was axiomatized
as a value which is consistent à la Hart–Mas-Colell and is the solution of constrained
egalitarianism for two-person superadditive games. The last class of games coincides with
two-person bargaining porblems considered in the previous section. Thus, by unifying the
results of Section 3? and Theorems 3 and 4 in [?] a characterization of egalitarian solution
for ordinally convex NTU games will be given in this Section without using the definition
of two-person games’ solution as an axiom.

A non-transferable utility game (NTU-game) is a pair 〈N,V 〉, where N is a finite set
of players, V : 2N \ ∅ →

⋃
S⊂N RS is a mapping, called the characteristic function, that

associates with each coalition S ⊂ N a set V (S) ⊂ RS of feasible payoff vectors for S.
Standard assumptions about the values of the characteristic functions V are the following:
for each coalition S ⊂ N the set V (S) is
– a nonempty strict subset of RS ,
– closed and comprehensive.

Solutions for NTU games are defined by the same way as for TU fgames. Almost all
solutions for TU games have analogs in some classes of NTU games. Among them one
egalitarian-type solution – monotonic solution (cf. Kalai and Samet 1989) – is the direct
extension of the Shapley value in the form of Harsanyi’s dividends to NTU games. In this
Section we give and extension of the egalitarian solution of Dutta for convex TU games
to a class of ordinally convex NTU games.
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Give some notations: By comprehensiveness of V (S) the boundary of V (S) is a weakly
Pareto optimal subset of V (S). Other properties of the sets V (S) may be supposed de-
pending on the subject into consideration. For S′ ⊂ S ⊂ N denote by V (S)|yS′ the section
of the set V (S) by the hyperplanes xi = yi, i ∈ S′ :

V (S)|yS′ = {x ∈ R|S|−|S
′| | (x, yS′) ∈ V (S)}.

The game 〈N,V 〉 is superadditive (subadditive), if for all coalitions S, T ⊂ N,S∩T = ∅
it holds

V (S) ∪ V (T ) ⊂ (⊃)V (S ∪ T ).

Let 〈N,V 〉 be an arbitrary NTU game. For each coalition S ⊂ N we denote by
V̂ (S) ⊂ RN the cylinder over V (S) :

V̂ (S) = {(xS , xS) ∈ RN |xS ∈ V (S)}.

The NTU game 〈N,V 〉 is ordinally convex, if for all S, T ⊂ N

V̂ (S) ∩ V̂ (T ) ⊂ V̂ (S ∪ T ) ∪ V̂ (S ∩ T ).

The core of 〈N,V 〉 is the set

C(N,V ) = V (N) \
⋃

S⊂N

int V̂ (S).

It is known (cf. Vilkov 1974, Greenberg 1985), that ordinally convex games have
non-empty cores.

Let Gc
N be the class of ordinally convex NTU games with the player set N.

For each finite N we will consider the subclass Gc1
N ⊂ Gc

N of NTU games satisfying the
following conditions: for each game 〈N,V 〉 ∈ Gc1

N

10 The boundaries ∂V (S) of V (S) are Pareto optimal for all S j N, i.e. if x, y ∈
∂V (S), x ≥ y, then x = y. ! , PO

20 For each S ⊂ N the diagonal of RS intersects V (S) at a unique point;

30 For all T ⊂ S ⊂ N, xT ∈ RT the sections

V (S)|xT = {y ∈ R|S|−|T | | (xT , y) ∈ V (S)}

are not empty.

Property 10 is the non-levelness of the boundary of V (S) : it demands that these
sets have no flat pieces in each coordinate; property 20 is a weak property of upper-
boundedness: it can be replaced by the property of abence in each V (S) sequences of
vectors, whose all coordinates increase unlimitedly.

Note that we suppose neither convexity of the sets V (S), nor their smoothness.
Let us define the lexicographic egalitarian solution (LEG) for the class Gc1

N .
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Given a game 〈N,V 〉 ∈ Gc1
N , we put x ∈ LEG(N,V ), iff x ∈ ∂V (N) and the vector x

can be represented as

x = (a1, . . . , a1︸ ︷︷ ︸
T1

, a2, . . . , a2,︸ ︷︷ ︸
T2

. . . am . . . , am︸ ︷︷ ︸
Tm

), (30)

where
a1 = max

S⊂N
max{t | teS ∈ V (S)}, eS ∈ RS is the unit vector; (31)

aj = max
S⊂N\Rj−1

max{t | teS ∈ V (Rj−1 ∪ S)|(a1eT1
,a2eT2

,...,aj−1eTj−1
)}, j = 2, . . . ,m, (32)

where Rl =
⋃l

i=1 Ti, l = 1, . . . ,m.
In [?] it was proved that the egalitarian solution for each game 〈N,V 〉 ∈ Gc1

N is deter-
mined uniquely, and the vector x = LEG(N,V ) ∈ C(N,V ), and for two-person games it
coincides with the lexicographic egalitarian bargaining solution.

The axiomatic characterization of the lexicographic egalitarian solution for the classes⋃
N ′⊂N Gc1

N ′ for each finite N also is similar to that for convex TU games [?]:

heorem 3 (Yanovskaya 2005) The lexicographic egalitarian solution for the class
⋃

N ′⊂N Gc1
N ′

is the unique solution which coincides with the lexicographic egalitarian solution on the
subclass of two-person games and is consistent à la Hart–Mas-Colell.

Note that the bargaining problems being a particular cases of games from the class Gc1
N ,

are contained in the class ΣN , considered in subsection 2.2. Therefore, for them Lemma
2 holds, Corollary ??, Theorem ??, and Lemma 2 imply th following characterization of
the egalitarian solution:

heorem 4 For each finite N the lexicographic egalitarian solution for the class Gc1(N) =⋃
N ′⊂N Gc1

N ′ is the unique value which satisfies PO, IR, ANO, IORD, WCONT, and is
consistent à la Hart–Mas-Colell.

Proof. Let F be an arbitrary value, satisfying the conditions of the Theorem. In view of
Theorem ?? it suffices to show that F = LEG for all two-person games from Gc1

N , |N | = 2.
Lemma ?? implies that F satisfies IIA, and now the claim follows from Theorem ??.
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