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1 Introduction

We consider the moving particle process in Rd which is defined in the following way. There
are two independent sequences (Tk) and (εk) of random variables.

The variables Tk are non negative and ∀k Tk ≤ Tk+1, while variables εk form an i.i.d
sequence with common distribution concentrated on the unit sphere Sd−1.

The values εk are interpreted as the directions, and Tk as the moments of change of directions.
A particle starts from zero and moves in the direction ε1 up to the moment T1. It then

changes direction to ε2 and moves on within the time interval T2 − T1, etc. The speed is
constant at all sites. The position of the particle at time t is denoted by X(t).

Study of the processes of this type has a long history. The first work dates back probably to
Pearson and continued by Kluyer (1906) and Rayleigh (1919). Mandelbrot (1982) considered
the case where the increments Tn − Tn−1 form i.i.d. sequence with the common law having a
heavy tail. He also introduced the term ”Levy flights” later changed to ”Random flights”.

To date, a large number of works were accumulated, devoted to the study of such processes,
we mention here only articles by Kolesnik (2009), Orsingher and De Gregorio (2012, 2015) and
Orsingher and Garra (2014) which contain an extensive bibliography and where for different
assumptions on (Tk) and (εk) the exact formulas for the distribution of X(t) were derived.

Our goals are different.
Firstly, we are interested in the global behavior of the process X = {X(t), t ∈ R+}, namely,

we are looking for conditions under which the processes {YT , T > 0},

YT (t) =
1

B(T )
X(tT ), t ∈ [0, 1],

weakly converges in C[0, 1] : YT =⇒ Y, BT −→ ∞, T −→ ∞.
From now on we suppose that the points (Tk), Tk ≤ Tk+1, form a Poisson point process in

R+ denoted by T.

It is clear that in the homogeneous case the process X(t) is a conventional random walk
because the spacings Tk+1−Tk are independent, and then the limit process is Brownian motion.

∗For the second author the article was prepared within the framework of a subsidy granted to the HSE by

the Government of the Russian Federation for the implementation of the Global Competitiveness Program.
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In the non homogeneous case the situation is more complicated as these spacings are not
independent. Nevertheless it was possible to distinguish three modes that determine different
types of limiting processes.

For a more precise description of the results it is convenient to assume that Tk = f(Γk),
where Π = (Γk) is a standard homogeneous Poisson point process on R+ with intensity 1. In
this case

(Γk)
L
= (γ1 + γ2 + · · ·+ γk)

where (γk) are i.i.d standard exponential random variables.
If the function f has power growth,

f(t) = tα, α ≥ 1,

the behavior of the process is analogous to the uniform case and then in the limit we obtain a
Gaussian process which is a linearly transformed Brownian motion

Y (t) =

∫ t

0

Kα(s)dW (s),

where W is a process of Brownian motion, for which the covariance matrix of W (1) coincides
with the covariance matrix of ε1 and Kα(s) is a nonrandom kernel, its exact expression is given
below.

In the case of exponential growth,

f(t) = etβ , β > 0,

the limiting process is piecewise linear with an infinite number of units, but ∀ǫ > 0 the number
of units in the interval [ε, 1] will be a.s. finite.

Finally, with the super exponential growth of f , the process degenerates: its trajectories are
linear functions:

Y (t) = εt, t ∈ [0, 1], ε
Law
= ε1.

In the second part of the paper the process X(t) is considered as a Markov chain. We
construct diffusion approximations for this process and investigate their accuracy. To prove the
weak convergence we use the approach of Stroock and Varadhan (1979). Under our assumptions
the diffusion coefficients a and b have the property that for each x ∈ Rd the martingale problem
for a and b has exactly one solution Px starting from x (that is well posed). It remains to check
the conditions from Stroock and Varadhan (1979) which imply the weak convergence of our
sequence of Markov chains to this unique solution Px . We consider also more general model
which may be called as ”random walk over ellipsoids in Rd ”. For this model we establish
the convergence of transition densities and obtain Edgeworth type expansion up to the order
n−3/2, where n is a number of switching. The main tool in this part is the paramertix method
(Konakov (2012), Konakov and Mammen (2009)).

2 Random flights in Poissonian environment

The reader is reminded that we suppose Tk = f(Γk), where (Γk) is a standard homogeneous
Poisson point process on R+. Assume also that Eε1 = 0.
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It is more convenient to consider at first the behavior of processes

Zn(t) = YTn(t),

as for T = Tn the paths of Zn have an integer number of full segments on the interval [0,1].
The typical path of {Zn(t), t ∈ [0, 1]} is a continuous broken line with vertices
{(tn,k, Sk

Bn
), k = 0, 1, . . . , n}, where tn,k =

Tk

Tn
, T0 = 0, Bn = B(Tn), Sk =

∑k
1 εi(Ti − Ti−1).

Theorem 1. Under previous assumptions

1) If the function f has power growth: f(t) = tα, α ≥ 1/2, we take B(T ) = T
2α−1
2α .

Then Zn =⇒ Y, where Y is a Gaussian process

Y (t) =
√
2α

∫ t

0

s
α−1
2α dW (s),

and W is a process of Brownian motion, for which the covariance matrix of W (1) coincides
with the covariance matrix of ε1.

2) If the function f has exponential growth: f(t) = etβ , β > 0, we take B(T ) = T.

Then Zn =⇒ Y, where Y is a continuous piecewise linear process with the vertices at the
points (tk, Y (tk)),

tk = e−βΓk−1 , Γ0 = 0,

Y (tk) =
∞
∑

i=k

εk(e
−βΓi−1 − e−βΓi), Y (0) = 0.

3) In super exponential case, suppose that f is increasing absolutely continuous and such that

lim
t→∞

f ′(t)

f(t)
= +∞.

We take B(T ) = T.

Then Tn

Tn+1
→ 0 in probability, and Zn =⇒ Y, where the limiting process Y degenerates:

Y (t) = ε1t, t ∈ [0, 1].

Remark 1. In the case of power growth the limiting process admits the following representation:

Y (t)
L
= α

√

2

2α− 1
W (t

α−1
α ),

where, as before, W is a Brownian motion, for which the covariance matrix of W (1) coincides
with the covariance matrix of ε1.

It is clear that we can also express Y in another way :

Y (t)
L
= α

√

2

2α− 1
K

1
2w(t

α−1
α ),

where w is a standard Browniam motion and K is the covariance matrix of ε1.
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Remark 2. In the case of exponential growth it is possible to describe the limiting process Y
in the following way:

We take a p.p.p. T = (tk), tk = e−βΓk−1, defined on (0, 1], and define a step process
{Z(t), t ∈ (0, 1]},

Z(t) = εk for t ∈ (tk+1, tk].

Then

Y (t) =

∫ t

0

Z(s) ds.

3 Diffusion approximation

In this section firstly we consider a model of random flight which is equivalent to the study
of random broken lines {Xn(t), t ∈ [0, 1]} with the vertices ( k

n
, Xn(

k
n
)), and such that (h = 1

n
)

Xn ((k + 1)h) = Xn(kh) + hb(Xn(kh)) +
√
hξk(X(kh)),

Xn(0) = x0, ξk(Xn(kh)) = ρkσ(Xn(kh))εk, (1)

where {εk} and {ρk} are two independent sequences and
{εk} are i.i.d. r. v. uniformly distributed on the unit sphere Sd−1,
{ρk} are i.i.d. r. v. having a density, ρk ≥ 0, Eρ2k = d,
b : Rd −→ Rd is a bounded measurable function and σ : Rd −→ Rd × Rd is a bounded

measurable matrix function.

Theorem 2. Let X = {X(t), t ∈ [0, 1]} be a solution of stochastic equation

X(t) = x0 +

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dw(s).

Suppose that b and σ are continuous functions satisfying Lipschitz condition

|b(t)− b(s)|+ |σ(t)− σ(s)| ≤ K|t− s|.

Moreover it is supposed that b(x) and 1
det (σ(x))

are bounded.
Then,

Xn =⇒ X in C[0, 1].

Our next result is about approximation of transition density. We consider now more general
models given by a triplet (b(x), σ(x), f(r; θ)), x ∈ Rd, r ≥ 0, θ ∈ R+, where b(x) is a vector
field, σ(x) is a d × d matrix, a(x) := σσT (x) > δI, δ > 0, and f(r; θ) is a radial density
depending on a parameter θ controlling the frequency of changes of directions, namely, the
frequency increases when θ decreases. Suppose X(0) = x0. The vector b(x0) acts shifting
a particle from x0 to x0 + ∆(θ)b(x0), where ∆(θ) = cdθ

2, cd > 0. Several examples of such
functions ∆(θ) for different models will be given below. Define

Ex0(r) := {x :
∣

∣a−1/2(x0)(x− x0 −∆(θ)b(x0))
∣

∣

2
= r2},

Sd
x0
(r) := {y : |y − x0 −∆(θ)b(x0)|2 = r2}.
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The initial direction is defined by a random variable ξ0, the law of ξ0 is a pushforward of
the spherical measure on Sd

x0
(1) under affine change of variables

x− x0 −∆(θ)b(x0) = a1/2(x0)(y − x0 −∆(θ)b(x0)).

Then particle moves along the ray lx0 corresponding to the directional unit vector

ε0 :=
ξ0 − x0 −∆(θ)b(x0)

|ξ0 − x0 −∆(θ)b(x0)|
,

and changes the direction in (r, r + dr) with probability

det
(

a−1/2(x0)
)

· f(r
∣

∣a−1/2(x0)e0
∣

∣)dr. (2)

Let ρ0 be a random variable independent on ξ0 and distributed on lx0 with the radial density (2).
We consider the point x1 = x0+∆(θ)b(x0)+ρ0ε0. Let (εk, ρk) be independent copies of (ε0, ρ0).
Starting from x1 we repeat the previous construction to obtain x2 = x1 + ∆(θ)b(x1) + ρ1ε1.
After n switching we get a point xn,

xn = xn−1 +∆(θ)b(xn−1) + ρn−1εn−1.

To obtain the one-step characteristic function Ψ1(t) we make use of formula (6) from Yadrenko
(1980):

Ψ1(t) = Eei〈t,ρ0ε0〉 =

∫ ∞

0

∫

Ex0(r)
ei〈t,a1/2(x0)a−1/2(x0)ξ〉µEx0 (r)(dξ)dΦE(r) =

=

∫ ∞

0

∫

Sd
x0

(r)

ei〈a1/2(x0)t,y〉λd
r(dy)f(r; θ)dr =

= 2
d−2
2 Γ

(

d

2

)
∫ ∞

0

J d−2
2
(r
∣

∣a1/2(x0)t
∣

∣)

(r |a1/2(x0)t|)
d−2
2

f(r; θ)dr, (3)

where Jν(z) is the Bessel function and dΦE(r) is the F - measure of the layer between Ex0(r)
and Ex0(r + dr), F is the law of ρ0ε0. Now we make our main assumption about the radial
density:

(A1) The funciton f(r; θ) is homogenious of degree −1, that is

f(λr;λθ) = λ−1f(r; θ), ∀λ 6= 0.

Denote by pE(n, x, y) the transition density after n switching in the RF-model described above.
To obtain the one step transition density pE(1, x, y) (we write (x, y) instead of (x0, x1)) we use
the inverse Fourier transform, (3) and (A1). After easy calculations we get

pE(1, x, y) = ∆−d/2(θ)qx

(

y − x−∆(θ)b(x)
√

∆(θ)

)

, (4)

where

qx(z) =
2

d−2
2 Γ

(

d
2

)

(2π)d

∫

Rd

cos 〈τ, z〉
[

∫ ∞

0

J d−2
2
(ρ
∣

∣a1/2(x)τ
∣

∣)

(ρ |a1/2(x)τ |)
d−2
2

f(ρ; cd)dρ

]

dτ. (5)

Consider two examples.
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Example 1. We put ∆(θ) = (d+ 1)2θ2 and

f(r; θ) =
1

Γ(d)
r−1

(r

θ

)d

exp
(

−r

θ

)

.

Using (3), formula 6.623 (2) on page 726 from Gradshtein and Ryzhik (1963), and the doubling
formula for the Gamma function we obtain

pE(1, x, y) = ∆−d/2(θ)qx

(

y − x−∆(θ)b(x)
√

∆(θ)

)

,

where

qx(z) =
(d+ 1)d/2

2dπ(d−1)/2Γ
(

d+1
2

)

|det a1/2(x)|
e−

√
d+1|a−1/2(x)z|.

It is easy to check that
∫

ziqx(z) = 0,

∫

zizjqx(z)dz = aij(x).

Example 2. We put ∆(θ) = θ2/2 and

f(r; θ) = Cdr
−1
(r

θ

)d

exp

(

−r2

θ2

)

,

where Cd = 2(d+1)/2

(d−2)!!
√
π

if d is odd, and Cd = 2
[(d−2)/2]!

if d is even. From (3) and formula 6.631

(4) on page 731 of Gradshtein and Ryzhik (1963) we obtain

pE(1, x, y) = ∆−d/2(θ)φx(
y − x−∆(θ)b(x)

√

∆(θ)
),

where

φx(z) =
1

(2π)d/2
√

det a(x)
exp

(

−1

2

〈

a−1(x)z, z
〉

)

.

It is easy to see that the transition density (4) corresponds to the one step transition density
in the following Markov chain model

X(k+1)∆(θ) = Xk∆(θ) +∆(θ) b(Xk∆(θ)) +
√

∆(θ)ξ(k+1)∆(θ),

where the conditional density (underXk∆(θ) = x) of the innovations ξ(k+1)∆(θ) is equal to qx(·). If

we put θ = θn =
√

2
n
, then ∆ (θn) =

1
n
and we obtain a sequence of Markov chains defined on

an equidistant grid

X k+1
n

= X k
n
+

1

n
b(X k

n
) +

1√
n
ξ k+1

n
, X0 = x0. (6)

Note that the triplet (b(x), σ(x), f(r; θ)), x ∈ Rd, r ≥ 0, θ ∈ R+, of the Example 2 corresponds
to the classical Euler scheme for the d-dimensional SDE

dX(t) = b(Xt)dt+ σ(Xt)dW (t), X(0) = x0. (7)
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Let p(1, x, y) be transition density from 0 to 1 in the model (7). We make the following
assumptions

(A2) The function a(x) = σσT (x) is uniformly elliptic.

(A3) The functions b(x) and σ(x) and their derivatives up to the order six are continuous
and bounded uniformly in x. The 6-th derivative is globally Lipschitz.

Theorem 3. Under assumptions (A2), (A3) we have the following expansion: for any positive
integer S as n → ∞

sup
x,y∈Rd

(

1 + |y − x|S
)

·
∣

∣

∣

∣

pE(n, x, y)− p(1, x, y)− 1

2n
p⊗

(

L2
∗ − L2

)

p(1, x, y)

∣

∣

∣

∣

= O(n−3/2), (8)

where

L =
1

2

d
∑

i,j=1

aij(x)∂
2
xixj

+
d
∑

i=1

bi(x)∂xi
. (9)

The operator L∗ in (8) is the same operator as in (9) but with coefficients ”frozen” ay x.
Clearly, L = L∗ but, in general, L2 6= L2

∗. The convolution type binary operation ⊗ is defined
for functions f and g in the following way

(f ⊗ g) (t, x, y) =

∫ t

0

ds

∫

Rd

f(s, x, z)g(t− s, z, y)dz.

Proof. It follows immediately from Theorem 1 of Konakov and Mammen (2009).

4 Proof of Th. 1

4.1 Asymptotic behaviour in case 3)

We have, taking Bn = B(Tn) = Tn :

sup
t∈

[

0,
Tn−1
Tn

]

‖Xn(t)‖∞ ≤
n−1
∑

k=1

Tk − Tk−1

Tn
=

Tn−1

Tn
−−−→
n→∞

0 a.s.

At the same time,

Xn(1) =
Sn−1 + εn(Tn − Tn−1)

Tn

= εn + o(1) ⇒ Pε1

Therefore the process Xn converges weakly to the process {Y (t)}, Y (t) = ε1t, t ∈ [0, 1].
This process is in some sense degenerate. Hence this case is not very interesting.

4.2 Asymptotic behaviour in case 2)

Take Bn = Tn and show that the limit process Y is not trivial. For simplicity fix β = 1. We
have now tn,k :=

Tk

Tn
= e−(Γn−Γk) = e−(γk+1+···+γn), and

Xn (tn,k) =

k
∑

i=1

εi(e
−(γi+1+···+γn) − e−(γi+···+γn)), k = 1, . . . , n.
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The process Xn is completely defined by 2 independent vectors (ε1, . . . , εn) and (γ1, . . . , γn).
Hence its distribution will be the same if we replace these vectors by (εn, . . . , ε1) and (γn, . . . , γ1).

In another words, the process (Xn(·)) L
= (Yn(·)), where Yn(·) is a broken line with vertices

(τn,k, Yn(τn,k)), (τn,k) ↓, τn,1 = 1, τn,k = e−(γ1+···+γk−1), k = 2, . . . , n, and

Yn(τn,k) =
n−1
∑

i=k

εi
(

e−(γ1+···+γi−1) − e−(γ1+···+γi)
)

+ εne
−(γ1+···+γn−1);

Yn(0) = 0, and γ0 := 0.
Using the notation Γk = γ1 + · · ·+ γk we get the more compact formula:

Yn(τn,k) =
n−1
∑

i=k

εi
(

e−Γi−1 − e−Γi
)

+ εne
−Γn−1 .

Consider now the process {Y (t), t ∈ [0, 1]} defined as follows:

Y (0) = 0, Y (tk) =

∞
∑

i=k

εi
(

e−Γi−1 − e−Γi
)

; (10)

where tk = e−Γk−1 , k = 2, 3, . . . , t1 = 1; for t ∈ [tk+1, tk] Y (t) is defined by linear interpolation.
The paths of Y are continuous broken lines, starting at 0 and having an infinite number of
segments in the neighborhood of zero.

The evident estimation

sup
t∈[0,1]

|Y (t)− Yn(t)| ≤
∣

∣

∣

∣

∣

∞
∑

i=n

εi
(

e−Γi−1 − e−Γi
)

∣

∣

∣

∣

∣

+ e−Γn−1 ≤

≤
∞
∑

i=n

(

e−Γi−1 − e−Γi
)

+ e−Γn−1 = 2e−Γn−1 −→ 0 a.s.

shows that a.s. Yn(·)
C[0,1]−−−→ Y (·).

Conclusion: In case 2), the process Xn converges weakly to Y (·).

Remark 3. In the case where β 6= 1 it is simply necessary replace e−Γk by e−
Γk
β .

Remark 4. It seems that the last result could be expanded by considering more general sequences
(εk).

Interpretation: εk
|εk| defines direction, |εk| defines the velocity of deplacement in this direction

on the step Sk.

4.3 Asymptotic behaviour in case of power growth

In this case Tk = Γα
k , α > 1/2, tn,k =

Tk

Tn
=
(

Γk

Γn

)α

, and

Xn(tn,k) =
1

Bn

k
∑

i=1

εi(Γ
α
i − Γα

i−1); Γ0 = 0, k = 0, 1, . . . , n. (11)
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Let x ∈ Rd be such that |x| = 1. We will show below that

Var

(

n
∑

i=1

〈εi, x〉(Γα
i − Γα

i−1)

)

= E〈εi, x〉2
n
∑

i=1

E(Γα
i − Γα

i−1)
2 ∼ C(x)n2α−1, n → ∞,

where C(x) = 2α2

2α−1
E〈ε1, x〉2. Therefore it is natural to take B2

n = n2α−1.

We proceed in 5 steps:

Step 1: Lemmas

Step 2: We compare Xn(·) with Zn(·) where Zn(tn,k) = α
Bn

∑k
i=1 εiγiΓ

α−1
i−1 and show that

‖Xn − Zn‖∞ P−→ 0.

Step 3: We compare Zn(·) with Wn(·) where Wn(tn,k) =
α
Bn

∑k
i=1 εiγi(i − 1)α−1 and state

that ‖Zn −Wn‖∞ P−→ 0.

Step 4: We show that process Un(·),

Un

((

k

n

)α)

=
α

Bn

k
∑

i=1

εiγi(i− 1)α−1,

converges weakly to the limiting process

Y (t) =
√
2α

∫ t

0

s
α−1
2α dW (s);

here W (·) is a process of Brownian motion, for which the covariance matrix of W (1) coincides
with the covariance matrix of ε1.

Step 5: We show that the convergence Wn ⇒ Y follows from the convergence Un ⇒ Y .

Finally: We get the convergence Xn ⇒ Y .

4.3.1 Step 1

Lemma 1. Let α > 0 and m ≥ 1. Then ∀x > 0, h > 0

(x+ h)α − xα =
m
∑

k=1

akh
kxα−k +R(x, h), (12)

where

ak =
α(α− 1) . . . (α− k + 1)

k!
,

and
|R(x, h)| ≤ |am+1|hm+1max{xα−(m+1), (x+ h)α−(m+1)}. (13)

Proof. By the formula of Taylor-Lagrange we have (12) with

|R(x, y)| ≤ 1

(m+ 1)!
hm+1 sup

x≤t≤x+h
|f (m+1)(t)|,

where f(t) = tα. As f (m+1)(t) = α(α− 1) . . . (α−m)tα−(m+1), we get the result.

✷
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Lemma 2. For α ≥ 0 and k → ∞
(

1 +
α

k

)k

= eα +O

(

1

k

)

. (14)

Proof. It follows from the inequalities:

0 ≤ eα −
(

1 +
α

k

)k

≤ eαα2

k
.

✷

Lemma 3. Let Γ be the Gamma function. Then as k → ∞

Γ(k + α)

Γ(k)
= kα +O(kα−1).

Proof. It follows from Lemma 2 and well known asymptotic

Γ(t) = tt−
1
2 e−t

√
2π

(

1 +
1

12t
+O

(

1

t2

))

, t → ∞.

✷

Lemma 4. For any real β we have as k → ∞

E(Γβ
k) = kβ +O(kβ−1).

Proof. The result follows from the well known fact that

E(Γβ
k) =

Γ(k + β)

Γ(k)

and Lemma 3. ✷

Lemma 5. Let α ≥ 0. The following relations take place as k → ∞:

Γα
k+1 − Γα

k = αγk+1Γ
α−1
k + ρk, (15)

where |ρk| = O(kα−2) in probability;

E|Γα
k+1 − Γα

k |2 = 2α2k2α−2 + O(k2α−3); (16)

E|Γα
k+1 − Γα

k − αγk+1Γ
α−1
k |2 = O(k2α−4). (17)

We deduce immediately from (16) the following relation.

10



Corollary 1. We have

n−1
∑

1

E|Γα
k+1 − Γα

k |2 =
2α2

2α− 1
n2α−1 +O(n2α−2).

Proof of Lemma 5. We find, applying Lemma 1,

Γα
k+1 − Γα

k = αγk+1Γ
α−1
k +R(Γk, γk+1), (18)

where

R(Γk, γk+1) ≤
1

2
γ2
k+1 max

Γk≤s≤Γk+1

|α(α− 1)|sα−2 ≤ |α(α− 1)|
2

γ2
k+1max{Γα−2

k+1 ,Γ
α−2
k }. (19)

As Γk ∼ k a.s. when k → ∞, we get (15).
The proofs of (16) and (17) follow directly from (18), (19) and Lemma 4. ✷

4.3.2 Step 2

We show that ‖Xn − Zn‖∞ P−→ 0, where

Zn(tn,k) =
α

Bn

k
∑

i=1

εiγiΓ
α−1
i−1 .

It is clear that

δn := ‖Xn − Zn‖∞ = sup
t∈[0,1]

|Xn(t)− Zn(t)| = max
k≤n

|X(tn,k)− Zn(tn,k)| = max
k≤n

|rk|,

where

rk =
1

Bn

k
∑

i=1

εi
[

Γα
i − Γα

i−1 − αγiΓ
α−1
i−1

]

=
k
∑

i=1

εiξi,

and

ξi =
(

Γα
i − Γα

i−1 − αγiΓ
α−1
i−1

) 1

Bn

.

Let M = σ(ξ1, ξ2, . . . , ξn) = σ(γ1, γ2, . . . , γn). Under condition M the sequence (rk) is the
sequence of sums of independent random variables with mean zero. By Kolmogorov’s inequality

P{max
k≤n

|rk| ≥ t} = E{P{max
k≤n

|rk| ≥ t |M}} ≤ E

(

1

t2

n
∑

j=1

ξ2j

)

=
1

t2

n
∑

j=1

Eξ2j . (20)

By Lemma 5 Eξ2j = O(j−3). Therefore,

n
∑

j=1

Eξ2j = O(n−2)

Finally we get from (20): ∀t > 0

P{δn ≥ t} −−−→
n→∞

0,

which gives the convergence ‖Xn − Zn‖∞ P−→ 0.
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4.3.3 Step 3

We show now that ‖Zn −Wn‖∞ P−−−→
n→∞

0; where Wn(tn,k) =
α
Bn

∑k
i=1 εiγi(i− 1)α−1.

We have

∆n = sup
t∈[0,1]

|Zn(t)−Wn(t)| = max
k≤n

|Zn(tn,k)−Wn(tn,k)| = max
k≤n

{|βk|},

where βk = α
Bn

∑k
i=1 εiγi

(

Γα−1
i−1 − (i− 1)α−1

)

.
Similar to the previous case (βk) under condition M is the sequence of sums of independent

random variables with mean zero. Therefore

P{max
k≤n

{|βk|} ≥ t} = E

(

P{max
k≤n

{|βk|} ≥ t |M}
)

≤ 1

t2

n
∑

j=1

Eη2j ,

where ηj =
α
Bn

γj
(

Γα−1
j−1 − (j − 1)α−1

)

.

Estimation of Eη2j .
By independence of γj and Γj−1

Eη2j =
2α2

B2
n

E
(

Γα−1
j−1 − (j − 1)α−1

)2

Let us change j − 1 to k

E
(

Γα−1
k − kα−1

)2
= E

(

Γ2α−2
k

)

+ k2α−2 − 2kα−1E
(

Γα−1
k

)

=

=
Γ(k + 2α− 2)

Γ(k)
+ k2α−2 − 2kα−1Γ(k + α− 1)

Γ(k)
= (by Lemma3) =

=
[

k2α−2 +O(k2α−3) + k2α−2 − 2k2α−2
]

= O(k2α−3).

Hence

Eη2j ≤ C
j2α−3

n2α−1

and
n
∑

j=1

Eη2j ≤ C
1

n2

We have finally P{maxk≤n |βk| ≥ t} → 0, n → ∞, which gives the convergence

‖Wn − Zn‖ P−→ 0.

4.3.4 Step 4

Let Un be the process defined at the points k
n
by

Un

((

k

n

)α)

=
α

Bn

k
∑

i=1

εiγi(i− 1)α−1, k = 1, 2, . . . , n,

and by linear interpolation on the intervals [ k
n
, k+1

n
], k = 0, . . . , n − 1. We now state weak

convergence of the processes Un to the process Y ,

Y (t) =
√
2α

∫ t

0

s
α−1
2α dW (s),

12



W is a Brownian motion, for which the covariance matrix of W (1) coincides with the covariance
matrix of ε1.

The proof is standard because Un(·) represents a (more or less) usual broken line constructed
by the consecutive sums of independent (non-identically distributed) random variables. One
could apply Prokhorov’s theorem (see Gikhman and Skorohod (1996), ch.IX, sec. 3, Th.1).

Only one thing must be checked: that for any 0 < s < t ≤ 1, and for any x ∈ Rd, |x| = 1,
we have the convergence 〈Un(t)− Un(s), x〉 =⇒ 〈Y (t)− Y (s), x〉.

It is clear that

[Un(t)− Un(s)]−
[

Un

((

k

n

)α)

− Un

((

l

n

)α)]

P−−→ 0,

if
(

k
n

)α → t,
(

l
n

)α → s.

Let l < k. As

〈

Un

((

k

n

)α)

− Un

((

l

n

)α)

, x

〉

=
α

Bn

k
∑

i=l+1

〈εi, x〉γi(i− 1)α−1,

by the theorem of Lindeberg-Feller it is sufficient to state the convergence of variances.
We have

Var

〈

Un

((

k

n

)α)

− Un

((

l

n

)α)

, x

〉

=

=
2α2

n2α−1
E〈ε1, x〉2

k
∑

i=l+1

(i− 1)2α−2 −−−→
n→∞

2α2

2α− 1
E〈ε1, x〉2[t

2α−1
α − s

2α−1
α ],

and

Var〈Y (t)− Y (s), x〉 = 2αE〈ε1, x〉2
∫ t

s

u
α−1
α du =

2α2

2α− 1
E〈ε1, x〉2[t

2α−1
α − s

2α−1
α ],

which are the same.

4.3.5 Step 5: Convergence Xn ⇒ Y .

Due to the steps 2 and 3 it is sufficient to show that Wn ⇒ Y .
Let fn : [0, 1] → [0, 1], be a piecewise linear continuous function such that fn(tn,k) =

(

k
n

)α
;

tn,k =
(

Γk

Γn

)α

; k = 0, 1, . . . , n.

By definition of Wn and Un we have

Wn(t) = Un(fn(t)), t ∈ [0, 1].

By the corollary to Lemma 6 (see below) the function fn converges in probability uniformly
to f , f(t) = t, and by previous step Un ⇒ Y .

It means that we can apply Lemma 7 which gives the necessary convergence.

Lemma 6. Let

Mn = max
k≤n

{
∣

∣

∣

∣

Γk

Γn

− k

n

∣

∣

∣

∣

}

.

Then Mn
P−→ 0, n → ∞.
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Proof of Lemma 6. We have

P{Mn > ε} = E

{

P

{

max
k≤n

∣

∣

∣

∣

Γk

Γn

− k

n

∣

∣

∣

∣

> ε |Γn

}}

=

=

∫ ∞

0

P

{

max
k≤n

∣

∣

∣

∣

Γk

Γn
− k

n

∣

∣

∣

∣

> ε |Γn = t

}

P(dt) =

=

∫ ∞

0

P

{

max
k≤n

∣

∣

∣

∣

ξn,k −
k

n

∣

∣

∣

∣

> ε

}

P(dt) = P

{

max
k≤n

∣

∣

∣

∣

ξn,k −
k

n

∣

∣

∣

∣

> ε

}

,

(21)

where (ξn,k)k=1,...,n are the order statistics from [0, 1]-uniform distribution.
Let δn := maxk≤n

∣

∣ξn,k − k
n

∣

∣. Evidently, δn ≤ sup[0,1] |F ∗
n(x) − x|, where F ∗

n is a uniform
empirical distribution function. By Glivenko-Cantelli theorem, sup[0,1] |F ∗

n(x) − x| → 0 a.s,
which gives the convergence Mn → 0 in probability. ✷

Corollary 2. M
(1)
n = maxk≤n

∣

∣

∣

(

Γk

Γn

)α

−
(

k
n

)α
∣

∣

∣

P−→ 0, n → ∞.

The proof follows directly from Lemma 6 due to the uniform continuity of the function
h(x) = xα, x ∈ [0, 1].

Lemma 7. Let {Un} be a sequence of continuous processes on [0, 1] weakly convergent to some
limit process U . Let {fn} be a sequence of random continuous bijections [0, 1] on [0, 1] which in
probability uniformly converges to the identity function f(t) ≡ t. Then the process Wn, Wn(t) =
Un(fn(t)), t ∈ [0, 1], will converge weakly to U .

Proof of Lemma 7. By theorem 4.4 from Billingsley (1968) we have the weak convergence
in M := C[0, 1]× C[0, 1]

(Un, fn) =⇒ (U, f).

By Skorohod representation theorem we can find a random elements (Ũn, f̃n) and (Ũ , f̃) of M
(defined probably on a new probability space) such that

(Un, fn)
L
= (Ũn, f̃n), (U, f)

L
= (Ũ , f̃),

and (Ũn, f̃n) → (Ũ , f̃) a.s. in M.
As the last convergence implies evidently the a.s. uniform convergence of Ũn(f̃n(t)) to

Ũ(f̃(t)), we get the convergence in distribution of U(fn(·)) to U(f(·)) = U(·). ✷

5 Proof of Th. 2

Proof of Th. 2. We need some facts from Stroock and Varadhan (1979). Consider (Ω,M),
where Ω = C([0,∞);Rd) be the space of continuous trajectories from [0,∞) into Rd. Given
t ≥ 0 and ω ∈ Ω let x(t, ω) denote the position of ω in Rd at time t. If we put

D(ω, ω′) =
∞
∑

n=1

1

2n
sup0≤t≤n |x(t, ω)− x(t, ω′)|

1 + sup0≤t≤n |x(t, ω)− x(t, ω′)|

14



then it is well known that D is a metric on Ω and (Ω, D) is a Polish space. The convergence
induced by D is uniform convergence on bounded t - intervals. For simplicity, we will omit ω in
the future and we will be assuming that all our processes are homogeneous in time. Analogous
results for time-inhomogeneous processes may be obtained by simply considering the time-space
processes.

We will use M to denote the Borel σ - field of subsets of (Ω, D) , M = σ[x(t) : t ≥ 0].
We also will consider an increasing family of σ-algebras Mt = σ[x(s) : 0 ≤ s ≤ t]. Classical
approach to the construction of diffusion processes corresponding to given coefficients a and b
involves a transition probability function P (s, x; t, ·) which allows to construct for each x ∈ Rd,
a probability measure Px on Ω = C([0,∞);Rd) with the properties that

Px(x(0) = x) = 1

and
Px(x(t2) ∈ Γ |Mt1) = P (t1, x(t1); t2,Γ) a.s.Px

for all 0 ≤ t1 < t2 and Γ ∈ BRd (the Borel σ - algebra in Rd). It appears that this measure is a
martingale measure for a special martingale related with the second order differential operator

L =
1

2

d
∑

i,j=1

aij(·) ∂2

∂xi∂xj
+

d
∑

i=1

bi(·) ∂

∂xi
,

namely, for all f ∈ C∞
0 (Rd)

Px(x(0) = x) = 1,

(f(x(t))−
∫ t

0

Lf(x(u))du,Mt, Px) (22)

is a martingale. We will say that the martingale problem for a and b is well-posed if, for each

x there is exactly one solution to that martingale problem starting from x. We will be working
with the following set up. For each h > 0 let Πh(x, ·) be a transition function on Rd. Given
x ∈ Rd, let P h

x be the probability measure on Ω characterized by the properties that

(i) P h
x (x(0) = x) = 1, (23)

(ii) P h
x

{

x(t) =
(k + 1)h− t

h
x(kh) +

t− kh

h
x((k + 1)h), kh ≤ t < (k + 1)h

}

= 1 (24)

for all k ≥ 0,

(iii) P h
x (x((k + 1)h) ∈ Γ | Mkh) = Πh(x(kh),Γ), P h

x − a.s.

for all k ≥ 0 and Γ ∈ BRd . (25)

Define

aijh (x) =
1

h

∫

|y−x|≤1

(yi − xi)(yj − xj)Πh(x, dy), (26)

bih(x) =
1

h

∫

|y−x|≤1

(yi − xi)Πh(x, dy), (27)

and

∆ε
h(x) =

1

h
Πh(x,R

d\B(x, ε)), (28)
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where B(x, ε) is the open ball with center x and radius ε. What we are going to assume is that
for all R > 0

lim
hց0

sup
|x|≤R

‖ah(x)− a(x)‖ = 0, (29)

lim
hց0

sup
|x|≤R

|bh(x)− b(x)| = 0, (30)

sup
h>0

sup
x∈Rd

(‖ah(x)‖+ |bh(x)|) < ∞, (31)

lim
hց0

sup
x∈Rd

∆ε
h(x) = 0. (32)

Theorem A. (Strook and Varadhan (1979), page 272, Theorem 11.2.3). Assume that in
addition to (29)-(32) the coefficients a and b are continuous and have the property that for each
x ∈ Rd the martingale problem for a and b has exactly one solution Px starting from x (that is
well posed). Then P h

x converges weakly to Px uniformly in x on compact subsets of Rd.
Sufficient conditions for the well-posedness is given by the following theorem.

Let Sd be the set of symmetric non-negative definite d× d real matrices.

Theorem B. (Strook and Varadhan (1979), page 152, Theorem 6.3.4). Let a : Rd −→ Sd

and b : Rd −→ Rd be bounded measurable functions and suppose that σ : Rd −→ Rd × Rd is a
bounded measurable function such that a = σσ∗. Assume that there is an A such that

‖σ(x)− σ(y)‖+ |b(x)− b(y)| ≤ A |x− y| (33)

for all x, y ∈ Rd. Then the martingale problem for a and b is well-posed and the corresponding
family of solutions {Px : x ∈ Rd} is Feller continuous (that is Pxn → Px weakly if xn → x).

Note that (33) and uniform ellipticity of a(x) imply the existence of the transition density
p(s, x; t, y) (Strook and Varadhan (1979), Theorem 3.2.1, page 71).

Consider the model

X ((k + 1)h) = X(kh) + hb(X(kh)) +
√
hξ(X(kh)),

ξ(X(kh)) = ρkσ(X(kh))εk, (34)

where {εk} are i.i.d. random vectors uniformly distributed on the unit sphere Sd−1, and {ρk}
are i.i.d. random variables having a density, ρk ≥ 0, Eρ2k = d. Let us check the conditions
(29)-(32). It is easy to see that

Πh(x, dy) = pxh(y)dy, where pxh(y) = h−d/2fξ

(

y − x− hb(x)√
h

)

. (35)

Here fξ denotes the density of the random vector ξ. Let us check (32). Note that Eξ = 0 and
the covariance matrix of the vector ξ is equal to

Cov(ξ, ξT ) = E(ρ2kσ(x)εkε
T
k σ

T (x)) = a(x). (36)

We have

h∆ε
h(x) = Πh(x,R

d\B(x, ε)) =

∫

Rd\B(x,ε)

pxh(y)dy =

=

∫

v+
√
hb(x)∈Rd\B(0, ε

√

h
)

fξ(v)dv = P

{

ξ ∈ B

(

0,
ε√
h

)

}

−
√
hb(x)) ≤
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≤ P

{

|ξ|2 ≥ ε2

4h

}

= o(h). (37)

The last equality is a consequence of the Markov inequality. The equality (36), uniform ellip-
ticity of a(x) and (37) implies (32). To prove (29) note that by (33)

aijh (x) =
1

h

∫

|y−x|≤1

(yi − xi)(yj − xj)p
x
h(y)dy =

=

∫

|v+√
hb(x)|≤ 1

√

h

(vi +
√
hbi(x))(vj +

√
hbj(x))fξ(v)dv =

=

∫

|v+√
hb(x)|≤ 1

√

h

vivjfξ(v)dv + o(
√
h) = a(x) + o(1). (38)

To check (30) note that

bih(x) =
1

h

∫

|y−x|≤1

(yi − xi)p
x
h(y)dy =

=
1√
h

∫

|v+√
hb(x)|≤ 1

√

h

(vi +
√
hbi(x))fξ(v)dv =

= bi(x)

∫

|v+√
hb(x)|≤ 1

√

h

fξ(v)dv −
1√
h

∫

|v+√
hb(x)|> 1

√

h

vifξ(v)dv. (39)

To estimate the second integral in (39) we apply the Cauchy - Schwarz inequality

1√
h

∫

|v+√
hb(x)|> 1

√

h

|v| fξ(v)dv ≤ 1√
h

(
∫

|v|2 fξ(v)dv
)1/2(

P (|ξ|2 ≥ 1

4h

)1/2

= o(1), (40)

and (39), (40) imply (30). Finally, (31) follows from our calculations and assumptions of
Theorem B. Weak convergence P h

x to Px follows now from Theorems A and B cited above.

✷
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