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Исследуются собственные колебания корональных арок с постоянной плотностью и переменными
магнитными полями, изменяющимися по параболическим законам. С помощью разработанного
авторами метода получены волновые уравнения с постоянными коэффициентами, описывающие
изгибные колебания симметричных и несимметричных магнитных трубок. Для таких моделей получены
аналитические выражения для спектров и амплитуд колебаний, а также величины и направления
смещений экстремумов основной и первой мод относительно их значений для однородных трубок.
Для первой моды несимметричной петли определена зависимость смещения координаты внутреннего
узла от соотношений величин магнитного поля в несимметричных частях, а также отношение значений
амплитуды в точках экстремумов.
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ВВЕДЕНИЕ

Поперечные смещения в корональных маг-
нитных арках, зафиксированные лабораторией
TRACE, были первым волновым явлением, явно
наблюдаемым в короне (Ашванден и др., 1999;
Накаряков и др., 1999). Эти колебания были
интерпретированы как основная мода стоячих
изгибных волн в магнитных трубках. Позднее были
обнаружены моды первого и не вполне уверенно
более высоких порядков (Вервихт и др., 2004;
Ван Доорселар и др., 2007; О Ши и др., 2007).
Поперечные возмущения, распространяющиеся
вдоль магнитного поля, наблюдались также в
фибриллах (Окамото и др., 2007) и хромосферных
спикулах (Де Понтье и др., 2007).
Обнаружение колебаний арок сделало темати-

ку корональной гелиосейсмологии одной из самых
актуальных в солнечной астрофизике. Появилось
множество теоретических работ, в которых предла-
гались симметричные модели арок и для этих мо-
делей проводились расчеты, в основном численные
или приближенные аналитические, с целью изуче-
ния свойств таких колебаний (см. обзоры, Андриес
и др., 2009; Рудерман, Эрдели, 2009; Степанов, др.,
2012; Де Мортель, Накоряков, 2012). Следует от-
метить статью Дымовой, Рудермана (2006), в кото-
рой получены аналитические решения для модели
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с постоянным магнитным полем и плотностью, за-
данной в параболической форме. В работах (Верт,
2007; Верт, Ердели, 2008) численно и аналитиче-
ски исследованы колебания корональной петли с
постоянной плотностью, в которой магнитное поле
задано квадратичной функцией.

В данной работе рассматриваются модели ко-
рональных арок с постоянной плотностью и пе-
ременным магнитным полем, которое также, как
и в работе (Верт, Ердели, 2008), меняется по па-
раболическим законам. Для симметричной моде-
ли получено уточненное выражение для спектра
изгибных колебаний, а также найдены простые
аналитические выражения смещений экстремумов
амплитуды первой моды.

Кроме того, рассмотрены модели корональных
петель, в которых магнитное поле несимметрично
относительно их вершин. В основу работы лег-
ли результаты наших недавних исследований, в
которых было показано, что в сильно неодно-
родной среде могут существовать бегущие вол-
ны, которые не отражаются на неоднородностях.
Математический прием получения таких решений
связан с трансформационными преобразованиями
аргументов и функций, при которых, например,
волновое уравнение с переменными коэффициен-
тами при определенных ограничениях сводится к
уравнениям гиперболического типа с постоянными
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коэффициентами, так что существование безотра-
жательных бегущих волн становится очевидным.
В частности, это проделано нами для внутренних
и поверхностных волн в несжимаемой жидкости
(Талипова и др., 2009), для вертикально распро-
страняющихся акустических волн в неоднородных
сжимаемых атмосферах Земли и Солнца (Петру-
хин и др., 2011, 2012a,б,в), а также для быстрых
магнитозвуковых волн в корональных петлях (Ру-
дерман и др., 2013).

БЕЗОТРАЖАТЕЛЬНЫЕ ИЗГИБНЫЕ
ВОЛНЫ В МАГНИТНЫХ ТРУБКАХ

Исследуем быстрые магнитозвуковые изгибные
волны, распространяющиеся вдоль тонкой маг-
нитной трубки. В общем случае предполагается,
что невозмущенные параметры изменяются только
вдоль трубки. Исследования показали (Ван До-
орселар и др., 2009), что искривление с радиусом
кривизны, характерным для корональных петель,
оказывает слабое влияние на дисперсионные со-
отношения изгибных волн, поэтому будем считать
трубку прямолинейной, расположенной вдоль оси
oz. Таким образом, плотность плазмы можно опре-
делить соотношением

ρ =

{
ρi; r < R (z) ,

ρe; r > R (z) .
(1)

Здесь R(z) –– поперечный радиус трубки, ρi и ρe ––
плотность плазмы внутри и вне трубки соответ-
ственно, в данной работе постоянные величины.
На границе трубки с окружающей средой должно
выполняться условие равновесия

B2
i

8π
+ Pi =

B2
e

8π
+ Pe, (2)

где Bi,e, Pi,e –– напряженность магнитного поля и
газовое давление, соответственно, внутри и вне
трубки. Так как в корональной плазме выполняется
неравенство P

B2/8π
� 1 (Ашванден, 2005), то из

соотношения (2) следует

Be ≈ Bi ≈ B. (3)

В работах (Спруит, 1981; Дымова, Рудерман, 2006;
Рудерман и др., 2008) показано, что в такой трубке
распространение изгибных волн описывается вол-
новым уравнением

∂2u

∂t2
− c2(z)

∂2u

∂z2 = 0, (4)

где u = η
R , η –– поперечное смещение трубки и

c(z) =
B√

2π(ρi+ρe)
(5)

скорость изгибной волны.

Уравнение (4) содержит переменный коэффи-
циент c2(z), поэтому в общем случае его реше-
ние описывает процесс трансформации падающей
волны в проходящую и отраженную на неоднород-
ностях среды, и не распадается на два независи-
мых решения, соответствующих бегущим волнам
в противоположных направлениях. Существование
невзаимодействующих встречных волн тривиально
в случае уравнения с постоянными коэффициента-
ми, поэтому важно найти преобразования, приво-
дящие уравнение (4) к уравнению с постоянными
коэффициентами. Основная идея такого метода
обсуждалась в наших работах (Петрухин и др.
2011, 2012a,б,в; Рудерман и др., 2013). Показано,
что в результате этих преобразований волновое
уравнение (4) приводится к виду

∂2Φ
∂t2

− ∂2Φ
∂τ2 = βΦ, (6)

где

Φ(t, τ) = u(t, z)/
√

c(z), τ (z) =
∫

dz

c(z)
(7)

и β –– произвольная постоянная. Уравнение (6) в
переменных Φ(t, τ) описывает бегущие в проти-
воположных направлениях невзаимодействующие
волны с дисперсионным соотношением

ω2 = k2 − β, (8)

где ω –– частота волны, а k –– волновое число отно-
сительно новой координаты τ . При этом функция
c(z) должна удовлетворять, в частности, условию

c = M(z + N)2 + β/M, (9)

где M и N –– произвольные константы. Модели
корональных трубок, которые описывает уравне-
ние (9), можно разделить на два вида. Первый, в
которомM > 0, а следовательно, и β > 0, соответ-
ствуют параболе, ветви которой направлены вверх.
В этом случае скорость c(z) с высотой падает.
Второй случай (M < 0, а следовательно, и β < 0)
описывает семейство парабол с направленными
вниз ветвями. При таких параметрах скорость из-
гибной волны c(z) с высотой растет. В данной
работе рассмотрен первый случай.

СОБСТВЕННЫЕ КОЛЕБАНИЯ
СИММЕТРИЧНОЙ ПЕТЛИ

С ПОСТОЯННОЙ ПЛОТНОСТЬЮ

Используя формулу (9), построим модели сол-
нечных корональных петель, состоящих из парабо-
лических безотражательных профилей для скоро-
сти изгибных волн. Мы рассматриваем только ту
часть трубки, которая находится над фотосферой.
Замыкание магнитных силовых линий происходит в
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плотных подфотосферных слоях. Как известно, на
высоте фотосферы происходит резкое изменение
плотности, поэтому будем считать этот уровень
жесткой отражающей границей для изгибных волн,
распространяющихся в корональной петле. Выбе-
рем ось oz вдоль трубки длиной 2L с началом
координат в ее середине. Вначале рассмотрим сим-
метричную модель с положительными значениями
M и β. В этом случаеN = 0. Обозначая с(z = 0) =
= c0, c(z = ±L) = ct и α = ct/c0, получаем

c = c0

[
1 + (α − 1)

( z

L

)2
]

, (10)

β = c2
0

(α − 1)
L2

. (11)

Полагая

Φ = ψ(τ)eiωt, (12)

получаем обыкновенное дифференциальное урав-
нение с постоянными коэффициентами

d2ψ

dτ2
+ (ω2 + β)ψ = 0. (13)

Функция r(z), определяющая поперечные смеще-
ния трубки, связана с решением уравнения (13)
соотношением

r = [c(z)]1/2R(z)ψ(z) = ρ−
1
4 ψ(z). (14)

Учитывая, что плотность в данной работе считается
постоянной, переменные ψ и r с точностью до
постоянного множителя совпадают, поэтому общее
решение уравнения (13) можно записать в виде

r[τ(z)] = A sin(kτ) + D cos(kτ), (15)

где A и D –– произвольные постоянные и k –– вол-
новое число, удовлетворяющее дисперсионному
соотношению (8). Новая переменная τ связана
с физической координатой z формулой (7) и для
рассматриваемого профиля изгибной скорости (10)
определяется в явном виде

τ(z) =

z∫
0

dz′

c(z′)
=

L

c0

√
(α − 1)

× (16)

× arctg
( z

L

√
α − 1

)
.

Вследствие симметрии задачи относительно начала
координат, граничные условия можно задать на
одном из концов трубки, например, при z = L и в
ее середине (т.е. при z = 0). Для основной моды,
а также для всех мод с четным числом узлов,
полагаем

r[τ = τ(L)] = 0,
dr

dz
[τ = τ(0)] = 0, (17)

а для нечетных мод

r[τ = τ(L)] = 0, r[τ = τ(0)] = 0. (18)

Удовлетворяя граничным условиям (17)–(18), по-
лучаем спектр собственных изгибных колебаний
трубки

Ωn =
√

(α − 1)

√
n2

(arctg
√

α − 1)
2 − 4

π2
, (19)

n = 1, 2, . . .

Здесь Ωn = ωn/ω0, ωn –– собственная частота
колебаний n-ой моды и ω0 = πc0/2L –– частота
основной моды в однородной трубке длиной 2L,
изгибная скорость которой равна c0. Значение
параметра α, равное единице, соответствует среде
c постоянной скоростью c. В этом случае либо
плотность плазмы и магнитное поле постоянны,
либо они изменяются, компенсируя друг друга.
Собственные функции для собственных частот
можно записать в виде:

rn =

⎧⎨
⎩An cos

Dn sin

⎫⎬
⎭

[
πn arctg(z

√
α−1
L )

2 arctg
√

α − 1

]
, (20)

⎧⎨
⎩n = 1, 3, . . .

n = 2, 4, . . .

⎫⎬
⎭ ,

где An и Dn –– произвольные константы. Верхние
выражения в фигурных скобках соответствуют чет-
ным модам, а нижние–– нечетным.

Важными характеристиками при использовании
результатов теоретических исследований в гелио-
сейсмологии являются знак и величина отклонения
экстремумов амплитуд колебаний в среде с пере-
менными параметрами от их значений в однородной
плазме.

В работах (Верт, 2007; Верт, Ердели, 2008) для
рассматриваемой модели проведены исследования
формы амплитуд основной и первой мод колебаний
трубки. Было показано, что амплитуды колебаний
основной моды расположены внутри графика коси-
нуса, определяющего амплитуду колебаний в одно-
родной среде, а экстремумы амплитуд первой моды
смещены относительно экстремумов синусоиды к
началу координат.

Выражения (20) позволяют определить простые
формулы для определения величин смещений экс-
тремумов первой моды колебаний. Приравнивая на
отрезках [−L, 0] и [0, L] аргумент синуса соответ-
ственно к±π

2 , получаем( z

L

)
extr

= ± 1
1 +

√
α

, (21)
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где плюс относится к правой половине петли, а ми-
нус–– к левой. Отклонение экстремумов от середин
отрезков равно(

�z

L

)
extr

= ± 1 −√
α

2(1 +
√

α)
. (22)

В рассматриваемой модели параметр α > 1, по-
этому влияние неоднородности магнитного поля
приводит к смещению экстремумов амплитуд пер-
вой моды к началу координат, т.е. в направлении
убывания изгибной скорости (10), как это следует
из численных исследований (Верт, 2007; Верт, Ер-
дели, 2008).

СОБСТВЕННЫЕ КОЛЕБАНИЯ
НЕСИММЕТРИЧНОЙ ПЕТЛИ

С ПОСТОЯННОЙ ПЛОТНОСТЬЮ

Рассмотрим модель корональной петли, запол-
ненной однородной плазмой, состоящей из двух
несимметричных частей, которые соединяются при
вершине (z = 0) и опираются на активные области
с магнитными полями, модули напряженности ко-
торых различны. Зададим магнитное поле в виде

B(z) =

{
B1(z)
B2(z)

= (23)

= B(0)

{
1 + (α1 − 1)

(
z
L

)2;−L ≤ z ≤ 0;
1 + (α2 − 1)

(
z
L

)2; 0 ≤ z ≤ L;

где

α1 = B1(−L)/B(0); α2 = B2(L)/B(0); (24)

β1,2 =
[B(0)]2

2π(ρi + ρe)
(α1,2 − 1)

L2
.

В этом случае скорость изгибной волны пропорци-
ональна напряженности магнитного поля:

c1,2(z) ∝ B1,2 (z) . (25)

С учетом этого условия (24) можно переписать в
виде

α1 = c1(−L)/c0; α2 = c2(L)/c0; (26)

β1,2 = c2
0

(α1,2 − 1)
L2

.

Проводя в уравнении (4) для данной модели пре-
образования, аналогичные тем, которые были про-
деланы в предыдущем пункте для симметричной
трубки, получаем

d2ψ1,2

dτ2
1,2

+ (ω2 + β1,2)ψ1,2 = 0, (27)

где индекс 1 соответствует отрезку [−L, 0], а 2––
[0, L]. Новые переменные τ1,2 связаны с физиче-
ской координатой z формулой (7) и определяются
в явном виде

τ1,2 =

z∫
0

dz′

c1,2
= (28)

=
L

c0

√
(α1,2 − 1)

arctg
( z

L

√
α1,2 − 1

)
.

Так как плотность плазмы постоянна, функции ψ1,2

пропорциональны поперечным смещениям трубки
r1,2, поэтому общее решение уравнения (27) можно
записать в виде

r1,2[τ1,2 (z)] = (29)

= A1,2sin(k1,2τ1,2) + D1,2 cos(k1,2τ1,2).

Здесь A1,2 и D1,2 –– произвольные постоянные и
k1,2 –– волновые числа, которые с учетом дисперси-
онного соотношения (8) и значений β1,2 (26) равны

k1,2 =
c0

√
(1 − α1,2)

L
Q(1,2), (30)

Q(1,2) =

√
Ω2π2

4 (α1,2 − 1)
+ 1; Ω =

ω

ω0
. (31)

Будем считать концы трубки неподвижными. Кро-
ме этого, потребуем в точках сопряжения (z = 0)
непрерывности функций (29) и их первых произ-
водных. Удовлетворяя этим граничным условиям,
находим дисперсионное соотношение для стоячих
волн

tg(Q(1)
n

√
α1 − 1) ctg(Q(2)

n arctg
√

α2 − 1) = (32)

= −Q
(1)
n

√
α1 − 1

Q
(2)
n

√
α2 − 1

,

n = 1, 2, . . .

Здесь

Q(1,2)
n =

√
Ω2

nπ2

4(α1,2 − 1)
+ 1; Ωn =

ωn

ω0
. (33)

Амплитуды, соответствующие собственным часто-
там колебаний, определяются формулами

rn = Cn × (34)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
[
Q

(1)
n (arctg

√
α1−1+arctg( z

L

√
α1−1))

]
sin

[
Q

(1)
n (arctg

√
α1−1)

] ,

−L ≤ z ≤ 0,
sin

[
Q

(2)
n (arctg

√
α2−1−arctg( z

L

√
α2−1))

]
sin

[
Q

(2)
n (arctg

√
α2−1)

] ,

0 ≤ z ≤ L.

где Cn –– произвольные константы.
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Рис. 1. Частоты Ω1,2 основной и первой мод как функции параметра α.

Модель петли, в половине которой магнитное поле
постоянное

Рассмотрим модель несимметричной петли, в
левой половине которой магнитное поле не изменя-
ется, т.е. α1 = 1, а в правой убывает от основания
к вершине. Обозначим α2 = α > 1. В этом случае
дисперсионное соотношение (32) и собственные
функции (34) можно переписать в виде

tg
(

πΩn

2

)
ctg(Qn arctg

√
α − 1) = (35)

= −πΩn

2
1

Qn

√
α − 1

;

Qn =

√
Ω2

nπ2

4(α − 1)
+ 1,

n = 1, 2, . . . ;

rn = Cn × (36)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin πΩn
2

(1+ z
L

)

sin(πΩn
2

)
,

−L ≤ z ≤ 0
sin[Qn(arctg

√
α−1−arctg( z

L

√
α−1))]

sin[Qn(arctg
√

α−1)] ,

0 ≤ z ≤ L

На рис. 1 жирными линиями для такой моде-
ли построены графики зависимости относительных
частот основной и первой мод от параметра α.
Для сравнения помещены графики функций (19)
для симметричных моделей. Штриховые линии для

аргумента α, а штрихпунктирные для средних зна-
чений параметров неоднородностей петли, т.е. от
0.5(1 + α). Наконец, тонкие сплошные линии по-
строены для функций [Ω1,2(α) + Ω1,2(1)]/2 –– явля-
ющихся средними значениями для частот одно-
родной и соответствующей неоднородной симмет-
ричных моделей. Из рисунка видно, что частоты
колебаний как основной, так и первой мод несим-
метричной модели, меньше чем у отмеченных выше
симметричных моделей. Кроме того, при одина-
ковых параметрах α они также меньше значений
[Ω1,2(α) + Ω1,2(1)]/2.

На рис. 2 изображены графики амплитуд основ-
ной моды (36) несимметричной петли для значений
параметра α oт 1 до 4 с шагом 1. При α = 1 арка
является симметричной и однородной, графиком
амплитуды основной моды которой является коси-
нусоида. На рисунке она выделена жирной линией.
Из этих графиков можно заметить, что максимумы
амплитуд собственных колебаний несимметричной
трубки смещены в направлении более слабого
магнитного поля. При этом величина смещения
возрастает с увеличением параметра α. Интересно
также отметить, что в правой неоднородной части
графика кривые, так же как в симметричной модели
расположены “внутри” косинусоиды, в то время
как в левой однородной–– “вне”.

Аналитическое выражение для координаты, в
которой амплитуда основной моды принимает мак-
симальное значение, легко получить из форму-
лы (36) при −L ≤ z ≤ 0, приравнивая аргумент
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Рис. 2. Амплитуды основной моды (36) для значений
параметра α от 1 до 4 с шагом 1. Жирная линия––
косинусоида (α = 1).

синуса к π/2: ( z

L

)(1)

max
=

1 − Ω1

Ω1
. (37)

Рисунок 3 представляет амплитуды первой мо-
ды (38) для тех же параметров, что и на рис. 2.
Жирной линией выделен график синусоиды. Как
известно, в симметричной модели точки экстре-
мумов амплитуд первой моды симметричны от-
носительно начала координат. В несимметричном
случае картина качественно иная.
Во-первых, график амплитуды асимметричен.

Внутренний узел смещен от начала координат вле-
во, т.е. в сторону более слабого магнитного поля.
При этом координата узла легко определяется из
выражения (36):( z

L

)
knot

=
2 − Ω2

Ω2
. (38)

Во-вторых, смещения экстремумов несимметрич-
ны относительно узла, при этом они в отличие от
симметричного случая смещаются от середин от-
резков−L≤ z ≤ 0 и 0≤ z ≤L в одном направлении.
Из формул (36) также легко находятся аналитиче-
ские выражения для этих смещений. Отклонение
минимума амплитуды от середины отрезка −L ≤
≤ z ≤ 0 равно (

�z

L

)
min

=
2 − Ω2

2Ω2
. (39)
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Рис. 3. Амплитуды первой моды (36) для значений
параметра α от 1 до 4 с шагом 1. Жирная линия––
синусоида (α = 1).

Так как частота первой модыΩ2 > 2, то минимум ее
амплитуды смещается в направлении левого осно-
вания трубки. Как следует из рис. 3, отклонение
максимума, соответствующего части дуги с пере-
менным магнитным полем заметно превосходит по
величине смещение минимума. Точку максимума
можно определить с помощью выражения

( z

L

)
max

=
1 − tg ϕ2√

α−1

1 +
√

α − 1 tg ϕ2

∼= (40)

∼= Ω2 − 1
α − 1 + Ω2

,

где ϕ2 = π
2Q2
. Здесь вместе с точной формулой

представлено ее приближенное значение (относи-
тельная погрешность для рассматриваемых пара-
метров неоднородности α менее 8%), которое поз-
воляет записать простую зависимость от частоты и
параметра α отклонения максимума амплитуды от
середины отрезка 0 ≤ z ≤ L(

�z

L

)
max

∼= Ω2 − (α + 1)
2(Ω2 + α − 1)

. (41)

С помощью дисперсионного соотношения (19)
можно показать, что Ω2 (α) < α + 1, поэтому
смещение правого максимума (41) также как и
левого отрицательное.

В-третьих, максимальные значения амплитуд в
левой и правой частях одной и той же кривой
неодинаковы. Левый экстремум по абсолютной ве-
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Рис. 4. Графики зависимостей от параметра α1 смещений�z/L узловых точек и экстремумов основной и первой мод от
их значений в однородных трубках при постоянном значении параметра α2 = 2.676. Кривые “a” –– основная мода, “b” ––
минимумы и “c” –– максимумы первой моды и “d” –– внутренние узловые точки первой моды. Сплошные линии точные,
штриховые кривые–– приближенные значения.

личине превосходит правый и их отношение равно∣∣∣∣ r2[( z
L )min]

r2[( z
L)max]

∣∣∣∣ =

∣∣∣∣∣sin [Q2

(
arctg

√
α−1

)
]

sin (πΩ2
2 )

∣∣∣∣∣ , (42)

и это различие возрастает с увеличением парамет-
ра α.

Модель петли с переменным магнитным полем
на всей ее длине

Рассмотрим несимметричную трубку, в каждой
из половинок которой магнитное поле переменное.
Пусть в левой части трубки параметр неоднород-
ности равен α1, а в правой α2. Для определенности
будем полагать α2 > α1. Выше было показано, что
большим значениям параметра α соответствуют и
большие значения относительной частоты Ω. Из
соотношений (30), (31) следует, что это свойство
будет справедливо и для волновых чисел

k(α2) > kn(α1, α2) > kn (α1) , (43)

где kn(α1,2) –– волновые числа, соответствующие
собственным частотам (19) колебаний симметрич-
ных трубок. А это означает, что на половине трубки
с меньшим значением α1 волна короче, чем в ее
другой половине. Поэтому максимум амплитуды
основной моды будет смещен от начала координат
в направлении отрицательных значений аргумента,
т.е. в направлении меньших значений магнитного
поля. Величину этого смещения можно получить,

приравнивая в (34) аргумент синуса на отрезке––
L < z < 0 к π

2 . В результате находим

( z

L

)(1)

max
=

tg ϕ
(1)
1√

α1−1
− 1

1 +
√

α1 − 1 tg ϕ
(1)
1

∼= (44)

∼=
ϕ

(1)
1 − arctg

√
α1 − 1√

α1 − 1
,

где ϕ
(1)
1 = π

2Q
(1)
1

. Оценки показывают, что для наи-

более интересных для наблюдений случаев, когда
параметры α1,2 изменяются в пределах от 1 до 4
(т.е. поперечный радиус корональной трубки уве-
личивается от 1 до 2), величина ( z

L )(1)max� 1 и точное
и приближенное значения (44) практически сов-
падают. Это хорошо видно на рис. 4, где графики
этих функций представлены кривыми a, которые
сливаются в одну линию. Смещения максимумов
по абсолютной величине убывают с уменьшением
разности параметров α2 и α1 и обращаются в нуль
при их равенстве. Определим координаты внутрен-
него узла и точек экстремумов первой моды. Из
неравенств (43) следует, что узловая точка ( z

L)(2)
knot

будет смещена от середины трубки влево. Величи-
ну этого смещения можно получить, приравнивая
в (34) аргумент синуса на отрезке −L < z < 0 к
π. Таким образом, координата внутреннего узла
первой моды так же будет определяться формула-

ми (44), в которых ϕ
(1)
1 необходимо заменить на
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Рис. 5. График кривой F (α1, α2) = 0, где α1, α2 –– значения, при которых точка минимума амплитуды колебаний первой
моды (34) равна −0.5z/L. Поле MINUS–– отрицательные смещения, PLUS–– положительные. Знаком “+” отмечены
параметры, для которых построены графики рис. 6. Затененная область α1 > α2.

ϕ2 = π

Q
(1)
2

. На рис. 4 сливающиеся графики этих

функций обозначены кривой d.
Точки экстремумов амплитуды определяются

соотношениями, аналогичными выражениям (40):

( z

L

)(1,2)

(max)
= ±

tg ϕ
(1,2)
2√

α1,2−1
− 1

1 +
√

α1,2 − 1 tg ϕ
(1,2)
2

∼= (45)

∼= ± 1 − Ω(1,2)
2

α(1,2) − 1 + Ω(1,2)
2

,

где знак “+” и индекс “1” относятся к левому
минимуму, а знак “−” и индекс “2” к правому
максимуму и ϕ

(1,2)
2 = π

2Q
(1,2)
2

. На величину и на-

правление смещения экстремальных точек ампли-
туды первой моды оказывают влияние два фактора.
Во-первых, вследствие неоднородности магнитно-
го поля экстремумы смещаются к вершине петли.
Для симметричной трубки это смещение опреде-
ляется формулами (21). Во-вторых, асимметрия
петли приводит к деформации амплитуды, которая
выражается в отклонении обоих экстремумов в
направлении более слабого магнитного поля. Та-
ким образом, в половинке трубки с более сильным
магнитным полем оба фактора действуют в одном
направлении, а в той части трубки, где магнитное
поле слабее, их действия противоположны. В част-
ности, в половине трубки с более слабым полем при

определенных соотношениях между параметрами
α1 и α2 эти два вида смещений могут полностью
компенсировать друг друга. На рис. 5 представ-
лена диаграмма, на которой изображена кривая
F (α1, α2) = 0. Координаты точек, лежащих на этой
кривой, соответствуют значениям параметров α1,
α2, при которых такая компенсация происходит. С
помощью приближенной формулы (45) легко по-
лучить достаточно точное (относительная погреш-
ность ∼1%) выражение для собственной часто-
ты, соответствующей таким значениям параметров.
Оно имеет простой вид

Ω2
∼= α1 + 1. (46)

Поле диаграммы слева от кривой содержит пара-
метры, при которых минимум амплитуды смещает-
ся относительно точки −0.5z/L в отрицательном
направлении, а справа–– в положительном. При
этом частоты в левой части меньше значений (46), а
в правой больше. Затемненная область диаграммы
соответствует величинам, для которых выполняет-
ся неравенство α1 > α2.
На рис. 6 изображены амплитуды колебаний

первой моды (34) модели петли для значений па-
раметра α1, изменяющегося от 1 до 1.6 с шагом
0.2. Для всех кривых (кроме жирной линии) па-
раметр α2 = 2.676. Для штрихпунктирной линии
α1 = 1. Штриховая линия (α1 = 1.4) соответствует
амплитуде, минимум которой расположен в точке
−0.5z/L. Для сравнения жирной линией представ-
лена синусоида (α1 = α2 = 1). На рис. 5 знаком
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Рис. 6. Амплитуды первой моды (44) для значений
параметра α1 от 1 до 1.6 с шагом 0.2. Для всех кри-
вых (кроме жирной линии) параметр α2 = 2.676. Для
штрихпунктирной линии α1 = 1. Штриховая линия со-
ответствует амплитуде, минимум которой расположен
в точке (−0.5z/L, 0). Жирная линия-синусоида (α1 =
= α2 = 1).

“+” отмечены точки, соответствующие параметрам
α1 и α2, для которых построены графики амплитуд.
Прежде всего отметим, что экстремумы амплитуды
первой моды для несимметричной модели имеют
различные значения. В той части петли, где маг-
нитное поле меньше, амплитуда больше. Отноше-
ние амплитуды в точках экстремумов определяется
формулой∣∣∣∣∣ r2[

(
z
L

)
min]

r2[
(

z
L

)
max]

∣∣∣∣∣ =

∣∣∣∣∣sin [Q2

(
arctg

√
α2−1

)
]

sin [Q1

(
arctg

√
α1−1

)
]

∣∣∣∣∣ . (47)

Из рис. 6 также следует, что наибольшее смеще-
ние узловой точки и экстремумов происходит для
модели петли, в которой в одной из ее полови-
нок магнитное поле не меняется (α1 = 1). Если
на всей длине несимметричной трубки магнитное
поле переменное, то абсолютная величина сме-
щения внутреннего узла и правого максимума от-
носительно их значений в однородной среде воз-
растет с увеличением разности магнитных полей
у ее оснований. Подобная картина наблюдается и
для экстремальной точки в части трубки с более
слабым магнитным полем. Только в этом случае
смещение отсчитывается не от −0.5z/L, а от отри-
цательной величины (21), являющейся координа-
той минимума в симметричной петле с параметром
неоднородности, равным α1.

ЗАКЛЮЧЕНИЕ

Проведены преимущественно аналитические
исследования собственных изгибных колебаний
в симметричных и несимметричных корональных
петлях с переменным магнитным полем, запол-
ненных однородной плазмой. В основу положен
предложенный авторами метод безотражательного
распространения волн, позволяющий приводить
при определенных ограничениях волновые урав-
нения в неоднородных средах к уравнениям с
постоянными коэффициентами.
Для симметричных моделей получен уточненный

спектр собственных колебаний, а также найде-
ны простые формулы, определяющие величину и
направления смещения экстремумов первой моды
относительно их значений для однородной модели.
Исследованы колебания несимметричных арок,

опирающихся на области с различными по абсо-
лютной величине магнитными полями. Рассмот-
рены две модели. В первой предполагается, что
в одной половине дуги петли магнитное поле по-
стоянно, а в другой изменяется, уменьшаясь от
основания к вершине. Во второй модели на всем
протяжении трубки магнитное поле переменное.
Для каждого случая получены дисперсионные со-
отношения, исследована форма амплитуд основ-
ной и первой мод. Получены точные и простые
приближенные формулы, описывающие смещения
характерных точек (экстремумов и узлов) амплитуд
колебаний от их значений для однородной модели.
Показано, что в несимметричной модели амплиту-
ды колебаний первой моды отличаются по вели-
чине, причем амплитуда в части петли с меньшим
магнитным полем больше.
Работа выполнена при поддержке грантов Рос-

сийского фонда фундаментальных исследований
(грант № 13-02-00656) и Научного Фонда НИУ
ВШЭ.
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