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Introduction

This book is an introduction to the topological classification of smooth structurally
stable cascades on closed orientable 2- and 3-manifolds. First of all, we wish to
point out some terminological differences traditional for the Russian school of the
dynamical systems. The Russian term “cascade” introduced by D. Anosov means a
discrete dynamical system induced by a diffeomorphism on a manifold. The
abbreviation “A-diffeomorphisms” means “Axiom A diffeomorphisms”. The term
“rough system” is slightly different from its English counter part “structurally stable
system” but the sets of rough and structural stable systems coincide.

The topological classification is one of the main problems of the theory of
dynamical systems. The main idea is to find topological invariants of the decom-
position of the manifold into trajectories (topological invariants are understood to
be characteristics of the system which are invariant with respect to the topological
equivalence or the conjugacy). The results presented in this book are mostly for
dynamical systems satisfying Smale’s Axiom A. The set of the non-wandering
points of such a system is hyperbolic and it coincides with the closure of the set
of the periodic points. It is important to note that Smale’s Axiom A is the necessary
condition of the structural stability (roughness) of a dynamical system.

The topological classification of structurally stable flows (dynamical systems
with continuous time) on a bounded part of the plane and on the 2-sphere follows
from the results of E. Leontovich and A. Mayer [34, 35] where actually more
general class of dynamical systems was considered. The classification was based on
the ideas of Poincaré–Bendixson to pick a set of specially chosen trajectories so that
their relative position completely defines the qualitative structure of the decom-
position of the phase space of the dynamical system into trajectories. E. Leontovich
and A. Mayer also exploited the idea of A. Andronov and L. Pontryagin about the
structural stability (roughness) of the dynamical system (for details see [3]).
M. Peixoto generalized these results [43] and suggested a graph (Peixoto graph) as
the complete topological invariant for structurally stable flows on surfaces. Peixoto
graph generalizes Leontovich–Mayer invariant which was called a scheme and
which was constructed for flows on the plane and on the sphere.
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Structurally stable (rough) flows on surfaces have only finitely many singular-
ities and finitely many closed orbits, all of which are hyperbolic. They also have no
trajectories joining saddle points and no nontrivial recurrent trajectories (i.e.,
recurrent trajectories other than singularities and closed orbits). Under these con-
ditions the topological classification of such flows is reduced to a combinatorial
problem. The absence of nontrivial recurrent trajectories for structurally stable
flows on the plane and on the sphere is immediate from the topology of these
surfaces but this is not so trivial for structurally stable flows on orientable surfaces
of genus g[ 0. At first it was proved by A. Mayer for structurally stable flows with
no singularities on the 2-torus [36]1 and later by M. Peixoto [41, 42] for structurally
stable flows on surfaces of any genus (see also [39]). M. Peixoto also proved
denseness (in C1-topology) of the structurally stable flows in the space of flows on
surfaces.

In contrast to the case of flows on surfaces, manifolds of dimension more than 2
(more than 1) admit flows (cascades) with homoclinic trajectories and this implies a
complicated structure of the set of the trajectories which was first understood by
A. Poincaré [44]. Later G. Birkhoff [10] while studying measure preserving maps
proved the existence of infinitely many periodic orbits on the annulus in the
neighborhood of a homoclinic point. S. Smale in 1961 [47] constructed an example
of a structurally stable diffeomorphism of the 2-sphere with infinitely many periodic
orbits which is now known as “Smale horseshoe”. This was the key example that
showed the difference between structurally stable flows (cascades) on manifolds of
dimension more than 2 (more than 1) and structurally stable flows on surfaces.
Another important discovery was made by D. Anosov in [4] where he studied
geodesic flows on Riemannian manifolds of negative curvature and in [5] where he
introduced the most important class of Y-systems (now flows and diffeomorphisms
of this class bear his name) and proved the structural stability (roughness) of the
systems of this class. Generalizing further S. Smale introduced a special class of
Smale’s Axiom A systems, i.e., systems whose hyperbolic non-wandering set
coincides with the closure of the set of the periodic points. The non-wandering set
of a system of this class decomposes into finitely many closed invariant basic sets
and on each of them the system acts transitively. The dynamics of such a system on
each nontrivial basic set (neither a periodic orbit nor a fixed point) is in some way
similar to the behavior of the Smale horseshoe on its non-wandering set.

At first in 1960 S. Smale [46] speculated that on manifolds of dimension more
than 2 the structurally stable flows are exactly the flows that have finitely many
singular points and finitely many periodic orbits, all of them hyperbolic, while the
invariant manifolds of the periodic orbits intersect transversally (it was analogous to
the structurally stable flows on the 2-sphere). But later S. Smale and J. Palis [38, 40]
showed that these flows are indeed structurally stable but unlike the structurally
stable flows on surfaces they are not the only ones (one can consider a flow that is a

1Actually in [36] A. Mayer found the conditions of structural stability for cascades (discrete
dynamical systems) on the circle and he also got the topological classification for these cascades.
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suspension over the Smale horseshoe diffeomorphism; it is structurally stable but it
has the countable set of the periodic orbits). Moreover, S. Smale [48] showed that
the structurally stable flows on manifolds of dimension more than 2 are not generic.

Nevertheless, the flows similar to the structurally stable flows on surfaces are
very important for applications as well as for the general theory. The latter is due to
the fact that the dynamics of these flows is closely connected with the topology
of the phase space. In particular S. Smale inequalities [46] similar to Morse
inequalities hold for them. Therefore this class of flows (named Morse–Smale
flows) was thoroughly studied. Note that though a Morse–Smale flow has only
finitely many hyperbolic singular points and finitely many closed orbits the
dynamics of such a flow on its wandering set can be quite complicated. For
example L. Shilnikov and V. Afraimovich [1] showed that the restriction of a
Morse–Smale flow to the closure of the heteroclinic trajectories is topologically
conjugated to the suspension over the topological Markov chain. Later (similarly to
flows) the discrete dynamical systems with a finite hyperbolic non-wandering set
and such that the manifolds of distinct periodic points intersect transversally were
called the Morse–Smale systems.

Thus the approaches to the topological classification of the structurally stable
dynamical systems on manifolds come roughly under two headings:

I. singling out special classes of Morse–Smale systems for which it is possible to
construct a complete topological invariant;

II. construction of complete topological invariants for the restriction of the
dynamical system to some neighborhood (support) of the given nontrivial
basic set.

Results in these directions led to construction of complete topological invariants
for important classes of structurally stable systems with nontrivial basic sets. The
bulk of the results for diffeomorphisms on 2- and 3-manifolds is mainly due to the
fact that the dynamics of the restriction of a diffeomorphism to its nontrivial basic
set in many important cases is determined by the hyperbolic automorphism induced
by the restriction of the diffeomorphism to the support of the basic set. Whereas the
dynamics of the restriction of the diffeomorphism to its wandering set is defined by
a finite graph describing the asymptotic behavior of the wandering points (i.e. the
graph contains the information to which basic set the wandering point tends). In
addition the graph is equipped with the information on the topology of the
embedding of the invariant manifolds of the saddle points into the ambient manifold
as well as the information on the structure of the heteroclinic intersections of the
invariant manifolds.

The results presented in this book can be summed up as follows.

• The topological classification of the gradient-like diffeomorphisms on 2- and
3-manifolds (see Chaps. 3 and 5)

The constructed topological invariants are the combinations of the classic
combinatorial invariants and the new topological invariants introduced in [11, 12,
15, 27] by Ch. Bonatti, V. Grines, V. Medvedev, E. Pecou, O. Pochinka for the
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description of the topology of the intersection and of the embedding (possibly wild)
of the invariant manifolds of the saddle periodic points into the phase space. These
invariants are the specially constructed manifolds (the characteristic spaces) con-
taining embedded sets of closed curves, tori, and Klein bottles. For the Morse–
Smale diffeomorphisms on 3-manifolds these new invariants led to the study of the
bifurcations which occur when the embedding of the invariant manifolds of the
saddle periodic points changes its type. In Chap. 4 these bifurcations are described
for the so-called Pixton class of the Morse–Smale diffeomorphisms, i.e., such
diffeomorphisms whose non-wandering sets consist of exactly four fixed points:
two sinks, one saddle, and one source. Our presentation follows [14].

• The construction of smooth global Lyapunov functions for the Morse–Smale
diffeomorphisms (see Chap. 7).

C. Conley [18] in 1978 proved that any dynamical system on a closed n-
manifold possesses a continuous function which is constant on the so-called chain
components and which strictly decreases along the orbits not belonging to the chain
recurrent set of the system. Such a function is called a complete or global Lyapunov
function and Conley theorem is called the fundamental theorem of dynamical
systems. Throughout this book we omit the word “complete” (“global”) for
Lyapunov function. If a Lyapunov function is smooth and the set of its critical
points coincides with the chain recurrent set, then this function is called the energy
function. Very generally smooth flows do admit an energy function (see, e.g. [2],
Theorem 6.12), but it is not true even for Morse–Smale diffeomorphisms.

S. Smale was the first to construct energy functions. In 1961 he proved that a
gradient-like flows (i.e., Morse–Smale flow without closed orbits) has an energy
function which is a Morse function.

K. Meyer [37]2 in 1968 generalized this result and constructed an energy
function for any Morse–Smale flow, which actually was a Morse–Bott function.
This results prompted M. Shub [45] and F. Takens [49] to put forward a hypothesis
that any Morse–Smale diffeomorphism possesses an energy function. D. Pixton
proved it to be true for cascades on surfaces but he also constructed an example of a
diffeomorphism on the 3-sphere that admits no energy function. The idea was based
on the wild embedding of the separatrices of the saddle points into the ambient
space. In [21–24] V. Grines, F. Laudenbach, and O. Pochinka showed that the
existence of an energy function for a Morse–Smale diffeomorphism f : M3 ! M3

depends on the type of the embedding of the global attractors and the global
repellers which are the closures of the 1-dimensional stable and unstable manifolds
of the saddle periodic points respectively.

• Connection between the dynamics of Morse–Smale cascades and the topology
of the ambient space (see Chap. 6).

2In the paper by K. Meyer [37] there is an inaccuracy noted by F. Laudenbach. The global
construction of the energy function in the neighborhood of the closed orbit is not actually given.
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There is a nontrivial connection between the periodic data and the behavior
of the stable and the unstable manifolds of the saddle periodic points of a Morse–
Smale cascade f on the one hand and the topology of the ambient space on the
other. Let

gf ¼ rf � lf þ 2
2

;

where rf is the number of the saddles and lf is the number of the node (sink or
source) periodic points of the diffeomorphism f . In Sect. 6.1 we present the
topological classification of the closed 3-manifolds which admit Morse–Smale
diffeomorphisms without heteroclinic curves, i.e., such Morse–Smale diffeomor-
phisms that the invariant 2-manifolds of their saddle periodic points are disjoint. In
this case the ambient manifold is either the 3-sphere (if gf ¼ 0) or the connected
sum of gf copies of S

2 � S
1. Our presentation follows [13].

In Sect. 6.2 we prove that if a diffeomorphism has no heteroclinic orbits
(gradient-like diffeomorphism) and all the frames of the 1-dimensional separatrices
of the saddle periodic points are tame, then the ambient manifold admits Heegaard
splitting of genus gf . Our presentation follows [31].

• The topological classification of nontrivial basic sets (i.e., basic sets which are
not periodic orbits) of diffeomorphisms on 2-manifolds (see Chap. 9).

The key point in the construction of topological invariants for the basic sets on
surfaces is the idea to consider the universal covering of the support of the basic set
and study there the asymptotic behavior of the preimages of the invariant manifolds
of the points of the basic sets. The universal covering in this case is either the Euclid
plane or the Lobachevsky (hyperbolic) plane (or a subset of the Lobachevsky
plane). A. Weil was the first to suggest this idea in his report in the First
International Topology Conference in Moscow in 1935. D. Anosov applied it in the
1960s to the study of the asymptotic behavior of the covering flow on 2-surfaces
distinct from the sphere. The idea was further developed by S. Aranson, V. Grines,
E. Zhuzhoma, G. Levitt in the 1970s–1980s and it led to the topological classifi-
cation for important classes of flows, foliations, and 2-webs with nontrivial recur-
rent orbits and leaves on surfaces (see the survey [9] and the monograph [6]).
Further, in the papers by V. Grines, Kh. Kalay, R. Plykin these methods were
applied for the classification of nontrivial basic sets of surface diffeomorphisms (in
particular 1-dimensional attractors and repellers). This approach proved to be
efficient to show the existence of structurally stable diffeomorphisms in the
homotopy classes of the surface diffeomorphisms described in the Nielsen–
Thurston theory (see the surveys [7–9, 20] and the monographs [6, 17]).

Notable results in the construction of the algorithmic classification of the
1-dimensional basic sets of A-diffeomorphisms of surfaces were made by A. Zhirov.
They are based on the famous example by Plykin of a diffeomorphism of the
2-sphere with one 1-dimensional attractor and four sources. This example at the
time greatly helped in understanding of the complex structure of hyperbolic
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attractors on surfaces. A. Zhirov has recently published a book on this subject [50],
thus we do not include these results here.

The results presented in this book provide a base for the classification of
2-dimensional basic sets of A-diffeomorphisms on 3-manifolds. The topological
classification of 2-dimensional surface basic sets was given in [26] and ðn� 1Þ-
dimensional orientable expanding (contracting) attractors (repellers) on the n-torus
(n� 3) were classified in [28–30]. As we mentioned before the classification of
nontrivial basic sets and Morse–Smale diffeomorphisms gave rise to the topological
classification of important classes of structurally stable diffeomorphisms on 2- and
3-manifolds. In his paper [19] V. Grines gave the topological classification of
structurally stable cascades on orientable surfaces if the nontrivial basic sets of the
cascade are 1-dimensional and the wandering set contains only finitely many
heteroclinic orbits. Ch. Bonatti and R. Langevin in their book [16] presented the
topological classification of arbitrary structurally stable diffeomorphisms of ori-
entable surfaces. In [28–30] there are the classifications of structurally stable dif-
feomorphisms on n-manifolds if the non-wandering set of a diffeomorphism
contains an orientable expanding attractor or a contracting repeller of co-dimension
one. In the recent papers [25, 32, 33] the topological classification was constructed
for structurally stable diffeomorphisms of 3-manifolds whose non-wandering sets
are 2-dimensional. We omit these results here as the exact wording is fairly com-
plex and the proofs fall outside the scope of this book.

At present there is a number of surveys and books on topics similar to those
presented in this book. But the main results on the topological classification of
discrete dynamical systems are widely scattered among many papers and surveys.
This book tries to present these results systematically. The reader needs be familiar
with the basic concepts of the qualitative theory of dynamical systems which are
presented in Chap. 1 for convenience. In Chap. 10 we briefly state the necessary
definitions and results of algebra, geometry, and topology.

When stating ancillary results at the beginning of each part we sometimes refer
to sources which are readily available rather than the ones from which the result
originates.

This book tries to present a reasoned exposition of the recent results on the
topological classification of A-cascades. We do not try to include all known results
but rather focus on the nontrivial effects of the dynamical systems on 2- and
3-manifolds. We present the classical methods and approaches which we consider
to be promising for the further research.

The book consists of ten chapters. At the beginning of each chapter we give the
necessary definitions and formulate the results. Proofs are presented thereafter with
the exact statements of the results given once again for convenience. For the first
reading, the reader might omit the proofs but confine oneself to the presented
notions and facts.
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