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Based on the leximin and leximax preferences, we consider two threshold preference relations on
the set X of alternatives, each of which is characterized by an n-dimensional vector (n > 2) with
integer components varying between 1 and m(m > 2). We determine explicitly in terms of
binomial coefficients the unique utility function for each of the two relations, which in addition
maps X onto the natural ‘interval’ {1,2,...,|X|}, where X = X/I is the quotient set of X with
respect to the indifference relation I on X induced by the threshold preference. This permits us to
evaluate all equivalence classes and indifference classes of the threshold order on X, present an
algorithm of ordering the monotone representatives of indifference classes, and restore the indif-
ference class of an alternative via its ordinal number with respect to the threshold preference order.
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1. Introduction

In the theory of measurement,' one assigns real numbers to things under consider-
ation, which help to understand or interpret them. In this paper, we shall deal with
the following situation. Given a (finite) set (of alternatives) X and a preference order
P (i.e., asymmetric and negatively transitive binary relation) on X, we would like to
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scale X to real numbers by means of a function, preserving order properties. More
precisely, by a (utility) representation of P we mean a real-valued function ¢ : X —
R such that, given z, y € X, z is preferred to y in the sense that (z, y) € P if and only
if p(z) > ¢(y). The existence of utility representations with different properties for
preference orders was treated in a number of papers.?~® In the simplest case when X is
finite one may explicitly set ¢(z) = [{y € X : (z,y) € P}|, where |A| denotes the
number of elements in the set A C X.

In practice it is quite customary that an alternative is characterized by means of
n > 2 grades xy, . . ., ,, each of which taking an integer value from 1 (‘bad’) to m > 2
(‘perfect’). In this way alternatives may be identified with elements of the set X =
{1,2,...,m}" of all n-dimensional vectors z with integer components from 1 to m.
Two natural approaches are known’ to introduce (threshold) preference orders on X
based on the leximin and leximax preferences: x € X is preferred to y € X in the
threshold sense® provided 7 is lexicographically preferred to 7, where 7 denotes the
vector obtained from z by well ordering its coordinates in ascending (corresponding
to the leximin) or descending (corresponding to the leximax) order.

The aim of this paper is to determine explicitly the most ‘economic’ and ‘effective’
utility function (called the enumerating preference function) for the threshold pre-
ference(s) on X, which, in addition, maps X onto the set {1,2,...,|X/I|} surjec-
tively, where X /I is the quotient set of X with respect to the indifference relation [
on X induced by the threshold preference order. This permits us to evaluate all
equivalence classes and indifference classes of the threshold order on X and present
an algorithm of ordering the monotone representatives of indifference classes.
Moreover, since the image of X under the enumerating preference function is ‘dense’
in the set {1,2,...,|X/I|}, we can restore the indifference class of an alternative via
its ordinal number in the threshold preference order.

The main results of the paper were announced at the 1st International Conference
on Information Technology and Quantitative Management ITQM 2013 (May 16-18,
2013, Suzhou, China).’

The paper is organized as follows. Section 2 contains preliminaries on preference
(or weak) orders. Main results of the paper are presented in Sec. 3 and their proofs
are given in Sec. 4. Sections 5 and 6 are devoted to algorithms of ordering the
monotone representatives of alternatives.

2. The Threshold Preference and the EPF

We begin by recalling certain definitions and auxiliary facts needed for our results.

Given a finite set X of cardinality |X| > 2, elements of which will be called
alternatives, let P C X x X be a weak order on X (cf. Ref. 10), i.e., P is transitive (if
z,y,2€ X, (z,y) € P and (y, 2) € P, then (z, z) € P), irreflexive ((z,z) ¢ P for all
z € X) and negatively transitive (if z,y,z€ X, (z,y) € P and (y,2) € P, then
(z,2) & P). It will be convenient to say that P is a (strict) preference on X and to
interpret the inclusion (z,y) € P as ‘z is preferred to y’. The indifference relation
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I = Ip on X, induced by P, is given by
I={(zy) € XxX:(z,y) ¢ Pand (y,2) ¢ P}, (2.1)

and it is an equivalence relation on X. Given z,y € X, we have: (i) (z,y) € P is
equivalent to (y,z) € P or (y,z) € I (negation of P); (ii) (z,y) € P or (y,z) ¢ P
(completeness of (X x X)\P); (iii) either (z,y) € P, or (z,y) € I, or (y,z) € P
(trichotomy of P).

A typical example of a preference on X is given by a representable (more precisely,
-representable) binary relation P(p) = {(z,y) € X x X : p(z) > ¢(y)} with a non-
constant function ¢ : X — R. The function ¢ (nonuniquely determined, in general) is
called a preference (or utility) function for P. Clearly, the indifference relation Ip,
consists of those pairs (z,y) € X x X, for which ¢(z) = ¢(y).

A preference P on X gives rise to the canonical ranking of X as follows (cf. Refs. 11
and 12). Given A C X, let us denote by m(A) ={z € A: (y,z) & P for all y € A}
the set of most preferred alternatives from A. Set X{ = m(X) and, inductively, if
¢ > 2 and nonempty disjoint subsets X7, ..., X/ ; of X such that | Ji_} X/ # X are
already determined, then we put X/ = m(X\ (UiZ} X})). Since X is finite, there
exists a unique positive integer s = sp(X) (which is equal to the cardinality of the
quotient set X/I) such that X = |Jj_; X/. Setting X, = X/ ,,, for £=1,2,...,5,
the collection { X, };_; of pairwise disjoint sets, partitioning X, is said to be the family
of equivalence (indifference) classes of the weak order P, and has the following
characteristic property: given z,y € X, (z,y) € P iff (= if and only if) there exist two
integers k and £ with 1 < k < ¢ < ssuch that z € X, and y € X,. Thus, z is preferred
to y if z lies in an equivalence class with a greater ordinal number. Also, (z,y) € I iff
x,y € X, for some integer 1 < k < s.

We define a function ® = ®p: X — {1,2,...,s} as follows: given z € X, there
exists a unique integer 1 < k < s such that z € X}, and so, we set ®(z) = k. In other
words, X, = {z € X : ®(z) = k} and

€ Xomy ={y€X:0(y) =P(2)} forallze X.

The function ® is well-defined, uniquely determined and surjective preference
function for P, which will be called the enumerating preference function (EPF, for
short). A function ¢ : X — R is a preference function for P on X iff p(z) = f(P(z))
for all z € X and some strictly increasing function f: {1,2,...,s} — R,

In what follows we are going to explicitly determine the EPF for the threshold
preference (decision making), an important particular case of the leximin, the defi-
nitions of which we now recall.

Given two non-negative integers k and [ with k£ < [, we denote by

k) ={ic{00UN:k<i<D ={kk+1,...,1-11}

the (natural) interval with the endpoints k and ! and ‘length’ [k, ]| =1—k+1
expressing the number of elements in [k, ]. We also set [1,0] = o.
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A binary relation /y on the set RY of all N-dimensional vectors with real com-
ponents is said to be the lexicographic order if, given u = (uq,...,uy) and v =
(v1,...,vy) from RN we have: u/ yv iff there exists a p € [1, N] such that u; = v, for
all i€ [1,p—1] (no condition if p=1, since [1,0] =¢) and wu, < v,. It is well
known'®!'® that / is a linear order on RY; more precisely, Zy is transitive (i.e.,
uZ yv and v4 yw imply u/ yw), the negation of Z y is of the form: —(us yv) iff vLyu
or v = u, and £y is trichotomous (i.e., either u = v, or uZ yv, or v£ yu).

Given u = (uq, Uy, - .., uy) € R¥ let us assemble the coordinates of « in ascending
order uj < uj < --- < u}y, denote the resulting vector by u* = (uj, us,...,u)y) and
call it the monotone representative of u. We say (cf. Refs. 7 and 14) that u € RVis
preferred to v € RNin the sense of the leximin if v*Z yu*. Recall that neither the
lexicographic order nor the leximin are representable on R .10

The set of alternatives X, to be considered throughout the paper, is identified with
the Cartesian product [1,m]™ of n > 1 intervals [1,m] with m > 2, and so, each
alternative z € X is an n-dimensional vector z = (z,...,,) with components
z; € [1, m]. Elements of [1,n] may be interpreted as parameters (entities, agents,
properties) and elements of [1,m]| — as ordered grades or criteria 1 <2 <--- <
m — 1 < m. The vector-grades z = (zy,...,%,) (identified with alternatives z € X)
may represent expert grades, questionnare data, device readings, tests data, etc.'®
Note that | X| = |[1, m]"| = m™.

Two natural partial orders »> and > on X = [1, m|" are introduced in the usual
way: given x, y € X, we write z 3=y (or y < z) if z; > y, for all i € [1,n], and z > y (or
y < z) — if z3=y and 2; > y,; for some iy € [1,n].

The monotone representative of an alternative x € X is of the form

’U1<Z) UZ('T) U"Fl(z) ’um(:p)
r=11,...,1,2,....2,....m—1,....m—1,m,....,m
— (11;1(1)7 2112(1)’ e (m _ 1)%%1(1”), 7nvm<1”>)7 (2.2)

the number v;(z) = v](-n>(a:) = |{i € [1,n] : z; = j}| being the multiplicity of the grade
j € [1,m] in the vector z = (2y,...,x,). Clearly, v;(z*) = v;(x). In what follows if the
multiplicity of a grade j is zero, i.e., v;(z) = 0, then the expression j 0 will be omitted
in (2.2) (e.g., the vector (1,...,1) from [1, m]" is simply (17)).

Given A C X, we denote by A* = {z*: z € A} the set of all monotone repre-
sentatives of elements from A.

Also, given z € X and j € [1, m], we set
J
Vo(z) =0 and Vj(z) = Vj<")(x) = Z v () (2.3)
and note that 0 < v;(z) < n,0 < V;_4(z) < Vj(z) < nand

Y vi(z) = Vi (z) = n. (2.4)
—1

J
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The following two properties will play an important role below®:
given z,y € X,z > y implies z* > y*, and (2.5)
¥ = y*iff k€ [l,m— 1] such that v;(z) = v;(y) for all j € [1,k—1],
vp(z) < vp(y) and V,(z) < V,(y) for all pe [k+1,m — 1]
(with no last condition if k= m — 1). (2.6)

The threshold preference P = P,,_; on X = [1, m]" is defined by (see Refs. 16-18,
if m=3and forall m>2) P, | ={(z,y) € X x X :v(z)£,,_1v(y)}, where, given
r€ X, v(z) = (vi(z),...,v,_1(2)) €[0,n]" 1. The decision-making rule v(z)~,, v
(y) is said to be the threshold rule. More explicitly, if m = 2, we have (z,y) € P = P,
iff v,(z) < v,(y), and if m > 3, we find (z,y) € P = P,,_; iff v;(z) < v1(y) or there
exists a k € [2,m — 1] such that v;(z) = v;(y) for all j € [1,k — 1] and v;(z) < v4(y).

Let us show that the threshold preference P,,_; is the restriction of the leximin
preference on R” to the set X = [1, m]".

Lemma 2.1. Given z,y € X, we have: (z,y) € P,,_1 iff y*£,z*.

Proof. Necessity. Let (z,y) € P,,_; and k € [1, m — 1] be as in the explicit form of
P,_; above. Taking into account (2.3), we set p= Vi(z)+1 and note that
p < Vk( ), which implies p € [1, n]. Since v;(z) = ’UJ( y) for all je[1,k—1], then
y; =x; forallie[l,p—1]and y, = k < k+1 < z,. It follows that y* /£, z*.
Sufficiency. Now, let y*Z,z*. Then there exists a p € [1, n] such that y; = x for
all i€ [l,p—1] and y, < z,. We set k= y, and note that the inequality k < z,
implies k € [1, m — 1]. By condltlon y; = «; forall i € [1, p — 1], we find that v;(z) =
vj(y) for all j € [1,k—1]. Let us put ¢ = [{i € [1,p — 1] : y; = 2] = k}|. Then v;(y)
> ¢+ land,since k =y, <z, <z, < <z, we have v (z) = ¢. It follows that
vi(z) < v(y), and so, v(z)Z,,_1v(y) implying (z,y) € P,,_;. O

Thus, the threshold preference P is a weak order on X. The indifference relation
(2.1), induced by P, is given by: (z,y) € I iff v;(z) = v;(y) for all j € [1, m] iff v(z) =
v(y) iff ¥ = y*, i.e., vectors z and y can be transformed into each other by certain
permutations of their coordinates (anonymity of agents). Denoting by I, = {y € X :
(z,y) € I} the indifference class of z € X, the family of equivalence classes of the
threshold preference P is given by {X,};_; = X/I ={I,: x € X} with the value
s = sp(X) equal to®

(n+m—1)!

s=|X*|=|[1,m]™| = Cpipy = n+7n*1:m’

(2.7)
where C} = k,(n mr is the usual binomial coefficient if k € [0,n] (and 0! = 1). Note
also that z* is a (monotone) representative of the equivalence class I, for all z € X,
and the restriction of P to X* x X*  denoted by P*, is a linear order on X* (ie.,
P* is transitive, irreflexive, and weakly connected: given z*, y* € X* with x* # y*,
(z*,y*) € P* or (y*,z*) € P*).
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In order to get a better feeling of the threshold preference order, it will be helpful
to take a look at the ordering in ascending preference of, say, the set [1,5]** of
monotone representatives of elements from X = [1, m|" with m =5 and n = 3.

Here we have the decomposition X = [1,5]> = [J;_; X, into the family of indif-
ference classes with s =35 (cf. (2.7)). For instance, X;, denotes the equivalence
class of z* = (1,3,5), i.e., X;o = I,.. At the same time to each vector in Table 1 an
ordinal number is assigned, which is given as the lower index at the right of the
vector, and this ordinal number is exactly the value of the EPF at the vector, e.g.,
®(1,3,5) = 12. The greater the number is the more preferable is the alternative.
Also, it is seen from Table 1 that the EPF exhibits how ‘far’ from each other are
vectors in the threshold ordering: clearly, (2,2,5)Z5(2,3,3), but only the values
®(2,2,5) =19 and ®(2, 3,3) = 20 show that the two vectors are ‘neighbors’.

Since the EPF is also a preference function, it is desirable to have a character-
ization of preference functions for the threshold preference in fewer axioms. This has
been done in Refs. 16 and 19 for m = 3 and extended in Refs. 8, 17 and 18 for the
general case when m > 2 is arbitrary (Theorem A below is of different nature as
compared to Refs. 13 and 14):

Theorem A. Let P=P,_; on X =[1,m]" and ¢ : X — R. Then P = P(p) iff,
given z,y € X, the function ¢ satisfies azioms (A.1)y and (A.2), if m = 2, or azioms
(A1), (A.2),, and (A.3),, if m > 3, where

(A1), if v(z) = v;(y) for all j € [1,m — 1], then p(z) = p(y) (anonymity);

(A.2),, if x> y in X, then o(x) > p(y) (Pareto domination);

(A.3),, given k € [3, m], the following condition (A.3.k),, holds: ifv (z) = v;(y) for
all j€[Lm—k, vy p1(2) +1=vp 41V #n = Vi (y), Virro(z) =n
Viie1(y) + vy (y) = n, then p(z) > ©(y) (noncompensatory threshold).

In Table 1, neighbor vectors separated by comma obey axiom (A.2),,, and those
separated by semicolon obey axiom (A.3),,.
An explicit preference function for P,,_; on X = [1, m]" was given in Ref. 20:

mt—1
m—1

po(z) = Yo(z) +1—

if z=(z,...,2,) € X,

where ¥y(z) = > i, m" iz} is the value in the decimal system (0,1,...,9) of the
number z{z; ...z, constructed from the vector z* = (z7,z3,...,z;) from (2.2) and

Table 1. Example of the threshold preference.

(]- 1, ]-)17 (17172)27 (17 173)37 (17 174)47 (17175)5§

(1 2, 2)61 (1#213)77 (17274)87 (1127 5)9; (17373)107 (1’3 4)117 (1’37 5)127
(1 4, 4)13: (174:5)147 (175$5)15§ (2$272)16> (27273)1% (25234)187 (2= 5 195
(2 3, 3)207 (21374)217 (21375)2% (27474)237 (2747 5)247 (27 57 5)25;

(3 3, 3)267 (3:3~4)277 (3:3$5)28§ (3,474)29, (3747 5)30» (3551 5)31»

(4 4, 4) 325 (41475)337 (41575)347 (575*5) 35
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considered in the m-ary system (0,1,...,m —1). For instance, in the context of
Table 1 (with m =5 and n = 3) we have ¢ (z;, 2o, 73) = 2527 + 5z5 + x5 — 30 for
T = (21,7, 13) € [1,5]%, and so, ¢,(3,5,5) =75 and ¢((4,4,4) = 94, whereas the
values of the EPF ® at these vectors (see Table 1) are ®(3,5,5) = 31 and ©(4,4,4) =
32 (and so, the vectors are neighbors in the threshold ordering). The values of ¢ are
scattered from 1 (the minimal value of ¢, attained at (1") = (1,...,1)) and m" (the
maximal value of ¢, attained at (m") = (m, ..., m)), although, as it will be seen from
Lemma 2.2 below, ¢, takes on only s (cf. (2.7)) different values, where s is much
smaller than m" (e.g., for m =10 and n =60 we have s=56,672,074,888 <
101! <« 1099). Clearly, ¢, is not the EPF for P,,_;.

Lemma 2.2. If ¢ : X — R is a preference function for P= P,_; on X =[1, m]"
and p(A) = {p(z) : © € A} is the image of a subset A C X under ¢, then

p(A) = p(A7) and [p(A)] = [p(A7)] = [A47]. (2.8)

Proof. In fact, given [ € ¢(A), we have [ = p(z) for some z € A, and so, z* € A*
and, by axiom (A.1),, from Theorem A, o(z*) = ¢(z) =1 implying [ € @(A4*).
Conversely, if | € p(A*), then | = p(z) for some z € A*, and so, there existsan a € A
such that a* = z, which, again by virtue of axiom (A.1),,, gives p(a) = p(a*) =
o(z) = land I € ¢(A). This proves the first equality in (2.8). In order to establish the
third equality in (2.8), it suffices to verify that ¢ maps A* into R injectively. Given
z*, y* € A* with z* # y*, by virtue of property (iii) of P from the beginning of this
section, we have (z*,y*) € P or (y*,2*) € P, and so, since ¢ is a preference function
for P, either p(z*) > ¢(y*) or p(y*) > ¢(z*). Thus, ¢ maps A* onto the image p(A*)
bijectively, and so, |@(A*)| = |A*|. O

3. Main Results

It follows from (2.8) that the number of elements in the image ®(X) of the EPF ® for
P =P, _;isequal to s = |X*| from (2.7), and so, ® maps X onto the natural interval
[1,]|X*|]. The first main result of the paper asserts that ® can be given explicitly in
terms of binomial coeflicients and quantities (2.3) as follows.

Theorem 3.1. A function ® maps X = [1,m]" onto [1,|X*|] and is a preference
function for P = P,,_, on X (i.e., ® is the EPF for P) iff it is of the form

m

O(z) = Z Cnnzil/{(z)qufjfl for all z € X, (3.1)

=1

where CF™ =0 if k € [0,m — 1], and C° = 1.

It is to be noted that, by virtue of (2.4), the last two terms in (3.1) corresponding
to j=m — 1 and j = m are equal to C’Ulm(z) = v,,(z) and C°% = 1, respectively.
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In particular, the EPF & for P, on X = [1,5]" assumes the form:

®(z) = %(n —v1(z) +3)(n — v (2) +2)(n — v (z) + 1)(n — vy(2))
+ %(n —v1(z) — vy(7) +2)(n — v1(2) — va(7) + 1)(n — v1(7) — vy(7))
+ %(" —v1(2) = va(7) — v3(2) + 1)(n — v1(2) — va2(2) — v3(7)) + vs5(2) + 1,

where v (z) + vo(z) + v3(z) + v4(z) + vs(z) = n (cf. Table 1 with n = 3).

As a corollary of Theorem 3.1, we are able to characterize the family of equival-
ence classes {X,};_; of P as well as the family of indifference classes {I,},cx in
Theorem 3.3 below. For this, we need the following auxiliary result, which is of
independent interest and needed in the proof of Theorem 3.1.

Theorem 3.2. Given two integers ng = n > 1 and m > 2, an integer £ belongs to the
interval [1, C’n’ff_;}_l] iff there exists a unique collection of m — 2 integers ny, no,.. .,
Ny—g satisfying 0 < n; < n;_y for all j € [1,m — 2| such that

n;+m—j—1°

m—2
LelL+1,L+1+ n, s, WhereL:ZCm_] (3.2)
=1

Theorem 3.3. Given ¢ € [1,|X*|], we have:
(a) Xy = {z € X : ®(x) = L}; in other words, x € X, and

I, = Xo ={y€ X : @(y) = (z)} for all z € X;
(b) given xz € X, z lies in X, iff (in the notation of Theorem 3.2)
vi(z) =ni_1 —ny

i : i for all j € [1,m—2], (3.3)
Up1(x)=L+1+mn, o—¢ and v,(z)=¢—L—-1. (3.4)

Note that Theorem 3.3(b) answers the question: given ¢ € [1, s] = [1,]|X*|], what
are the vectors z € X satisfying = € X,? Taking into account Theorem 3.3(a), this
can be reformulated as: find all solutions z € X of the equation ®(z) = ¢. In other
words, in Theorem 3.3(b) the equivalence class X, of the threshold preference P is
restored via its ordinal number ¢. The number of elements in X, can be calculated as
follows: if the generic vector z from X, satisfies conditions (3.3) and (3.4), then

n! n!
@ (@) 1520y — )l (D 1+ nyy — O (€= L— 1)1

| Xl =
v

4. Proofs of the Main Results

Throughout the proofs we apply the summation over lower indices formula for
binomial coefficients (see Ref. 21, formulas (5.9) and (5.10)): if p, ¢ > 0 are integers,
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then

1
Z P =Cl+Cl i+ +CL, =Cl . =CL (4.1)

Proof of Theorem 3.2. If there are integer numbers n, no, ..., n,,_o satisfying
0 < n; <mn;_; forall j € [1,m — 2] such that (3.2) holds, then, by virtue of (4.1),

m—2
1<L+1<0<Lt1+mn,,<y Cn)

n+m—j—1 +14+n

=1

m

= Z C:jr_rifj 1 — Z Cn 1+m—j Z Cn 1+k — n+m 1 (42)

J=1

Conversely7 we apply the induction argument on m for each integer n > 1. If
=2, then C’Hm 1= C,lLH =n+1, n,_ o =mny=nand L=0, and so, the asser-
tion in this case is a tautology. If m =3, then O/} | = C2,, and [1,C2,,] =
Uiso[CZ1 + 1, OF,] (disjoint union), and so, given £ € [1, CZ,,], there exists a

unique number n; € [0, n] such that
Ce[Crn+1,Ch ] =[Chu+1,0h + 140,

and it remains to note that L = C’n1 L1 = 031137171. Now, suppose that the necessity
part in Theorem 3.2 holds for some m >3 and all n > 1, and assume that
¢e[1,CL,,]. Noting that [1, CJ7 ] = Ur=olCilim_1 + 1, Cit,] (disjoint union), we
find a unique n; € [0, n| such that

-1
CTZLer 1+ 1</< Cn +m = CTZL+m71 + C’:LT#»TTL*].?

and so, 1 <V =(-C),, 1 < C,:’fjrm_l. Applying the induction hypothesis to the

integer £’ we obtain a unique collection of m — 2 non-negative integers n{,nj,...,

,’n o satisfying nj <nj, for all je[l,m—2], where ng=mn, such that if
=3 C;"Jr]m _j_1» then

L'+1<0'=0—-C) i <L +14mn,,,.

We set n; = n]’ , for all je[2,m—1]. It follows that 0 <n; <mn;; for all

jel,(m+1)—2], n/ =n;, forall je[0,m—2],

m—2 (m+1)—2 ( )
I m+l—j m+1)—j
L'= Z n]+1+m J-1 Z C"ﬁ‘m—j - : : C7L,+(7n+l)—j—1
J=1 J=2

and L+1</¢< L+ 1+ ngy,q1)-9, where
(m+1)—

m+1)—j
L= 07L1+m 1+L = Z C<n+ ! )—j—17

n+m+1

and now assertion (3.2) follows with m replaced by m + 1. m|
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Proof of Theorem 3.1. We begin with proving the necessity part. We apply the
induction argument on m > 2 for each integer n > 1 and divide the proof into several
steps for clarity.
Step 1. Suppose m = 2. We have: X =[1,2]", (z,y) € P = Py iff v,(z) < v(y),
vi(z) +vy(z) =nif 2,y € X, X* = {(1"%,2F) : 0 < k < n} (in the notation (2.2))
and |[X*|=n+1.Let®: X OI—lt0>[17 n + 1] be a preference function for P on X, and so,
axioms (A.1), and (A.2), from Theorem A are satisfied. Then ® maps X* into
[1,n + 1] bijectively. Noting that the relation P coincides with > on X* and (2") >
(1,271 .. = (1"1,2) > (1") in X, we find from axiom (A.2), that ®(2") >
O(1,2m1) > .. > ®(1"1,2) > ®(1"). There are n + 1 different values in this chain
of inequalities and, since the image of X* under ® is [1,n+ 1], then ®(1") =1,
O(171,2) =2,...,9(1,2" ') = nand ®(2") = n+ 1, and so, P(1" % 2F) = k + 1 for
all k € [0, n]. It follows that if z € X, then z* = (1"F 2%) with k = vy(z*) = vy(),
and so, by axiom (A.1),, we get

O(z) =P(2") = vy(x)+1 forallze X =11,2]" (4.3)
Clearly, the function ® from (4.3), which is of the form (3.1) with m = 2, maps X
onto [1,n+ 1] = [1,|X*|] and, by virtue of (2.4) with m = 2, satisfies axioms (A.1),
and (A.2),, and so, it is a preference function for P = P; on X.

Thus, Theorem 3.1 is established for m = 2 and all integer n > 1.

Step 2. Now suppose that the necessity part holds for some m > 2 and all n > 1, and
let us show that it remains valid for m + 1 and all n > 1, as well.

Let X = [1, m + 1]". The threshold preference P = P,, on X is given for z,y € X
by: (z,y) € P iff v;(z) < v;(y) or there exists a k € [2, m] such that v;(z) = v;(y) for
all j € [1,k — 1] and v (z) < vi(y). Also (cf. (2.4) with m replaced by m + 1),

v(z) +vo(z) + -+ V() F V() =n forallze X (4.4)

and, by virtue of (2.7), | X*| = |[1, m + 1]™| = C,},..
Given i € [0, n], we set X(i) = {z € X : vy (z) = vﬁn)(w) =1} and
T

X)) =X =X()NnX ={z e X*: (1,2 ) sz (1",(m+ 1)"))}.
Clearly, X(n) = {(1")}. Let us fix i € [0,n — 1] and define a function §; from X’ =
[1,m]""% into X (i) by the rule:

given ¢’ = (z{,...,2,_;) € X', we set B;(z') = (1,z{ +1,...,2,_;+1).
Clearly, 8; maps X’ into X(¢) injectively and X'* into X*(4) bijectively, and so, by
virtue of (2.7) with n replaced by n — 4,

X7 (0)] = | X" = |([t,m]" )| = Oy forall i € [0,n]. (4.5)
Also, note that
vi(@') = 0" (2') = v, (Bi(a")) forall j € [L1,m]. (4.6)

Now, assume that & : X m[l, | X*|] is a preference function for P,, on X.
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Step 2a. Let us show that the composed function @, defined for 2’ € X’ by
®,(z'") = ®(8;(z")), is a preference function for P’ = P,,_; on X'. Let z’,y' € X'.
First, assume that m = 2. The definition of P; implies: (z’,y’) € P’ = P, iff
v1(z') < v1(y"), and so, by virtue of (4.6), this is equivalent to v;(8;(z")) =i =
vi(Bi(y')) and vy(Bi(z')) < va(Bi(y')), that is, (8i(z'),B:(y’)) € Py = Py,. Now,
suppose that m > 3. By the definition of P,,_;, we have: (z',y’) € P’ iff vl( N <
v1(y’) or there exists a k" € [2, m — 1] such that v;(z") = v;(y’) for all j € [1,k — 1]
and v (z') < vp(y'), which, by virtue of (4.6), is equivalent to: vy(8;(z')) <
vy(B;(y’)) or there exists a k" € [2,m — 1] such that v;,1(8,(z")) = v;11(8;(y’)) for all
j € [1,k" = 1] and vy 41 (8i(2")) < vy (Bi(y")). Since v (Bi(z")) = i = v1(Bi(y")), it
follows that (z',y’) € P’ iff there exists a k € [2, m] such that v;(3;(z")) = v;(8:(y"))
forallj € [1, k — 1] and 0,(3,(x')) < 0(B(y"), ke, (B:(a"), Bi(y")) € Py = P. Thus,
givenm > 2and 2/, y’ € X', (2',y') € P’ 1ff(ﬂl( ) B:(y")) € P, and so, since ¢ is a
preference function for P on X, we find

(z',y") € P iff (Bi(z),B:(v")) € P ifft @(B;(z')) > (B;(y))
iff ®,(z") > @,(y),

which proves that ®, : X’ — R is a preference function for P’ on X'.

Step 2b. Let us prove that
O(X*(7)) = [®(1%,2"7"), ®(1%, (m + 1)"")] for all i € [0, n]. (4.7)

If z* € X*(4), then (17,2"7") < z* 5 (1%, (m 4+ 1)"~%), and so, by axioms (A.1),,,; and
(A.2),,41 for the preference function @ for P on X (Theorem A), we get ®(17,2"7%) <
®(z*) < ®(1%, (m + 1)"%), which establishes the inclusion C in (4.7). Conversely,
suppose £ lies in the set on the right in (4.7). Since, by the assumption, ®(X) =
[1,]X*|], and, by Lemma 2.2, &(X*) = &(X), we find that ¢ € [1,|X*|], and so, there
exists an z* € X* such that ¢ = ®(z*). Noting that X* is the disjoint union of
sets X*(k) over all k € [0, n], we find a k € [0, n] such that z* € X*(k). If we show
that k = 4, then ¢ € ®(X*(7)), which completes the proof of (4.7). In fact, if k < 4,
then v (z*) =k < i=v(1% (m+1)"""), and so, by the definition of P, (z*, (1’
(m+1)""%) € P implying ¢ = ®(z*) > ®(17, (m + 1)"*), which is a contradiction.
Similarly, if ¥ > 4, then v, (1%,2"%) = i < k = v;(2*), whence ((1%,27%), 2*) € P, and
so, ®(1%,27%) > ®(z*) = ¢, which is also a contradiction. Thus, k = i.
Step 2c. Given i € [0,n — 1], let us find the EPF W, : X" S[1,|X"*[] for P’ on X'
(in the notations of Steps 2 and 2a) and apply the induction hypothesis to it.
Since the function @, from Step 2a is a preference function for P’ on X', applying
(2.8) and (4.5), recalling the definition of ®; and that §;(X"™) = X*(4) and taking
into account (4.7), we get:

[ X7 (0)] = |X"] = [@,(X7)] = |2(8:(X"))| = |2(X"(4))]
= ®(1, (m+ 1)) — d(1,, 2" + 1. (4.8)
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Since @ is a preference function for P on X, then applying (2.8), noting that
(B;(X")* = X*(7) and taking into account (4.7) once again and (4.8), we find

D;(X") = @(8,(X") = 2((8:(X7)7) = (X7 (1))
=®(1,2" ") =14 [1, 01", (m+ 1)"") — ®(1,2"7") 4+ 1]
=®(1,2") — 1+ [1,| X" (4.9)
Given z' € X', we set U;(z') = ®;(z') — ®(1%,2"%) + 1. It follows from Step 2a
and (4.9) that ¥, : X’ OI—lto>[1, | X™*|] is a preference function for P’ on X’. Since X' =
[1,m]"* and P’= P,,_, is the threshold preference on X', by the induction
hypothesis, we get:

m

\Ijl(x/) Z C::L l]) Vi(z')+m—j-1’ z' € X,’

J=1

and so, since, as noticed earlier, the last term in the sum above corresponding to
j = mis equal to C°, = 1, we obtain the following equality:

m—1
(a) = @12 )+ OO g @ EX = (L) (410)
j=1

By virtue of (2.3) and (4.6), we have:

J+1

Via) = u@) = 3 v (Bia") = 3 wilBi(a"))
k=1 k=1 k=2
= Vi1(Bi(3")) — vi(Bi(z")),

and so, the lower index in the binomial coefficient in (4.10) is equal to
(n—i) = Vi@ ) +m—j—1=(n—1i)+v(Biz)) = Viu(Bi(z) + m—j— 1.

Taking into account the definition of ®; and changing the summation index j+
1+ jin (4.10), we find that, given 2’ € X',

i on— z (m+1)—

(b(ﬂ ( )) 1 :2 + Z C (n— L+U1 (z")=V;(Bi(z"))+m—j" (4'11)
Given z € X(i), we have z* € X*(i) = 5,(X"™) and, since 3; maps X" into X*(7)
bijectively, there exists a unique z’* € X’* such that z* = §,;(z’*). Setting 2’ = z’* in
(4.11) and noting that v;(3;(z™)) = v;(z*) = v;(z) for all j € [1, m], and so, by axiom
(A1) q1, D(Bi(2™)) = ®(2*) = ®(z), we arrive at the equality

i on— z - (m+1)— .
O(z) = (14,277 + Cn z+v1 (5)V,(2)+m—j" z € X(7), (4.12)
j=2

where i € [0, n — 1]. Note that equality (4.12) holds for i = n as well: in fact, if i = n,
then z € X(i) = X(n) iff v(z)=n iff z=(1"), (17,27 =(1",2°) = (1) and

Vi(z) = n, and so, C’(m+1> 7= 0 for all j € [2, m).
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It remains to calculate the value ®(1¢,2" %) in (4.12). For this, we need the
following equality:

®(14,2") = (1 (m+ 1) () 41 forall i € [0,n — 1]. (4.13)

Step 2d. Proof of (4.13). First, note that ®(1") =1 and ®((m+1)") = |X*|. In
fact, given z € X, we have (m+ 1)" =2 (1"), and so, by axioms (A.1),,.; and
(A.2),,41, we have ®((m+1)") > ®(z) > ®(1"), and since P : Xm[l | X*], the
desired equalities follow.

In order to prove (4.13), let us fix 7 € [0,n — 1]. For the sake of brevity, we set

= (14,277 and w* = (1", (m + 1)"~(+V). Note that, since v;(2*) =i < i+ 1=
v (w*), we have (z*,w*) € P, and so, ®(z*) > ®(w*). For any z* € (Ji_o X*(k)
(disjoint union) we find ®(z*) < &(z*) < &((m + 1)") = | X*|: in fact, if z* € X*(k)
with k € [0,4 — 1], then v, (2*) = k < i = v;(2*), and so, (z*,2*) € P implying ®(z*) >
®(z*), and if z* € X*(0), then z* = 2%, and so, by axiom (A.2),,41, ®(z*) > ®(z*).
Similarly, if y* € Jjp—;.1 X*(k) (disjoint union), then 1 =®(1") < ®(y*) < (w*): in
fact, if y* € X*(i+ 1), then y* < w*, and so, by axiom (A.2),,.1, ®(y*) < &(w*), and if
y e X*(k) with i+1<k<nmn, then v (w*)=1i+1<k=wv(y*), and so, (w*,y*) € P
implying ®(w*) > ®(y*). It follows that

(U X*(k ) (z%),|X*|] and <1>< U X*(k))c[l,@(w*)],
k=i+1

and, since X* = |Jj_o X*(k) = (Uj_o X*(k)) U (Uj—;1 X*(k)) (disjoint union), we
get

[1,[X*[] = (U X" (k ) [1, ®(w")] U [@(z"), | X]],
where ®(w*) < ®(z*). Since the intervals in this inclusion are natural, we get

O(w*) +1 = &(z*), and equality (4.13) follows.

Step 2e. In order to establish equality (3.1) for m 4+ 1 making use of (4.12), let
i € [0, n] and let us calculate the value ®(17,2"%). By virtue of (4.1), (4.5), (4.8) and
(4.13), we have:

<I>(1i, 2n—i) _ <I>(1i+1, (m 4 l)nf(iJrl)) _ (I)(lz#-l, 2n—(i+1)) 14+ (I>(1z'+17 2n—(i+1))
= |X*(i+ 1)] + ®(17+1, 27— (1)
| X*(i+ 1)+ | X (i + 2)| + - + | X*(n)| + ®(17,29)

n—i—1

= Z Cln +m 1+ O(17) = Z 0(72;11)+k+1

I=i+1 k=0
m
- C 7)+m—1 +1.
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It follows from (4.12) that, given i € [0, n] and z € X(3),
_ o~ (m+1)— (m+1)—
(I)(,z') C(n i)+( m+1 -1-1 + Z C (n—i —0—1/1 (z)=V;(x)+(m+1)—j—-1 + 1. (414)

Now, given = € X, we find that z € X (i) with ¢ = v,(z), and so, applying (4.14) and
noting that, by virtue of (4.4),

o 0o _ (m+1)—(m-+1)
1= 0o = Ol (@) (5) - Vi (@) (me 1)~ (et 1)1

we conclude that

m+1)—j n
B(a) =Y OV iy g forallze X =[1,m+1]",

=1
as asserted in (3.1) for m + 1 in place of m.
This completes the proof of the necessity part of Theorem 3.1. Now we turn to the
proof of the sufficiency part.

Step 3. First, we prove that the function ® given by (3.1) is a preference function for
P =P, onX =[1,m]"with m > 3. For this, it suffices to verify that ® satisfies the
three axioms from Theorem A. Let z,y € X.

Aziom (A.1),,. If v;(z) = v;(y) for all j € [1, m — 1], then, by virtue of (2.3) and
(2.4), Vi(z) = V;(y) for all j € [1,m], and so, formula (3.1) implies ®(z) = ®(y).

Aziom (A.2),,. Suppose that z > yin X. Then, by (2.5), z* > y*, and so, condition
at the right in (2.6) is satisfied. It follows from (2.3) that V;(z) = V;(y) for all
JEeLk—1], Vi(z) < Vi(y), Vy(z) < V,(y) forall pe [k+1,m —1] and V,,(z) =
Vin(y) = n. Therefore,

el =

n V() m—j1 forall je [1,k—1],

Vi(y)+m—j—1

k k
Clviwem—t— > Cv (emp—1, and

C:] Ii( Y +m—j—1 2 C:] Ii( )+m—j—1 for all j € [k+1,m],

and so, summing these (in)equalities over all j € [1,m] and taking into account
equality (3.1), we get ®(z) > O(y).

Aziom (A.3),,. Given k € [3, m], suppose that condition (A.3.%),, in Theorem A is
satisfied. Since v;(z) = v;(y) for all j € [1, m — k], we have:
—k m—Fk

C ,(f)+m j—1 Z Cn Vi(y)+m—j—1° (4.15)

3

Il
_

j
Set v = v,,_p42(x). Then condition V,,_;,o(z) = n implies V,,_;.;(z) = n — v and
Vi(z) =n for all je[m—k+2,m], and condition v, _ji1(z)+1= v, 411(y)
implies V,,_;1(z) + 1 = V,,_11(y),and so, V,,_1.1(y) = n — v + 1 (in particular, it
follows that v € [2,n]). Finally, condition V,,_;.1(y) + v, (y) = n implies V;(y) =
Vieri(y) =n—v41lforallje [m—k+1,m—1], V,,(y) = nand v,(y) = v — 1.
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It follows that

m ( k1) m—1
-J _ m—(m—k+1 Z
C —Vi(z)+m—j—1 — Canm,kH(z)er (m—k+1)— + Cn nt+m—j— 1+ 1
j=m—k+1 j=m—Fk+2
=Cfi,+1 4.16
- v+k—2 + ) ( : )
and
m ) m—1 ]
m—j _ m—j
Z Cn*VJ(y)er*jfl - z : Cn (n—v+1)+m—j—1 +1
J=m—k+1 j=m—k+1
m—1 m
_ m—j _ v—2
_ Ol 1= Y ClE
j=m—k+1 j=m—k+1
k—1
= CI/ 245 — CV 2+k» (417)

<.
fe=)

where equality (4.17) follows from (4.1). Now, (3.1) and (4.15)—(4.17) imply that
O(z) = P(y) + 1 > D(y), as asserted.

Step 4. Finally, we show that ® : X —[1,|X*|], that is, ®(X) = [1, | X*|].

Given z € X, we have (1") < z < (m"), and so, by axioms (A.1),, and (A.2),,, we
find ©(1") < ®(z) < ®(m"). Since V;(1") = n and V;(m") =0 for all j € [1,m — 1],
we get <I>( =Yt ond 71 +1=1 and, by virtue of (2.7) and (4.2), ®(m") =
Yo Cota iy = | X¥|, and so, @(z) is in [®(17), ®(m™)] = [1,]|X*|] implying ®(X) C
e

In order to prove the reverse inclusion [1, | X*|] C ®(X), we let £ be in [1,]|X*|] =
1, C,’L’};;_l] and apply Theorem 3.2: there is a unique collection of non-negative
integers ny,no, ..., N, o satisfying n; < n; y for all j € [1,m — 2] such that (3.2)
holds. Consider a vector z € X = [1, m]" (well) defined by equalities (3.3) and (3.4).
Then, given j € [1, m — 2], we have:

(@)= ule) =

J
k=1 k=1

onto
—I

(M1 —m) =ng—nj=n—mn

and n — V;(z) = n;, and so, by virtue of (3.1) and (3.2), we get:

m—2

P(z) = C::Z(IHmfjfl + v, (z) +1
j=1
m—2 )

=1

<.

It follows that ¢ € ®(X), and so, [1,]|X*|] C ®(X).
This completes the proof of Theorem 3.1. O
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Proof of Theorem 3.3. (a) By the negation property (i) of P from the beginning of
Sec. 2, given z,y € X, we have: (y,z) & P iff (z,y) € P or v;(z) = v;(y) for all
j € [1, m — 1]. Since, by Theorem 3.1, ® is a preference function for P on X (cf. also
property (ii) and axiom (A.1),,), we get:

vj(z) = v;(y) for all j € [1,m] iff @(z) = P(y). (4.18)

It follows that (y,z) & P iff ®(z) > ®(y) or &(z) = (y), ie., (z) > ®(y). As in
(2.7), we set s = | X*|.
By the definition of X, (Sec. 2), we find

X,=X/=n(X)={z€ X:(y,z) € Pforall y e X}
={ze X :P(zx) > P(y) for all y € X}.

Let us show that the last set is equal to {z € X : ®(z) = s}. In fact, let z € X.
If ®(z) = s, then since, by Theorem 3.1, ®(y) € [1, s] for all y € X, we get ®(z) =
s> ®(y) for all y € X. Now, if ®(x) > ®(y) for all y € X, then setting y = (m") we
find s > ®(z) > P(y) = &(m") = s, and so, P(z) = s. Thus, X, ={z € X : O(z) =
sp = {(m")}.

Now, suppose that for some ¢ € [2, s] we have already shown that X}, is equal to
{zr € X :®(z) =k} for all k € [¢,s], and let us show that X, , ={z € X : (z) =
¢ — 1}. By the definition,

s—0+1
Xea =X oy = Xipa = 7T<X\< U Xk'))
k=1

is the set of all z e X\ (UiZt™ X{) such that (y, z) € P for all y € X which lie outside
of UjZ{™ X/. Since, again by the definition, X, = X/ ,., for all k€ [(, 5] or,
equlvalently, X[ = X,_p1 for all k € [1,s — £+ 1], by the hypothesis above,

s—0+1

UXk Uka{xeX O(z) € [£,]},

k=t

and so, Theorem 3.1 implies

Xi1={ze X :P(z)€[l,/—1] and ®(z) > P(y) forall ye X
such that ®(y) € [1,¢ —1]}.

We claim that X, ; = {z € X : ®(z) = ¢ — 1}; in fact, given z € X, we have: clearly,
if ®(z) =¢—1, then z € X,_y, and if € X,_;, then, by virtue of Theorem 3.1 and
equality ®(X) = [1, s], we can choose a y € X such that ®(y) =¢—1,and so,{ —1 >
®(z) > &(y) = ¢ — 1 implying ®(z) = £ — 1. In this way we have proved that X, =
{r e X :®(z) ={} for all £ € [1,]|X*]].

Now, given z € X, there is an ¢ € [1, s] such that z € X, = {z € X : &(z) = ¢},
and so, z € Xg(y), i-e., Xp(;) is the indifference class of z, which establishes the
equality Xg(,) = 1.
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(b) It was shown in Step 4 of the proof of Theorem 3.1 that if z € X satisfies (3.3)
and (3.4), then ®(z) = ¢, and so, by item (a), z € X,.

Now, suppose that z € X,, so that ®(z) = £. By Theorem 3.2, there exists a unique
collection of m — 2 non-negative integers ny, ny, ..., n,,_o satisfying n; < n,_; for all
J € [1, m — 2] such that the inclusion in (3.2) holds. Consider a vector z’ € X having
the properties (3.3) and (3.4). Then ®(z’) = ¢, and so, ®(z) = ®(z’). Taking into
account (4.18), we find that v;(z) = v;(2’) for all j € [1,m], and so, x satisfies con-
ditions (3.3) and (3.4) as well. m|

5. The Algorithmic Order on x*

Recall that, given z,y € X, we have: (z,y) € P iff (z*,y*) € P*, where P* is the
restriction of the relation P to X* x X*, and that P* is a linear order on X*.
Moreover, I, = I,. for all z € X. It follows that if we are interested in more properties
of the relation P on X, then it suffices to study them for P* on X*. Recall also that
the restriction of the function ® from (3.1) to X* is a bijection between X* and
[1,|X*[], so that the pairs (X*, P*) and ([1,|X*|], >) are order isomorphic in the sense
that, given z*, y* € X*, (2*,y*) € P iff &(2*) > ®(y*).

Let z € X =[1,m]". Since X =J;—; X, (disjoint union) with s= |X*|, there
exists a unique ¢ € [1,|X*|] such that z € X,. By Theorem 3.2, the number ¢ deter-
mines uniquely a collection of m — 2 non-negative integers nq, ng,...,n,,_o with
appropriate properties, so that, in particular, equalities (3.3) and (3.4) hold. Setting
N1 = V() =€ —L—1 and n,, =0, we find that v,,_;(z) = n,_y — n,,_; and
U (Z) = nyy_q, and so, 0 < n,,_; < n,,_». Thus, we have shown that, given z € X,
there exists a unique collection of m integers ny, ng, ..., n,,_; and n,, = 0 satisfying
0 < n; < n;_; forall j € [1,m] such that
vi(z) = njy —mn; forallje[l,m—1] and v,(z)=n,_;. (5.1)
Moreover, Theorems 3.2, 3.3(a) and definitions of n,,_; and n,, imply

(I)(:I:) = 6: L+nm—1 +1

m—2
_ m—j m—(m—1) m—m
- 2 : Cn‘,+m—j—1 + Cnm,l+m7(m71)71 + C”m+m—"l—1
J=1
m
_ m—j
= Z Crimj1: (5.2)
J=1

On the other hand, due to the uniqueness of collection {n;};’, it is clear that, given
z € X, we have:

n.:

=

)

(z) =n— Vi(z) forall je[l,m] (5.3)

and, in particular, numbers (5.3) satisfy conditions (5.1), and so, the monotone
representative z* of z is of the form:

.T*(’ﬁ> — (1"*”1 , 2”1*"27 3"2*”3, e (m _ 1)%#2*%1717 mnm—l)7 (54)
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where 7 = (1, n9, ..., Ny_1), ng = n and n; € [0, n;_4] for all j € [1, m — 1]. Denote
by N the set of all such vectors n. In this way we have shown that the set IV is
bijective to X* via the map (5.4) (cf. also (5.3)). Moreover, N and X* are order
isomorphic in the following sense: given 7 = (ny,ng,...,Ny_1), 7' = (ni,74,...,
nl_1) € N, we have: (z*(n), z*(n')) € P* iff n{ < n; or there exists a k € [2,m — 1]
such that nj = n; for all j € [1,k— 1] and nj, < n;. In fact, in order to see this, it
suffices to note only that v;(z*(#)) = n;_; — n; and vj(z*(n’)) = n/_; — n/ for all
j€[l,m—1] and ny = ng = n.

Thus, the linear order on N, exposed in the previous paragraph, defines the
algorithmic order on X* via (5.4) corresponding to the more greater P-preferability,
which can be described by the following rule: write out one by one a string of vectors
z*(n) of the form (5.4) in such a way that n; assumes successively the values

0,1,...,n, and if n; is fixed, then the number n, assumes successively the values
0,1,...,n,and if n; and n, are fixed in the ranges 0 < n; < nand 0 < ny < ny, then
the number n; assumes successively the values 0,1, ..., ny, and so on, and finally, if
Ny Ny, ..., Ny_o are fixed in their respective ranges (0 < ny < n, 0 <ny < ny,...,
0<mn,u_s<mn,_3), then the number n,_; assumes successively the values
0,1,...,7n,_s. According to the algorithmic order on X*, to each z* € X* there
corresponds a unique natural number, which is the ordinal number of z* and, if * is
of the form (5.4) for some collection 7 = (ny,ns, ..., n,_1) € N, then this ordinal

number of z* is given by formula (5.2). Table 1 is the illustration.

6. The Dual Threshold Preference

The threshold preference P = P,,_; from Sec. 2 can be applied to rank the set of
alternatives X = [1, m]" if their utmost perfection is of main concern (e.g., Ref. 15).
However, if one is interested in at least one good feature of alternatives, then the dual
threshold preference (see Ref. 8, Sec. 5) should be employed. The aim of this section is
to obtain the (dual) EPF for the dual threshold preference.

We begin by recalling several definitions and known facts.

Making use of the lexicographic order, the dual threshold preference P = P,,_; on
X = [1,m]" is defined by®

Py ={(z,y) € X x X :0(y)L,10(2)},
where, given € X, 9(z) = (v,(2), vp_1(2),...,v5(z)) € [0,n]™ " and, as usual,
v;(z) is the multiplicity of grade j € [1,m] in the vector z = (2, ,...,,). More
explicitly, if m = 2, then (z,y) € P, iff vy(y) < vy(z), and if m > 3, then we find
(z,y) € P,y iff v,,(y) < v,(z) or there exists a k € [2,m — 1] such that v;(z) =
v;(y) for all j € [k + 1, m] and v, (y) < vi(2).

Let us show that the dual threshold preference P = P,,_; is the restriction of the
leximax preference on R" to X = [1, m]". Recall that z € R" is preferred toy € R™ in
the sense of the leximazx if y,Z,z,, where z, = (2,1, Z,9,...,Z,,) € R" is the dual
monotone representative of x, whose coordinates z,; € {x(, 2s,...,2,}, i € [1, n], are
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assembled in descending order z,; > x5 > -+ > x,,. Note that the dual monotone
representative of x € X is given by

z, = (m"® (m — 1)@ 9n@ ul@), (6.1)

Lemma 6.1. Given z,y € X, we have: (2,y) € P,,_q iff Y.£ 7,

Proof. Let z,y € X. We set r(j) = m — j+ 1 for j € [1, m], so that r(r(j)) = j, and
define r(z) € X for z = (21, 29,...,2,) € X by

r(z) = (r(z), r(z),....,r(z,))=(m—2z;+1,m—ay+1,....m—2z,+1). (6.2)

Clearly, r(r(z)) = z. It was shown in Ref. 8 that v;(r(z)) = v,(;(z) for all j € [1,m],
9(z) = v(r(z)), and (z,y) € P iff (r(y),r(z)) € P. Thus, taking into account
Lemma 2.1, we find

(zy) € P iff  (r(z)"Zu(x(y)". (6.3)
Next, for z* = (z{,z3,...,2;) we have z7 < z; <... <z, and, since (1) =m,
r(2)=m-—1, ..., r(m) = 1, equality (2.2) implies
r(z*) = (r(e1),r(23), -, r(@n1), r(23))

— (MA@ (m— 1)@ 2o (), o)),
Replacing z by r(z) in this equality, we get, by virtue of (6.1),
r((x(2))) = (MA@ (m — 1)2E6D), | 2uaa(e(@) 1o (@)
— (m’”v(l)(z)7 (m — 1)711-(2)(90’ c 2Umey) (z) 11’,(m)( ))
= (mn@ | (m — 1)o@ 9m(@) (0@ = 5
and so, (r(z))* =r(z,). Replacing z by r(z) in the last equality, we find z* =

r((r(z)),) or r(z¥) (* (7)),. Now, it follows from (6.3) that (z,y) € P iff r(z,)Z,r
(y.) iff y. 2. O

It is clear that the indifference relation (2.1), induced by the weak order P on X,
coincides with that induced by the threshold preference P.

As an example, Table 2 (cf. also Table 1) shows the ordering in ascending
P-preference of the set ([1,5]*)* of monotone representatives of elements from X =
[1,m]” with m =5 and n = 3:

Table 2. Example of the dual threshold preference.

(17171)17 (17172)27 (17232)37 (27272)47

(17173)57 (17273)67 (272a3)7§ (1 3, 3)87 (27313)97 (37373)10§

(1:1:4)117 (1$274)127 (2$274)13§ (17374)147 (2,374)15, (37374)103;

(17474)177 (27474)187 (37474)197 (4747 4)207 (1757 5)217 (1,'275)227 (2,-275)223;
(1,3,5)24, (2,3,5)35, (3,3,5) 65 (1,4,5)47, (2,4,5)53, (3,4,5)29, (4,4,5)303
(17575)317 (27575)327 (37515)337 (4 57 5)‘347 (57 57 5)35
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It was proved in Ref. 8 that a function ¢ : X — R is a preference function for P on
X (i.e., P = P(yp)) iff the function ¥ : X — R, defined by @(z) = —p(r(z)) for all
z € X (with r(z) from (6.2)), is a preference function for P on X, that is, P = P(%).
Taking into account Theorem 3.1, we shall look for the dual EPF for P on X in the
form ®(z) = ¢ — ®(r(z)), z € X, where c is an appropriate constant to be found
below. Given j € [1, m], equality (2.3) implies

V@) =S ur@) =S @ = @ = > )
k=1 k=1 i —j

k=1 i=m—j+1

and so, n — V;

J(r(z)) = V,,_;(z), and equality (3.1) gives

3

Bla)=c—@@@)=c—> Oy 1 =c=) Crurir
j=1

i

Il
o

If we want to have the property of ® that ® maps X onto [1,|X*|], then we should
have ®(1") = 1. Since V;(1") = n for all i € [1, m — 1], then, by virtue of (2.3) and
(4.1), we get:

1=®(1")=c—CY% - Z Crisi=c—1— Z Clu1)ri + Cna
=1 i=0
m—1
=c- Z 0(7;;11)“ =c- C(Z:})Jr(mfl)Jrl =c—Clint,
=0

and so, according to (2.7), c=1+ C/™! | =1+ |X*|. Taking into account that
C°, =1, we conclude that

m—1

(x) = Citm1— Y Chrpin forallze X, (6.4)
=1

Note that V,;(m") =0 for all i € [1,m — 1], and so, ®(m") = |X*|. Thus, as a cor-
ollary of Theorem 3.1, we get the following

Theorem 6.1. A function ® maps X = [1,m]" onto [1,|X*|] and is a preference
function for P = P,,_; on X (i.e., ® is the EPF for P) iffit is of the form (6.4).

In order to present the dual algorithmic order on X* corresponding to the weak
order P, following (5.3) we set n; = n — V;(z) for all z € X and i € [0, m]. It follows
that ng=mn, n, =0 and 0<n;<n,_; and v;(z) =n,_; —n; for all i€ [1,m].
Therefore, the monotone representative z* of z € X is of the form (5.4) where fn =
(Mp—1y M2y - - -, Mg, ny) is such that n; € [0,n,_] for all i€ [1,m—1]. If n/ =
(T 1y Mgy -+, M9, ni)issuch that n; € [0,n/ ;] forall i € [1, m — 1], then we have:
(z*(R),z*(n')) € Piff n)_, < n,,_; or there exists a number k € [1, m — 2] such that
n/ =n; for all i € [k+1,m — 1] and n} < n;. It follows that the dual algorithmic
order on X* via (5.4), corresponding to the more greater P-preferability, can be

described by the following rule: write out one by one a string of vectors z*(7) of the
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form (5.4) in such a way that n,,_; assumes successively the values 0,1, ..., n, and if
n,,_1 is fixed, then the number n,, o assumes successively the values n,, 1, n,,_1+
1,...,n, and if n,,_; and n,_, are fixed in the ranges 0 < n,_; < n and n,,_; <
Ny,_o < n, then the number n,,_; assumes successively the values n,,_ 5, 1, o+
1,...,n, and so on, and finally, if n,,_1,n,_2,...,ny are fixed and such that n; <
n,_1 < n for all i € [3, m — 1], then the number n; assumes successively the values
N9, My + 1,...,n. According to the dual algorithmic order on X*, to each z* € X*
there corresponds a unique natural number, which is the ordinal number of z* and, if
z* is of the form (5.4) for some collection 7 = (n,,_1, Nyy_a, - - -, N, Ny ) as above, then,
by virtue of (6.4), this ordinal number of z* is equal to

m—1
B(2") = Crfmos — Z Crnvi1-
=1
Table 2 illustrates the dual algorithmic order on X* = ([1,5]%)*.
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