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Optimal supplier choice with discounting
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This paper investigates a model for pricing the demand for a set of goods when suppliers operate discount
schedules based on total business value. We formulate the buyers’s decision problem as a mixed binary
integer program, which is a generalization of the capacitated facility location problem (CFLP). A branch and
bound (BnB) procedure using Lagrangean relaxation and subgradient optimization is developed for solving
large-scale problems that can arise when suppliers’ discount schedules contain multiple price breaks. Results
of computer trials on specially adapted large benchmark instances of the CFLP confirm that a sub-gradient
optimization procedure based on Shor and Zhurbenko’s r-algorithm, which employs a space dilation in the
direction of the difference between two successive subgradients, can be used efficiently for solving the dual

problem at any node of the BnB tree.
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1. Introduction

The rapid development of business-to-business electronic
markets has triggered the need for efficient algorithms to
allow an internet agent to source, that is to price in real
time, an order for goods from multiple competing suppliers.
The task is often complicated by two factors: (1) fixed costs,
which serve to reduce the number of suppliers actually used
to fulfill an order, and (2) discounts schedules offered by
suppliers to encourage purchase of greater quantities. Such
discount schedules may involve either the cancellation of a
fixed charge, for example to cover carriage costs, or increasing
percentage reductions off list price over a sequence of price
breaks.

Our study is motivated by the requirements of an online
supplier of pharmaceuticals to high-street chemists (retail
pharmacists). The company acts as an internet broker in the
sense that it carries no stock but, on receiving an enquiry
(tentative order) for quantities of pharmaceutical products, it
polls a set of wholesalers to determine which suppliers to use
taking into account all applicable discounts. It then provides
in real time a price quotation in answer to the enquiry based on
cost, but including a profit mark-up. The enquiry is converted
to a firm order if the total price of the basket of goods is
judged to be acceptable by the customer. Thus the broker’s
task is to source the order at least cost. Note that the terms
‘enquiry’ and ‘order’ will be regarded as synonymous below.
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We assume that the company has online access to a negotiated
‘static’ price list for each supplier, and there is no aggrega-
tion of customers’ enquiries or economies achievable through
‘bulk buying’, although in certain business contexts this would
be an interesting possibility to consider.

We formulate below a general model for the ‘buyer’s deci-
sion problem’ (BDP) incorporating two common types of
discount offered by suppliers: Type A: a cancellation or reduc-
tion in the fixed charge, and Type B: a percentage off the
list price of each item. Discounts based on the value of an
order have been termed a ‘business volume’ discount (BVD)
in contrast to a ‘total quantity’ discount when price breaks
are defined by number of units purchased (Goossens et al,
2004). Discounting may also take the form either of an ‘all
units’ policy modelled here, or an ‘incremental’ policy. For a
perspective on discounting theory and practice, see (Munson
and Rosenblatt, 1998) where a field study on 39 firms is
reported. An optimization model for vendor selection in the
presence of price breaks was reported in (Chaudhry et al,
1993), though at that time there was no requirement for an
online tool. The precise form of discounting employed will
depend on the application, however the methods we develop
for BDP can be easily generalized to other cases.

We show that the optimal allocation of a basket of goods
to a set of suppliers in the market is an integer program-
ming problem that resembles the capacitated facility location
problem (CFLP). A supplier’s price schedule represents a
set of per unit costs and fixed setup costs. An interesting
feature of our model is that the cost functions implied by
the discount structures described here are distinctive, being
discontinuous and in general neither concave nor convex. We
note the resemblance to ‘staircase cost functions’ proposed
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for modelling production and distribution costs when a plant
can be constructed in a range of sizes on a single site incur-
ring scale-dependent setup (and running) costs (Holmberg,
1994), (Holmberg and Ling, 1997). Unlike our situation
however, their fixed costs increase monotonically with plant
capacity.

The fast response time required in an online context moti-
vates the need for an efficient computational procedure for
solving BDP. Such a procedure should be capable of rapidly
solving large instances with possibly scores of suppliers
offering hundreds of products and operating discount sched-
ules containing multiple breakpoints. Although the efficient
solution of large-scale instances of CFLP has been the
subject of much research over many years (Cornuejols et al,
1991), (Agar and Salhi, 1998), (Bornstein and Azlan, 1998),
the development of more efficient solution heuristics for
large-scale problems remains an area of active research, see
for example (Barahona and Chudak, 2005) and (Klose and
Gortz, 2007). Such research has focussed almost exclusively
on Lagrangean relaxation techniques, see (Krarup and Bilde,
1977), (Beasley, 1988) and (Korkel, 1989). In this paper, we
report the results of investigating several new heuristics for
finding tight lower bounds for the Lagrangean dual problem
(LDP) for BDP involving subgradient optimization. A novel
feature of our study is the use of the ‘r-algorithm’ proposed
by Shor and Zhurbenko (Shor, 1998), (Shor and Zhurbenko,
1971), which employs space dilation techniques to implement
the subgradient optimization. We note the recent develop-
ment of memoryless space dilation techniques in (Sherali
et al, 2001) and related work by (Wu et al, 2006) in the
context of CFLP with general setup costs.

An outline of our paper follows. We first give in Section 2
some motivating examples to further illustrate the practical
context of our study. In Section 3, we formulate the BDP as
a mixed integer linear program assuming an all units BVD
discount policy. We show that a transformation making use of
‘pseudosuppliers’ results in a variant of the CFLP that may
be solved for large-scale instances (involving many suppliers
and multiple price breakpoints) by an efficient subgradient
procedure, the r-algorithm. Such a procedure, which employs
the geometric concept of space dilation in the direction of
two successive subgradients, represents an alternative to the
‘classical’ subgradient approach (Krarup and Bilde, 1977),
as implemented for example by (Beasley, 1988). In Section
4, we formulate the LDP and provide details of an efficient
solution method. Details of a BnB implementation including
two new branching rules and fathoming heuristics are
provided. We discuss the specialization to the BDP formula-
tion with pseudosuppliers of the ‘open’ and ‘close’ penalties
developed in (Khumawala, 1972), (Akinc and Khumawala,
1977) and further elaborated in (Beasley, 1988). Section 5
presents the results of computer experiments on a number
of generated instances (a) to compare solution efficiencies
of the r-algorithm with a classical subgradient method, and
(b) to examine the time requirements of solution procedures
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Figure 1 BVD ‘sawtooth’ discount function.

under different levels and types of discounting. We conclude
in Section 6 with a discussion and suggestions for future
research.

2. Motivating examples
2.1. Example 1

A mobile phone company announces that customers making
over £30 of calls in a month will receive a refund of £5.
In addition, customers making over £50 of calls in a month
will qualify for a 20% discount from published tariffs. The
discount schedule contains three piecewise linear segments
created from two price breakpoints at £30 and £50, repre-
senting ‘all units’ discounts of Type A and Type B, respec-
tively. The price p(v) of calls made to a total value v is given by

v if v <30
pw)={v-5 if 30<v <50
0.8v—5 if50<w

and the graph given by the bold line in Figure 1 has the typical
sawtooth form (Sadrian and Yoon, 1994). From this graph we
also observe the ‘more for less’ phenomenon (Goossens et al,
2004) that it can be cheaper to make more calls if the value of
telephone business is just less than either breakpoint, in order
to benefit from the next discount regime. By contrast the
dotted graph in Figure 1 represents the price-value relationship
under an ‘incremental’ discount scheme in which only calls
made above the £50 breakpoint qualify for the reduced tariff.

2.2. Example 2

Prices for packs of tulips and roses from two florists are given
in Table 1. Delivery charges are £10 for florist 1 and £5 for
florist 2. Charges are waived on orders over £50 in value.
Consider two separate orders: (a) for seven packs of tulips and
three packs of roses, and (b) for seven packs of tulips only.
Table 2 contains the optimal ‘transportation’ matrices indi-
cating how each order should be fulfilled at minimum cost.
The bracketed entries in the final column represent the ‘total
business value’ of the suborder from each supplier, used to
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Table 1 Florists’ price lists (£)
Delivery charge Price per pack Discount breakpoint
Tulips Roses
Florist 1 10 7 6 50
Florist 2 5 9 3 50

Table 2 Minimum cost orders

Delivery charge

No. of packs and total cost

Sub-order value

Tulips Roses
(a) Order for seven packs of tulips, three packs of roses
Florist 1 0 7 1 (55)
Florist 2 5 0 2 (6)
Cost (£) 5 49 12 66
(b) Order for seven packs of tulips
Florist 1 0 7 1 (55)
Florist 2 0 0 0 0)
Cost (£) 0 49 6 55
determine whether a discount applies. In the optimal solution for given constants {p;}, { i}, ke K ={1, ..., q}.
to (a) costing £66, packs of roses are purchased from both We usually expect that higher order values will attract
florists—illustrating that use of a single source is suboptimal. greater levels of discount so that 1 = pj>p3> ... and

In the optimal solution to (b) costing £55, the demand is
exceeded by ordering an additional single pack of roses from
the first florist—illustrating the ‘more for less’ phenomenon.

3. The buyer’s decision problem (BDP)

Consider a set of n products (items) indexed by j € J and
suppose that each item j can be supplied by a common set of
suppliers s € S at unit cost ¢’ from supplier s. We refer to ¢ =
(ci, ..., c}) as the list price for items supplied by supplier s.
Assume that each supplier offers discounts based on the
total value of the order placed with that supplier computed
according to the supplier’s list price. The amount and nature
of the discount is governed by a sequence of ¢ price bands. If
we suppose, for ease of notation, that g is the same for each
supplier, then given a set of breakpoints Vj < V| <--- <V}
the price bands for supplier s are consecutive intervals
B=[Vy, V), ..., I; = [V;ﬁl, V;). We will assume without
loss of generality that Vj =0 and V;' = co. An order placed
with supplier s for x} units of item j(; € J) forms a vector
x* = (x{, ..., x)) which has fotal business value (TBV)
given by v (x*) =}, cix;}.

The discounted price ©*(x*) that supplier s charges for the
order is assumed to take the form

™) = f )

jelJ

=f; +Zc;§jx‘;, say

jeJ

if v (x) € I}

fi=f; > ... in which case the price of suborder x* is
decreasing for successive price bands. We observe that, as a
consequence of this monotonicity, only one price band per
supplier will be utilized in an optimal solution. Note that
1 = p} means that ¢} = ¢}, that is the first price band k =1
corresponds to list price.

The broker receives an order comprising a set of demands
for D; units of item j(j € J) and seeks to reallocate d =
(D, ..., D,) among the suppliers at minimum cost. The set
of suborders {x*} should meet the total demand

S xzd (1)

seS

and minimize the total cost of supply

Cay=) =) 6)
ses

by taking advantage of all suppliers’ discounts. Minimizing
(2) will of course tend to restrict the number of suppliers. We
refer to this cost optimization as the buyer’s decision problem
(BDP) and note that x* may be real or integer, depending on

the context of the application.
Let x; ; denote the quantity of item j ordered from supplier
s in price band k. Now v*(x*) =}, ,cix} € I} for some
k =k, say, and clearly x; = 0 whenever k # k;, since it will
be optimal only for one price band ever to be used for any

supplier. Define
1 if Vi(x*) e I}
0 otherwise

3

V=



B Goldengorin et a—Optimal supplier choice with discounting 693

and re-index

yll, R y;; yf, e, yé;...; Vi ey y;

as a single sequence {y;};c;. We henceforth refer to I =
{1, ..., m} as a set of pseudosuppliers. A corresponding re-
indexing of f = fi, ¢;; = cij, x;; = x;; and I =[L;, U;)
leads to the following generalized CFLP in which the capacity
constraints represent lower and upper bounds on TBV.

BDP: min) 1 fiyi+ ) cix @
YT jeJ
st Liyi< Y xij<Uyi  Viel, (5)
jeJ
Y w<l  VseSs, (6)
ieps
> x=zD;  Viel ™
iel
vy €{0,1} Viel, ®)
xij € Z* Viel Vjel, 9)

where P* is the set of pseudosuppliers i corresponding to real
supplier s, and c?j = ¢j; is the unit list price of item j for
pseudosupplier i for i € P*.

The objective function (4) is precisely that of a stan-
dard (either simple or capacitated) plant location model.
Constraint (5) states that the TBV of the suborder supplied
from pseudosupplier i should fall within the appropriate
price band. As with the CFLP model proposed in (Beasley,
1988), the constraint (5) places both lower and upper bounds
on the supply from pseudosupplier i. However in BDP the
constraint (5) represents limits on total value rather than total
demand. Constraint (6) ensures that at most one price list
per supplier can appear in an optimal solution. The demand
constraint (7) may be expressed either as an equality or as
a lower bound. Our use of an inequality corresponds to the
‘more-for-less’ formulation mentioned by (Goossens et al,
2004), Section 4.2., which allows for the possibility that it
may be cheaper to over-fulfill demand in order to benefit from
a higher level of discount. Due to the assumed monotonicity
in pricing, a given bundle of goods from any supplier will be
optimally supplied using the single (highest) discount band k.

We may compare the BDP model with the usual formu-
lation of CFLP, see for example (Beasley, 1988). In CFLP
the variable x;; (0<x;; <1) is defined as the fraction of total
demand d; (for a single commodity) from customer j supplied
by a warehouse i. The contribution to the total cost is ¢;;x;;
where ¢;; is cost to supply 100% of d; to customer j from
warehouse i. There is also a fixed cost f; to open warehouse i.
By contrast in our model x,; represents the actual amount
of product j from supplier s and c;; the corresponding unit
cost of product j. Both the fixed cost f; and the variable
cost ¢,; are potentially discounted depending on the rotal

value v* (x*) of the suborder supplied by supplier s calculated
from that supplier’s list price. Our cost function is in general
discontinuous and can be compared to the staircase cost func-
tions considered by (Holmberg, 1994). The minimization of
a discontinuous function that is either piecewise linear or
concave is generally not well behaved and rather than deal
with such functions explicitly, we introduce the notion of a
pseudosupplier (s, k) to denote supplier s restricted to oper-
ating within price band k. The re-indexing (s, k) — i which
defines the ith pseudosupplier allows clear comparisons with
CFLP.

We note that in practice there may be restricted availability
of some product j from supplier s. We could therefore include
in our formulation of BDP additional sfock constraints of the
form

X,'j<S,'j, iel, jEJ (10)
for some constants {S;;}. However, for ease of technical
exposition and in computational experiments described in
Section 6, we have excluded such upper bound constraints
from the standard formulation of our model.

Finally, we emphasize that while x;; are integer variables
in this formulation of BDP, in other applications x;; may be
continuous, so that (9) will be replaced by x;; € R*.

4. Lagrangean relaxation of BDP

To construct the Lagrangean relaxation of BDP we write the
constraints (7) in the form D; — 3", _,x;; <0 and introduce
as a vector of corresponding Lagrange multipliers, the dual
variables 4 = (1, ..., 4,) where 4;>0, j € J. The LDP
corresponding to BDP can be stated as

LDP: maxF; (1D)
220
where
m m n n
F; = min DSyt Do D (ei—ipxit ) Dl p (12)
B i=1 j=1 Jj=1

subject to (5), (6), (8) and (9).

For each 4> 0 this Lagrangean dual subproblem is a relax-
ation of BDP, and decomposes into separable subproblems
for pseudosuppliers that are easily solved. As F; is a concave
piecewise-linear function of A, we may employ subgradient
techniques to seek a constrained maximum of (11), which
provides the best lower bound for the BDP as a whole.

To define optimal values of the binary variables y; we will
use the BnB method and Lagrangean heuristics. As stated in
(Beasley, 1993), the purpose of a Lagrangean heuristic is to
generate a sequence of Lagrange multipliers (defining lower
bounds) and a sequence of feasible solutions (defining upper
bounds) for the LDP. Solving the corresponding relaxation
LDP at any node of the BnB tree provides a lower bound to the
true integer optimum at that node. At any node some variables
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y; are fixed at 0, some at 1 and others are undetermined.
Accordingly at a general node we suppose, in the notation
of (Akinc and Khumawala, 1977) and (Beasley, 1988), that 1
has been partitioned into the index sets Ky, K|, K, such that

yi=0, ie€Ky,
yi € {0, 1},

Thus Ky, K; are the pseudosuppliers fixed closed, open,
respectively; K, are the undetermined pseudosuppliers. Then
let P, = |K|, Py = |K| U K3| and add the explicit bounds

yvi=1, i€k,
i € Ks. (13)

PL<) yi<Py (14)
i=1

on the total number of actual suppliers used. The solution to
the Lagrangean relaxation (12) for prescribed A together with
additional constraints (13) and (14) can be reduced to solving
two knapsack problems. The first knapsack problem performs
the minimization over {x;;} for each non-closed pseudosup-
plier i € K| U K,. The contribution to the dual function (12)
from pseudosupplier i if open is:

% = fi + I{le’_ijr}l;(cu — Aj)xij 15)

subject to (5) where x;; € Z". We note that solving the
1-D integer knapsack is NP-hard (Martello and Toth, 1990).
However, since our aim in solving the relaxation is to find a
lower bound to BDP it suffices to solve instead the continuous
knapsack relaxation. The minimum of (15) subject to (5) over
xij € R is achieved by a greedy heuristic, in which we order
the x;; by non-decreasing value of the ratio (¢;; —4;) /c?j and
set the components of x;; in turn to their maximum value
subject to (5). In case of infeasibility, we set y; =0 and x;; =0
for each j. The speed and simplicity of the solution {x;} thus
found is of course at the expense of an increased duality gap.

The second knapsack problem is a minimization problem
on the set of Boolean variables {y;}

n
Fizrgj?zfli%-i-zfli-l-z[)jij (16)

iekKy i€k y=1

subject to (6) and (8). For each supplier s, let f, =
min;epsnk,{%} and form the corresponding list of pseudo-
suppliers iy, iz, ... in non-decreasing order of 3. Define the
sequence of partial sums {¢,} by

n
bo=) %+) Dji
1

i€k, Jj=

¢y = So + o,

¢, =S-1+ 0 A7)

The smallest value of ¢,. such that P, <t*< Py gives an
optimal solution y* to (16) and provides a lower bound Zp =
F; to the value of BDP at this node. Let Zy be the value of the
incumbent, that is of the best feasible solution found so far.
We decide that the branch is fathomed if Zp > Z;, otherwise
we continue to develop this node. Some further details of the
algorithm are outlined below.

4.1. Reduction tests

This straightforward procedure for solving the dual
subproblem by solving two knapsack problems provides the
opportunity to check whether each y; variable can be fixed at
0 or 1 in subsequent branchings. We describe in this section a
modification of the reduction tests stated in (Christofides and
Beasley, 1983) in order to prevent multiple discount levels
for the same supplier appearing in an optimal dual solution.

Let M* denote the set of pseudosuppliers that are open in
the optimal solution to the LDP (12) subject to (14). Denote
by ¢ : I — S the mapping of pseudosuppliers onto real
suppliers. Let S*=0(M*) and let N*={j € Kx2\M* : 6(j) €
S*} be the set of closed pseudosuppliers in K, that cannot be
simultaneously open with the existing set of open pseudosup-
pliers M*.

4.1.1. Open penalties For any closed pseudosupplier i €
K>\ M* we calculate the change in Zp = F) if pseudosupplier
i is forced open.

Case 1: If i € N* then a(i) = o(k) for some already open
pseudosupplier k € K, N M* and we must close
pseudosupplier k.

Otherwise (i ¢ N*) we consider three further cases.

Case 2: |M*| = Py. Set k = arg maxek,nu+{;} and close
pseudosupplier k.

Case 3: Py <|M*| < Py. Dual solution is otherwise
unchanged.

Case 4: |M*|= P (P # Py). Set k as in Case 2 and close

pseudosupplier k if the objective function decreases
as a result.

The new lower bound that results if pseudosupplier i is opened
is then Zp + w; where:

for Cases 1 and 2

for Case 3 (18)

o; — max{0, o} for Case 4

0 — Oy

w; =y &

4.1.2. Close penalties For i € K, N M* we evaluate the
change in Zp as a result of closing pseudo-supplier i. Let
[ =arg min e\ py+\n+{2;}. If closing pseudosupplier i takes
the cardinality of M below the lower limit then pseudosupplier
1 is forced to enter M*. Otherwise pseudosupplier / enters only
if an improvement in the dual objective results. The new lower
bound that results from closing pseudosupplier i is Zp + y;
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where

— if M| = P,
Vi = { . . (19
—o; +minf{0, oy} if [M*|> Py,
4.1.3. Narrowing the bounds P, Py Each ¢, in the
sequence (17) represents the value of an optimal dual solu-
tion F; subject to the cardinality constraint |M*| = t. There-
fore F, is a lower bound for the original BDP with the
constraint (14) replaced by the tight cardinality constraint
Yo yi =t. When solving the dual subproblem, it requires
only a little additional computation to determine the maximal
interval [#1, ] for which F) <Zy,Vt € [#,]. We can
thereby reduce the interval [P, Py] to [t1, #]. Note that
[t1, 2] will be non-empty since ¢,. < Zy, otherwise this
branch would have been fathomed on solving the dual sub-
problem.

4.2. Subgradient procedure

The family of ‘r-algorithms’ (Shor and Stetsyuk, 2002)
has been developed for the unconstrained maximization of
concave objective functions over a continuous domain. The
r-algorithm is a refinement of the classical subgradient
method with space dilation developed by Shor and co-
workers in the early 1970s (Shor, 1970), which Todd has
identified as an example of a rank-one quasi-Newton method
(Todd, 1986). The refinement employs space dilation in the
direction of the difference between two successive subgra-
dients. At the optimal solution {x;“j} to the Lagrangean dual
subproblem (12), the value of the supergradient is

m
ViF=Dj =Y xj;, j=1...n
i=1

The non-negativity constraints 4; >0 can be incorporated by
the use of a symmetrizing transformation A; = |u;| where
u; € R.

The computational efficiency of the r-algorithm depends
on a choice of the space dilation coefficient o« and adap-
tive tuning the values of the step multiplier (see Shor, 1998,
p 104). We have applied the r-algorithm with o chosen in
the interval [2,4]. This choice seeks to achieve as large as
possible an improvement of the objective function along the
current direction of search. In computer experiments reported
below, timings are compared for the classical subgradient
method and the r-algorithm on simulated instances. In our
experiments, no speed improvements were introduced by the
recently developed memoryless space dilation and reduction
strategy of (Sherali et al, 2001).

4.3. Generating feasible solutions

The BnB algorithm requires a heuristic to generate good
feasible solutions in order to prune the BnB tree efficiently.
Given a set of open pseudosuppliers M* from the solution to

the LDP (11) we seek

ZMY) =) fi+min )Y e (20)

ieM* ieM* jeJ
subject to
Li<) xij<U;, ieM* 1)
jeJ
Y xi=Dy jeld (22)
ieM*

and constraint (9). This problem, whether x;; is integer or real,
is a generalized transportation problem with upper and lower
bounds on the total value sourced from each pseudosupplier.
In computer experiments, we have taken the above model with
only the lower bound in (21) and used CPLEX to solve the
continuous problem. The optimal solution is rounded up to
the nearest integer solution. We then check whether the upper
bound in (21) holds. If not, owing to the nature of our discount
function we are able to find another pseudosupplier for which
constraint (21) will be valid and for which the optimal value
will be less.

4.4. Branching procedure

We have implemented two new heuristics for choosing the
branching variable from among the undecided variables
{vi}ick, that are non-integer valued in a solution to the
relaxed LDP (11), (12). In our first approach we have used
a heuristic procedure due to (Belyaeva et al, 1978) and not
widely known, for estimating the optimal values of {y;}. The
calculation is based on an ‘average’

k

hy!

‘= fim | 2=t (23)

=) :
- Zz:lhl

of the values of y; encountered during the subgradient iteration
(A"} that we presume converged to some optimal value 1.
Here h, and y; are, respectively the step-length and value
of y; at step ¢ of the iteration. If all y* are integer, then
no branching is needed. Otherwise we select the ‘most non-
integral’ y; using the smallest value of |y — % | as the criterion
and branch first on the subproblem y; = 1.

In our second approach that is also new, we determined the
branching variable y; through the open and close penalties
(18), (19) obtained after solving each dual subproblem (12).
During the sequence of iterations {4’} let Z!, denote the dual
bound F; (16) for 2= 2" and let »} and 7! denote the corre-
sponding values of (18), (19). The corresponding best lower
bounds are

F° =max{Z}, + ®!} and
t

FE =max{Z}, + 7!} (24)
t

We branch by the variable i for which F© — F© is maximal.

If F£ > F°, then we set y; =1 (open). Otherwise we set y; =0

(closed). Our computational experiments on Set 3 instances
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Table 3 Comparison of subgradient procedures with and without scaling

OR Lib instance No. suppliers No. items Scaling y/n Classical subgradient r-algorithm
No. branchings No. iterations Time No. branchings No. iterations Time

Cap 71 16 50 y 4 94 3 2 211 6

n 21 1240 12 2 166 5
Cap101 25 50 y 6 43 4 2 201 7

n 9 442 8 2 161 7
Capl31 50 50 y 9 115 5 4 250 15

n 31 886 27 2 201 13

Table 4 Effect of discount type and level on execution times (s)
Cap 131 derived instance Timings (s)
Classical r-algorithm
Unscaled Scaled Unscaled Scaled

A0+ BO 1.8 1.4 2 3
A25 191 62 133 147
A40 548 325 545 666
A50 1413 755 2492 2167
A60 1702 958 2231 2246
A75 1082 316 1037 645
A100 275 36 110 151
B10 3 3 4 3
B15 6 2 4 3
B20 13 5 4 3
A25 +BI10 126 36 90 87
A50+B10 106 44 43 46
A75+ BI10 71 26 15 20
A100 + B10 50 6 7 7

below have shown that such an assignment of y; leads very
fast to a primal feasible solution that is close to an optimal
solution.

5. Computational experiments

We have carried out computer experiments to compare the
performance of the BnB procedure described above using
two subgradient methods for finding lower bounds, the
‘r-algorithm’ and the ‘classical’ subgradient approach of
Christofides and Beasley (1983). In this comparison, three
datasets were used. Problem sets 1 and 2 were adapted
from three uncapacitated facility location problem instances
derived from the OR benchmarks library (Beasley, 1990):
Cap 71, Cap 101 and Cap 131. Problem set 3 was adapted
from the instance Uniform-123 in the Library of Discrete
Location Problems maintained by the Sobolev Institute of
Mathematics in Novosibirsk (Kochetov and Ivanenko, 2003).
It is known to be a hard instance. Programs were compiled
using Compaq Visual Fortran 6 and run on a PC with Intel
X86-735 Mhz processor under Microsoft Windows 2000.

5.1. OR Library—Set 1

This problem set is adapted from three instances in the OR
benchmarks library: Cap 71 with m = 16 plants, n = 50
customers; Cap 101 withm=25, n=50; Cap 131 withm=n=
50. A single breakpoint at V = 50 000 was introduced in all
suppliers, when a fixed Type A discount of value 7500 became
applicable. The range of variation of costs (unit prices) {c;;}
is [0, 1.4 x 10°] that of demands {D,} is [31, 1.3 x 10*]. We
wished to compare the efficiency of the subgradient proce-
dures and the sensitivity of each procedure to scaling of the
the demands {D;}.

Table 3 summarizes the comparison. Detailed are the
number of branchings, the total number of iterations and
computing times (s) for both methods. Each instance was
solved with and without scaling the demands {D;} to
unity.

We see that the number of branchings is uniformly less for
the r-algorithm, indicating that the r-algorithm returns tighter
lower bounds than the classical subgradient method. Solution
times however are not markedly different due to greater over-
heads in computing subgradients for the r-algorithm. Scaling
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Table 5 Exact and approximate solution times for ‘Uniform-123’ instances

Uniform-123 + discount type % Accuracy

Range factor D

Classic subgradient r-algorithm

if scaled Time (s) Value Zy; Time (s) Value Zy;
A0+ B0 exact unscaled 957 71342* 1379 71342*
A0+ BO exact 2 2137 71342 1557 71342*
A0+ BO exact 1000 7065 71342* 1612 71342%
A0+ BO 1 unscaled 383 72034 565 71342*
A0+ BO 2 unscaled 147 72 606 314 72080
A0+ BO 3 unscaled 61 73377 78 73422
10 938 71342 403 72681
A30 3 unscaled 293 71716 1596 71344
A50 3 unscaled 903 68815 2836 68902
A50 5 unscaled 292 70396 411 69476
B20 3 unscaled 92 72282 154 71704
B50 3 unscaled 99 71086 5442 72375

before solution is effective for the simple subgradient method,
but does not affect the performance of the r-algorithm.

5.2. OR Library—Set 2

Table 4 presents CPU timings (s) to solve instances from
problem set 2. Each instance is derived from the OR Library
dataset CAP131 with m = n = 50 by adding different types
and levels of discount to create two price bands. The level of
discount offered in the second price band is indicated in the
dataset name as a percentage reduction, respectively in fixed
cost { f;} in the case of Type A and from the unit prices {c;;}
in the case of Type B.

The results indicate that the r-algorithm generally takes
more time to compute the bound than the classical subgra-
dient method. The case A0 + BO is the undiscounted case
that corresponds to a simple plant location (SPLP) model
without pseudosuppliers and is clearly very fast. Problems
with Type A discounts require much more computing time to
solve than instances with a purely Type B discount although
the instance A100 that corresponds to the total removal of
fixed costs for orders above the value threshold is also solved
in less time. The most difficult cases are Type A instances
with 50-60% discount. Timings are much reduced when both
types of discount are applicable. This might be explained,
intuitively, by the observation that when suppliers offers both
types of discount simultaneously there is an incentive to use
fewer suppliers, making the corresponding instance easier to
solve.

5.3. Sobolev Institute—Set 3

For problem set 3, instances with m = n = 100 and different
types/levels of discount were generated from a single dataset
Uniform-123 containing m =100 plants and n=100 customers
with D; =1, each j € {1, ..., n}. Each supplier was given a
single price break with f; = 3000 and f; =0, giving rise to
200 pseudosuppliers. D; was either left unsealed or generated

as uniformly distributed pseudorandom numbers in the range
[1, D] where the range factor D is tabulated (Table 5).

The results in Table 5 show CPU times (s) taken to find
exact and approximate solutions to within a prescribed level
of accuracy. The value of the best feasible solution found so
far, Zy, is also given with * indicating termination occurs at
a true minimum.

We observe that the classical subgradient approach solves
many of our instances more efficiently than the r-algorithm.
However, solution times are generally of the same order of
magnitude, although in one instance (B50;3%) the r-algorithm
took more than 50 times longer. We note, however that
the performance of the r-algorithm is also influenced by
different choices of tuning parameters. When scaling of {D,}
is performed so the demand for different products varies,
we see an increase in the solution times using the simple
sub-gradient algorithm. However the solution times by the
r-algorithm remain much more stable. The largest solution
times for approximate solutions are observed on instances
with the pure Type A discounts of 50%.

6. Conclusions

We have addressed a general problem of importance in
e-commerce, how to determine a minimum cost assignment of
an order for a basket of goods to a set of suppliers taking into
account fixed charges and some common types of discounting
policies. The fast response time required in an online
context motivates the need for an efficient computational
procedure.

Our integer programming formulation may be regarded as
a new type of capacitated facility location model for which
solution procedures based on Lagrangean relaxation have
been extensively studied. Two BnB algorithms have been
implemented that differ in the method of computing the
lower bounds. The first employs the dual-based Lagrangean
heuristic based on the ‘classical’ subgradient method of
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Krarup and Bilde (1977) and the second is the ‘r-algorithm’
based on space dilation in the direction of difference of
two consecutive supergradients due to Shor and Zhurbenko
1971).

Computational experiments show that:

e Although the r-algorithm produces tighter bounds giving
a reduced BnB tree, the classical subgradient algorithm
achieved comparable solution times on test problems.

e The ‘self-tuning’ nature of the r-algorithm means however
that solution times may be less sensitive to large differ-
ences in scale of the problem coefficients if this method is
adopted.

e Discounts of Type A (change in fixed costs) may present
more of a computational challenge than Type B (% change
in variable cost).

We conclude that Lagrangean relaxation techniques can effi-
ciently solve to optimality large-scale instances of the buyers
decision problem involving many hundreds of suppliers and
price lists containing multiple price breakpoints. On the
basis of the instances solved, it is unclear whether the extra
programming required to implement the r-algorithm will be
justified by faster solution speeds.

The methods developed here are the basis for further studies
into online sourcing of goods with different discounting poli-
cies. The issue of bulking or aggregating orders is one we
have not addressed here. In practice it is common for suppliers
to operate more complex discounting policies, for example
based on the total value of orders aggregated over a time
window. Such an environment requires an optimal strategy
that evolves over time. A supplier faced with current compe-
tition in a specific market for products and services may make
use of these optimal solutions as a tool for evaluating alterna-
tive price lists and discounting strategies. We foresee natural
developments of our model motivated by recent research into
the theory and practice of reverse auctions.

Finally, we note that optimization models involving linear
and fixed transaction costs have recently been proposed for
portfolio optimization in the financial context. Such models
incorporate a stochastic dimension as the objective function
coefficients are rates of return that are assumed to occupy a
probability space (Lobo et al, 2007).
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