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Abstract—The author constructs a one-particle distribution generalizing the Maxwell–Boltzmann
and Bose–Einstein distributions for classical particles, without incurring the Gibbs paradox, and,
simultaneously, constructs the thermodynamics of fluids and phase transitions on the basis of
the concept of creation of dimers and clusters and obtains well-known laws and relations of
thermodynamics as well as explains some recently, discovered effects (such as the jamming effect).
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1. ON THE NEW CRITICAL POINT FOR THE LIQUID PHASE

Earlier we have explained the jamming effect (i.e., that of incompressibility of fluids) by using a new
distribution close to the Bose–Einstein distribution. Further, using a scheme for finding the distance
between rest points in the scattering problem, we found the Zeno line and the critical points Tcr, Zcr, and
ρcr. In this section, we wish to show that there exists another critical point in the liquid phase; it is also
related to the jamming effect, which, as is known, is related to vitrification. The process of conversion of
liquid into glass proceeds smoothly, with no aerosols and admixtures in the liquid phase and without a
phase transition of the first kind of liquid to crystal.

This effect was not obtained for noble gases for which the results of our previous calculations of the
critical constants and of the binodal were in best agreement with experimental data. However, such
vitrification was carried out for some other substances, including water and solutions [1].

Ginzburg with his colleagues actively studied this problem. They studied hydrogen, trying to preserve
liquid hydrogen in order to observe superfluidity. We can state that, at present, quite a few physicists do
not doubt that there must exist a critical point in the liquid phase (and, in He4, such a point is the
λ-point).

In this section, we determine such a critical point, a hypothetical λ-point for a liquid which was not
discovered experimentally. Nevertheless, the presence of a λ-point significantly supplements the pattern
of the distribution that was constructed by the author for a classical gas.

The hypothetical λ-point in the liquid domain cannot be discovered experimentally because of the
transition to crystal. But if we could preserve the metastable state liquid–glass, then it would arise for
Z ∼ 0. Let us show this on the diagram (Fig. 1), using the Bose–Einstein distribution with the author’s
correction
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where Γ(·) is the gamma function (cf. [1]).
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Fig. 1. Isotherms in the liquid phase domain. The hypothetical λ-point in the liquid phase corresponds to Z ∼ 0,
P ∼ 0. For Z = 1, the lines run into the Zeno line.

In the two-dimensional case, for the unit volume, it is natural to normalize T by the ratio P/N for
µ = −∞ and pass to the two-dimensional Maxwell distribution

N = lim
µ=−∞

eµ/T

∫
p dp

e(p2/2mT )−(µ/T ) − 1
, (2)

P = lim
µ=−∞

eµ/T 1
2m

∫
p3 dp

e(p2/2mT )−(µ/T ) − 1
. (3)

The temperature T0 = P/N is taken as the unit, and we set

Tr =
T

T0
.

Since [2], [3] we have

Ncr =
1
β

ln Ncr; (4)

in view of (2), (3),

T0 ∼
√

N,
Tcr

T0
∼ ln Ncr, µ = T − Tcr

in the formula for N and

cp
∼=

2T
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∫ ∞
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T
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∫ ∞

0

eξξ dξ

(eξ−µ/T − 1)2
+ O

(
T − Tcr

T0

)
. (5)

Thus, because µ also takes small positive values [4], a metastable λ-point arises if the phase transition
to crystal can be prevented.

By Bose–Einstein theory, the isotherms shown in Fig. 1 follow from the following formulas for
γ = 0.2 (Zcr = 0.29). Suppose that T = const, dµ = VrdPr , Vr = V/Vcr is the volume, Pr = P/Pcr

is the pressure, and µ is the dimensionless chemical potential.
Denote

y = eµ, 0 ≥ µ > −∞,

as µ → −∞ and y → 0.
Then, for an ideal Bose gas,

Z(y) =
Γ(γ + 1)
Γ(γ + 2)

∫ ∞

0

εγ+1 dε

eε − y∫ ∞

0

εγ dε

eε − y

.
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Therefore,

dµ = d ln y = VrdPr = TrZ(y)d ln Pr, (6)

and hence
d ln y

Z(y)
= Trd ln Pr, y = y(P Tr

r ).

The angle of inclination of the lines T = const to the line Z = 1 is known; it is

dT

dP
=

ρ

ρB

(
1 − 2T

TB

)
.

The points T are also determined on Z = 1 [5]. They correspond to the points ρ that are constant (to
our degree of accuracy) up to the minimal Z. We see that, up to rotation (i.e., the change V → ϕγ(V ) in
the Bose–Einstein distribution), the pressure is not constant with respect to the transition gas–liquid,
although it varies not significantly along the almost-horizontal parts of the isotherms.

However, we can determine the hyperbola responsible for the jamming effect for the liquid phase if
Z < 0.17 (see [6]):

ρ

ρB

(
1 − ρ

ρB

)
=

T

TB

(
1 − T

TB

)
. (7)

This curve must be plotted on the ρ, T diagram. It corresponds to the almost-incompressibility of the
liquid as the pressure increases.

Since the point T1 is fixed on the line Z = 1, it follows that, on the Z,P diagram, it corresponds to the
point P1. On the line Z = 1, there exists another point equal to T1 which corresponds to another value
of P ′

1. The closer T is to zero, the closer P ′
1 is to zero as well.

Finding the value of P ′
1, we plot it on the abscissa. This is the endpoint of the inclined isotherms and,

accordingly, at this point, we know Z1 in the liquid phase.
Thus, for Z ≤ 0.17, in the liquid phase, we completely determine the dependence Z(T ), P (T ), and

ρ(T ) up to the hypothetical λ-point.

2. CONSTRUCTION OF THE BINODALS

In thermodynamics, experiments do not always provide unequivocal answers. Old experiments were
carried out in the earth’s gravitational field. The divergences in the experimental determination of the
so-called Boyle point (the Boyle temperature) are very large.

The main problem is to determine whether the pressure is the same in a two-phase liquid in vapor–
liquid equilibrium. As a rule, a small drop of liquid is put in a vessel so that the pressure of the vapor
is several times less than that of saturated vapor. The drop evaporates and becomes smaller until
equilibrium is established. However, the additional pressure created by surface tension is not taken
into account.

Conversely, in order to determine the critical point, studies are conducted in a test tube and concern
a wettable liquid whose meniscus is concave and whose pressure near the critical point is less than that
of the vapor. If the liquid drops are small and there is no gravitational pull, then they form one large drop
so as to maximize the entropy. This is possible only because there is Brownian motion of the droplets.

Essentially, we deal with “noise” in all our arguments concerning a trap for a dimer, because a
classical particle reaching the maximum of the barrier in infinite time must stop there if neither the
quantum effect nor the effect of the noise is taken into account.

We neglect the quantum effect, because the de Boer parameter equal to h/a
√

2πmε, where a is the
effective radius of the molecule and ε is the depth of the potential well in the interaction potential, is
sufficiently small for classical gases.

Therefore, only the noise effect remains.
It turns out that we can draw a complete analogy between the noise intensity parameter D = 2ΓT ,

where Γ is the friction coefficient and T is the temperature for the unit mass, and the coefficient h2/2
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in the Schrödinger equation. In the theory of the instanton and penetration through the barrier, the
formulas first obtained by the author [7], [8],1 [9] and the formulas for the instanton in the survey [10] are
totally identical.

In the construction in which we define the critical temperature, we consider the difference of the
energies of the stable and unstable rest points. Furthermore, we use only small friction and viscosity.
Indeed, as a result of small viscosity, a classical particle, after having flown “just” above the barrier, will
lose its energy and, on reflection, will hit the barrier and will continue hitting the walls of the barrier and
the walls of the potential in the form of a well until it precipitates to the bottom. (The value of the energy
of the stable rest point is E1 and the value of the energy of the unstable rest point E2.) To knock out
this particle from the well trap, the required kinetic energy must be “slightly” greater than the difference
between the energies E1 − E2 of the rest points. This can interpreted as a break-up of the dimer in the
collision with a fast monomer. The equilibrium is violated when the depth E1 − E2 of the well decreases
and its width increases as the absolute value of the energy E1 of the stable rest point decreases (as the
impact parameter increases). It is natural to regard the increasing width as a result of an increase in the
numbers of dimers in the trap (in quantum theory, this corresponds to an increase in spectral density).
Dimers clusters can survive and equilibrium between the monomers and the dimers can be preserved
only if the dimers themselves combine into cluster domains and create their own barrier, which is a
microanalog of a surface film.

How about the pressure in this natural interpretation and the fact that the theoretical values of the
critical temperature are in good agreement with the corresponding experimental data?

In the scattering problem, the interaction potential is taken as the Lennard-Jones potential

Φ(r1, r2) = 4ε
(

a12

‖r1 − r2‖12
− a6

‖r1 − r2‖6

)
, (8)

where ε is the energy of the well depth, a is the effective radius, and ‖r1 − r2‖ is the distance between
two particles with radius vectors r1 and r2. In the two-particle problem, the problem reduces to a one-
dimensional radially-symmetric problem if there is no external potential.

We consider the two-body problem in which the energy E and the moment M are related by the
relation

E =
mv2

2
+

M2

2mr2
+ Φ(r), v =

dr

dt
, (9)

where r = r1 − r2, m = m1,2/2, and m1 = m2 are, respectively, the coordinates and masses of each of
the two particles, the origin is at the center of inertia, and t is the time.

To relate the problem of finite motion to the scattering problem, we introduce an impact parameter B
in the finite-motion problem. As is well known,

M2

2m
= B2E. (10)

Now the total energy E is related to the impact parameter B by the following important formula:

E =
(mv2)/2 + Φ(r)

1 − B2/r2
(11)

in the domain a < r ≤ B, where a is the effective radius of the Lennard-Jones potential.
In this formula related to the scattering problem, the total energy is equal to the kinetic energy of the

hypothetical particle falling with velocity v. The kinetic energy mv2/2 defines the temperature as well.
The greater is the kinetic energy mv2/2, the less is the total energy of the finite motion in view of the

negative term

mv2/2
1 − B2/r2

.

1This paper was presented on my behalf by S. Yu. Dobrokhotov at the International Conference on Analytic Methods in
Number Theory and Analysis (Moscow, September 14–19, 1981), because I was ill at that time.
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In problem (11), different barriers and wells occur for different values of B. At the rest points, Emin

and Emax, the velocity is zero; therefore, they can be determined only from the potential term.

We are now dealing not with just one particle, but with a pair of particles whose mass center is in the
trap. Therefore, the difference Emax − Emin is the energy needed to knock out this pair (the dimer) from
the trap.

Experimentally, we can calculate the percentage of dimers in a gas. It is clear how dimers are created
and split by monomers. Further, their mean number is calculated. The higher is the temperature, the
greater is the mean energy of monomers and the smaller the number of dimers.

By our calculations, we have Tcr/TB = 2.79. According to the contemporary handbooks, this value
is Tcr/TB = 2.72 for argon (Ar), Tcr/TB = 2.71 for krypton (Kr), Tcr/TB = 3.157 for methane (CH4),
and Tcr/TB = 2.6 for nitrogen (N2). (Other data is given in [11].)

In Table 1, comparative data for Tcr/4 are given.

Table

Substance ε, K Tcr/4 Ecr · ε/k

Ne 36.3 11 10.5

Ar 119.3 37 35

Kr 171 52 50

N2 95, 9 31 28

CH4 148.2 47 43

C2H6 243.0 76 70

As is well known, if we take small friction Γ into account, then diffusion or noise intensity is of the
form D = 2ΓT for the unit mass. According to the classical papers of Pontryagin, Andronov, and Vitt
(see [12]), an increase in noise intensity entails an increase in the probability of a jump over the barrier,
i.e., which is equivalent to the apparent lowering of the barrier. Is this not the reason for the deviation to
one side of the theoretical values of temperatures from the experimental ones?

Let us now pass to a more detailed study of the Z, ρ diagram. The scattering problem for the Lennard-
Jones potential does not involve the volume.

Since, as is well known, Z begins on the (ρ, T ) binodal, we can use the dependence (given above)
up to Z = 0.444 and then include the thermic potential, because we must also take into account the
influence of a third particle. As was already stated in previous papers, the dressed, or “thermic,”
potential Ψ(r) is attractive. In addition, since the volume V is a large parameter, it follows that if

Ψ(r) = Ψ
(

ar2

V

)
,

where a is the effective radius, we can expand in terms of 1/V , obtaining

Ψ
(

ar2

V

)
= C1 +

C2ar2

V
+ O

(
1

V 2

)
. (12)

Expanding

r2 = r2
1 + r2

2 =
(r1 − r2)2

2
+

(r1 + r2)2

2
, (13)

we can, just as in [13], separate the variables in the two-particle problem and obtain two separate
scattering problems, one for a pair of particles and one for their joint (for r1 + r2) motion.
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Then, in the scattering problem, the Lennard-Jones interaction potential is supplemented by a
quadratic potential (an inverted parabola), i.e.,

E =
mv2/2 + Φ(r) − C2ar2/2V

1 − B2/r2
. (14)

In the range of Z = 0.444 to Zcr = 2/3 · 0.444, we use a hyperbola2 and, below Z = 0.17, as stated
above, significant changes begin: the liquid becomes practically incompressible and the hyperbola (7) is
used.

The curve 1 − Zmin(ρ) on the Z, ρ diagram takes the form shown in Fig. 2.

Fig. 2. The curve Z(ρ) from the point Z = 0.17 to the point Zcr = 0.29 coincides with the thin curve and further
with the thick one. The dotted line denotes the hyperbola joining the problem without thermic potential (11) with the
problem with thermic potential (14).

The curve 1 − Zmin on the (Z, ρ) diagram can be calculated by using the Zeno line. As was already
stated, for Z ≥ 0.444, the dimension d = 2.8 (γ = 0.4) does not change. Therefore, by our general
concept, the distribution under consideration is a number-theoretic distribution up to the critical point,
i.e., up to the creation of dimers; for d = 2.8 (γ = 0.4), our distribution coincides with the Bose–Einstein
distribution, in which the number-theoretic distribution is multiplied by the volume V . But, in our
distribution, the multiplier is a function of V , i.e., we have the following replacement of the multiplier
in the Bose–Einstein distribution:

V → ϕγ(V ).

The index γ is sometimes dropped, because it is constant here. This function is constant for this
dimension. Therefore, Zmin obtained for µ = 0 is of the form

Zmin =
ϕ′

γ(V )
ϕγ(V )

· ζ(d + 1)
ζ(d)

, (15)

where ζ is the Riemann zeta function and γ = 0.4.

For any Z ≤ 1, we have

Z =
ϕ′

γ(V )
ϕγ(V )

· Γ(γ + 1)
Γ(γ + 2)

·

∫ ∞

0

εγ+1 dε

eξ−κ − 1∫ ∞

0

εγ dε

eξ−κ − 1

=
ϕ′

γ(V )
ϕγ(V )

Ψ(κ), κ =
µ

T
, ϕ′

γ(V ) =
∂ϕ

∂V
, (16)

2On this large interval, there is a very small variation of the temperature and pressure with respect to Z and the volume V .
Thus, for argon, the temperature varies 147 −−151◦ K and the pressure in the range 42 −−49 atm.
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where Γ(·) is the gamma function. For κ = 0, we obtain (15). Further, we obtain µ(T, V ) as a function
of V from the condition

ϕ′
γ(V )

ϕγ(V )
Ψ(κ) = 1, κ = κ(V ).

On the other hand, for Z = 1, we have the Bachinskii parabola following from the slope of the Zeno
line. Therefore, the dependences P (T ), T (ρ), P (ρ) are well known: P (T ) is the Bachinskii parabola,
T (ρ) is a hyperbola, and P (ρ) is a parabola.

Let us find P from the modified Bose–Einstein distribution

P =
ϕ′

γ(V )T γ+2

Γ(γ + 2)

∫ ∞

0

εγ+1 dε

e−κeε − 1
, (17)

where the value κ = κ(V ) is expressed in (16) in terms of ϕγ(V ) and ϕ′
γ(V ). Hence, from the Bachinskii

parabola P (ρ) (ρ = 1/V ), we uniquely obtain an ordinary differential equation of first order for the
function ϕ(V ). The constant is determined from the condition ϕ(V )/V → 1 as V → ∞ (transition to
the ideal gas; cf. [5]).

The value of the functions ϕγ(V ) were obtained above for Z ≤ 0.17. The value of the function ϕ(V )
on the hyperbola Z = ρcr/ρ was calculated in [5]. The interval (Z = 0.17, Z = 0.29) contains a new
variable parameter γ ≤ 0.2. Now the function ϕγ(V ) also depends on γ. Therefore, using two conditions
on Zmin (the interval of the thin curve and the value of ϕγ(V ) for Z = 1) and the same dependences on
Z = 1 that were mentioned above, we can determine the isotherms (this was done approximately in [5,
Fig. 5]). From the value of Zmin(ρ) on the thin curve (for the impact parameter B � 1), we obtain

ϕ′
γ(V )

ϕγ(V )
Ψγ(0) = Zmin

(
1
V

)
.

Therefore, we must now find κ(V, γ) from the condition Z = 1:

Ψγ(κ) =
Ψγ(0)

Zmin

(
1
V

) .

Using condition (17), as well as the substitution of T (ρ) and P (ρ), we can determine the expression for
γ(ρ) from the implicit equation. On the line Z = 1, two different values of ρ, ρgas and ρliquid, yield two
different values of γ(ρ). For Z = 1, it is convenient to express all quantities in terms of the temperature
according to the hyperbola T (ρ). In this case, Tcr and Pcr play a role.

Thus, it turns out that, in addition to the calculation of the Zeno line, the most important interval of
the curve 1 − Zmin is the interval from Z = 0.29 to Z = 0.17. Only using this interval, we can find the
function ϕγ(V ), which is needed to describe the one-particle distribution with respect to p and q for the
case of the Lennard-Jones interaction.

As was already stated by the author, the equations of state are equations of the two-dimensional
surface Λ2 in four-dimensional phase space, where the role of the coordinates x, y is played by the
intensive quantities P , T (pressure and temperature) and the role of momenta px, py is played by the
quantities V and −S (V is the volume and S is the entropy).

In the coordinate plane, it is natural to transform to polar coordinates r =
√

x2 + y2 (radius vector)
and arctan(x/y) (angle); namely, we set

ϕ = arctan
PTcr

PcrT
.

On the (0 ≤ ϕ ≤ 2π, ρ) diagram, we can construct the ϕ, ρ-binodal in which with each ϕ we associate
the jump ρgas → ρliquid. In the same way, we can construct the ϕ,Z-binodal. If the temperature in both
phases is the same, then the ϕ, ρ-binodal implies that the values of the pressure in both phases are equal.

As was already stated, the curve 1−Zmin must be supplemented with the hyperbola (7) for Z ≤ 0.17.
The subtraction process from the oblique line joining the endpoints of the curve (7) yields the T, ρ-

binodal if the dimensionless quantities Z are replaced by T/TB . However, the resulting curve must
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be orthonormalized so that the maximum of the binodal coincides with the value of Tcr/TB . This
subtraction process is a result of the construction of wells corresponding to different values of B, because
the wells terminate on the curves, where Emin = Emax, i.e., on the Zeno line.

For Z > 0.17, the values of the pressure in the two phases on the resulting T, ρ-binodal will differ
insignificantly.

Thus, the construction of a distribution generalizing the one-particle Maxwell–Boltzmann distribu-
tion and the Bose–Einstein distribution, is closely related to the construction scheme for a binodal and
a Zeno line.

Of course, if the thermodynamics of a particular gas is known, then, as was already stated, we can
uniquely construct this distribution. It is interesting, however, to solve both problems together by using
a scheme involving rest points and the creation of dimers and clusters, instead of the fall of particles to
the lower level and the construction of the multiplier ϕγ(V ) for a number-theoretic distribution.

The author called the two-dimensional surface Λ2 the Lagrangian manifold [14] and introduced
the notion of tunnel canonical operator [15] (see also [16]), where, for the large parameter 1/h, one
must take 1/

√
D, where D is the diffusion or noise intensity. The higher is the temperature, the greater

is the degree of departure from the standard thermodynamics and from the phase transition gas–liquid.
caused by the tunnel canonical operator.

For such a transition, the temperature remains constant, while the pressure and the values of the
volumes are somewhat changed. As was already stated, this is especially noticeable at the focal point
under the rotation of T = Tcr with respect to the compressibility factor Z.

Remark. The inclusion of the thermic potential in the original problem is equivalent to bringing in at
least one other (third) particle. Obviously, the value Zmin(ρ) or Z = 1 − Zmin(ρ) (Zmax < 1) must be
affected by the inclusion of a third particle, while we consider the interaction of two particles. If, in the
study of two particles, we include the thermic potential as an external one, then we must ensure, in our
problem, at least maximal repulsion of two particles from each other by making them collide head-on.
Then we can hope that the attraction provided by the thermic potential will guarantee the maximum
value of Z = 1 − Zmin(ρ). But such a transition from a two-particle problem to the introduction of a
thermic potential must preserve “consistency.”

Addition to a two-particle problem of friction related to the chaos of a gas and, further, of a thermic
potential provide simple and natural conditions related to our a priori knowledge. It is not known
beforehand to what degree these elementary considerations are consistent with the complex laws of
thermodynamics.

3. CONCLUSIONS

In this paper, we have discussed two new smoothed phase transitions.3 The first smoothed transition
is called a smoothed transition of the “first kind”; it occurs in the interval from Z = 0.444 to Zcr =
2/3 · 0.444 = 0.296 and is a cascade transition of dimers to clusters observed in superfluid flows [17], etc.
It is smoothed by gas diffusion, i.e., by the tunnel canonical operator, where, instead of the parameter h,
we have the parameter

√
D, where D is the noise intensity. For the (ρ, T ) diagram, we deal with a

hyperbolic transition, while, for the (Z,P ) diagram, we have a smoothed jump of Z and V .
The second smoothed transition is called a Zeno transition; it is a transition to the state of the

hypothetical λ-point for Z ≤ 0.17. This is the hyperbolic transition in the (T, ρ) diagram (and the oblique
line in the (P, 1/T ) diagram). For each value of T and constant volume, the dimension, as P increases,
tends to 2, but does not attain the value 2 (i.e., the λ-point). For Z = 0, there appears a hypothetical
λ-point.

Initially, we consider these transitions as step-wise (i.e., phase) transitions, but the tunnel canonical
operator smoothes them so that they become smoothed transitions. The tunnel canonical operator
hardly smoothes ordinary phase transitions of the first kind at low temperature: in such a transition,
the temperature remains constant and the pressure and density change slightly.

3Similar to smoothed ionization.
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