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Combinatorics of fronts of Legendrian

links and the Arnol’d 444-conjectures

Yu. V. Chekanov and P. E. Pushkar’

Abstract. Each convex smooth curve on the plane has at least four points at which
the curvature of the curve has local extrema. If the curve is generic, then it has an
equidistant curve with at least four cusps. Using the language of contact topology,
V. I. Arnol’d formulated conjectures generalizing these classical results to co-oriented
fronts on the plane, namely, the four-vertex conjecture and the four-cusp conjecture.
In the present paper these conjectures and some related results are proved. Along
with a simple generalization of the Sturm–Hurwitz theory, the main ingredient of
the proof is a theory of pseudo-involutions which is constructed in the paper. This
theory describes the combinatorial structure of fronts on a cylinder. Also discussed is
the relationship between the theory of pseudo-involutions and bifurcations of Morse
complexes in one-parameter families.
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Introduction

0.1. Contact manifolds, Legendrian submanifolds, fronts. A contact form
on a manifold V of dimension 2n + 1 is a 1-form α such that the form α ∧ (dα)n
vanishes nowhere. (All objects in the paper are assumed to be C∞-smooth unless
otherwise stated.) By a contact manifold we mean a manifold V 2n+1 equipped
with a field ξ of tangent hyperplanes ξx ⊂ TxV locally defined as the zero sets of a
contact 1-form, that is, ξ = kerα. If the field ξ is co-orientable, then such a form
can be defined globally. An n-dimensional submanifold L of a contact manifold
(V 2n+1, ξ) is said to be Legendrian if TxL ⊂ ξx for any x ∈ L; if ξ = kerα, then
this condition is equivalent to the condition α|L ≡ 0.
Let M be a smooth manifold. In this case the 1-jets of functions on M form

the manifold J1(M) = T ∗M × R. The contact structure on J1(M) is defined
by the natural 1-form α = du−p dq, where u is the coordinate on R and (p, q) are the
canonical Liouville coordinates on T ∗M . Another important example of a contact
manifold is the spherization ST ∗N of the cotangent bundle of a smooth manifoldN ,
that is, the manifold of co-oriented hyperplanes cotangent to N (contact elements).
The natural co-oriented contact structure on ST ∗N is defined by the following
construction: the contact co-oriented tangent hyperplane at a point X ∈ ST ∗N
is the pre-image of the co-oriented hyperplane X ⊂ TN under the action of the
differential of the projection ρ : ST ∗N → N .
Let (V, ξ) be a contact manifold. A smooth fibre bundle τ : (V, ξ)→ B is said to

be Legendrian if its fibres are Legendrian submanifolds. The projection τ(L) ⊂ B
of a Legendrian submanifold L ⊂ V is called the front of L. Each point x ∈ L
determines a hyperplane τ∗ξx ⊂ Tτ(x)B smoothly depending on x that coincides
with the tangent hyperplane Tτ(x)(τ(L)) at any smooth point of the front (that is,
at the points to which the Legendrian submanifold is projected diffeomorphically).
This hyperplane is referred to as a tangent hyperplane to the front τ(L). The natural
projections ρ : ST ∗N → N and σ : J1(M)→ J0(M) =M ×R are Legendrian fibre
bundles. Hyperplanes tangent to fronts of the projection σ are not vertical (they do
not contain the u direction); hyperplanes tangent to fronts of the projection ρ have
a natural co-orientation induced by the co-orientation of the contact plane. Every
generic Legendrian submanifold of J1(M) (and, more generally, every Legendrian
submanifold occurring in a generic finite-parameter family) can be reconstructed
from its front; the same holds for Legendrian submanifolds of ST ∗N and their
co-oriented fronts in N .
Let us assume that the dimension of the contact manifold is equal to three.

Then the front of a generic Legendrian link (a compact Legendrian submanifold) is
a curve whose singularities are transverse crossings and semicubical cusps. Cusps
correspond to points at which the link is tangent to a fibre of the projection. Every
curve in J0(M), dimM = 1, having singularities of this kind and having no vertical
tangents is the front of a Legendrian link in J1(M); every co-oriented contact curve
in N , dimN = 2, with such singularities is the front of a Legendrian link in ST ∗N .
One of the main results of the present paper is Theorem 0.1, formulated by

Arnol’d [1] as a conjecture.

Theorem 0.1 (the Arnol’d conjecture on four cusps). Let {Lt∈[0,1]} be a smooth
path in the space of Legendrian knots in ST ∗R2 such that the fronts ρ(L0) and ρ(L1)
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are convex curves diffeomorphic to circles and having opposite co-orientations.
Then there is a point t0 ∈ [0, 1] such that the Legendrian knot Lt0 is tangent to
the fibres of the projection ρ at least at four points. If the family {Lt} is generic,
then there is a point t0 ∈ [0, 1] such that the front ρ(Lt0) has at least four cusps.

0.2. Vertices. In order to formulate another theorem which was also proposed
by Arnol’d as a conjecture, we need the notion of vertex of a Legendrian curve
in ST ∗R2. We give the necessary definitions. For a Legendrian link L ⊂ ST ∗R2
we define the generalized curvature map CurvL : L→ S1 = RP1. Let ξ denote the
vector bundle over ST ∗R2 formed by all vectors belonging to the contact planes,
and consider the projectivization Pξ. Let z ∈ L. A line lz ⊂ ξz tangent to L
at z determines an element of the fibre of the bundle Pξ over the point z. Let us
construct a trivialization of the vector bundle ξ. This will determine a trivialization
of the bundle Pξ, that is, a map from Pξ to RP1. The map CurvL : L → RP1 is
the composition of the map z �→ lz and the trivializing map.
To construct a trivialization of the bundle ξ, we fix a Euclidean structure and

an orientation on R2. A contact element in ST ∗R2 can be uniquely represented
by a unit covector cos q dx1 + sin q dx2 ∈ T ∗(x1,x2)R

2, where (x1, x2) are oriented

Euclidean coordinates on R2 and q ∈ S1 = R/2πZ. Thus, (x1, x2, q) are coordi-
nates on ST ∗R2. The natural contact structure on ST ∗R2 is defined by the form
cos q dx1 + sin q dx2. The vector fields v0 =

∂
∂q , v1 = − sin q

∂
∂x1
+ cos q ∂∂x2 are tan-

gent to the contact distribution and thus define a trivialization of it. Let z ∈ L and
let w = a0v0(z) + a1v1(z) ∈ TzL be a non-zero tangent vector. We represent the
space RP1 in the form R∪{∞} and set CurvL(z) = a0

a1
if a1 	= 0 and CurvL(z) =∞

if a1 = 0.
(We note that the vector fields v0 and v1 have the following geometric description.

The field v0 is everywhere tangent to the fibres of the bundle ρ : ST
∗
R
2 → R2 and

corresponds to the rotation with unit velocity of a contact element at the given
point. The field v1 corresponds to the shift with unit velocity of a contact element
along the line (the geodesic) tangent to the element. This description enables one
to immediately extend the construction of the map CurvL to the case of Legendrian
links in ST ∗M2, where M2 is a two-dimensional oriented Riemannian manifold.)
The map CurvL generalizes the notion of curvature of a planar curve in the

following sense.

Proposition 0.2. If the link L is tangent to a fibre of the projection ρ at a point z,
then CurvL(z) = ∞; otherwise the number CurvL(z) coincides up to sign with the
curvature of the front ρ(L) at the point ρ(z).

Proposition 0.2 is proved in §1. We refer to the critical points of the map CurvL
as vertices of L. This definition agrees with the classical definition of vertices of a
smooth immersed curve in R2 if this curve is regarded as the front of a Legendrian
link. For a generic Legendrian link L the projections of the vertices belong to the
smooth part of the front ρ(L).
We denote by L1 the connected component of the space of Legendrian knots in

ST ∗R2 that contains a knot whose front is a circle in R2. The following conjecture
was proposed by Arnol’d (see [4], p. 97, where this conjecture is presented in a
different but equivalent form).
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Theorem 0.3 (the Arnol’d conjecture on four vertices). Every Legendrian knot
L ∈ L1 has at least four vertices.

0.3. Bifurcations of fronts. Let {Lt∈[0,1]} be a generic one-parameter family
of immersed Legendrian submanifolds of ST ∗R2. In this case the front ρ(Lt) can
have more complicated singularities than cusps and transverse intersections of two
branches at only finitely many points t1 < . . . < tk. The fronts ρ(Lt) remain
diffeomorphic to one another as t ranges within the limits of one of the intervals
[0, t1[, ]t1, t2[, . . . , ]tk, 1]. When the parameter passes through a value ti, the fronts
of the family {Lt} are subjected to a bifurcation in one of the ways shown in Fig. 1
(the direction in which the parameter increases can be opposite to the direction
indicated by the arrow; the co-orientations of the branches for the versions shown
in Fig. 1 a–c can be arbitrary).

a b c d e f

Figure 1

The bifurcation shown in Fig. 1 f (a positive self-tangency) is the only bifurcation
for which the Legendrian manifold Lti has a self-intersection. The assertion of The-
orem 0.1 for generic families has the following equivalent formulation: each family
of fronts obtained one from another by a chain of bifurcations (shown in Fig. 1 a–f)
that begins and ends with convex curves of opposite co-orientations contains a front
with four cusps. In studying the relationship between these bifurcations and the
combinatorics of fronts, Arnol’d constructed a theory of finite-order invariants for
fronts [2]. He also discovered that the assertion of Theorem 0.1 fails if the Legen-
drian manifolds in the family {Lt} can have self-intersections, or, equivalently, if
one admits bifurcations of positive self-tangency for the fronts [1]. It turns out that
the embedding condition is essential for Theorem 0.3 as well, namely, the Legen-
drian knot whose front is shown in Fig. 2 has exactly two vertices and can be joined
by a path in the set of Legendrian immersions to a Legendrian knot in L1.

For convex smooth curves in the plane our Theorem 0.3 gives the classical four-
vertex theorem (see [7]). For closed embedded planar curves this fact was proved by
Mukhopadhyaya [20]. In [23] Sedykh obtained a generalization of the four-vertex
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Figure 2

theorem that involves flattening points of a spatial curve lying on the boundary of
its convex hull.1

Equidistant curves of a convex curve provide an important example of a family
of fronts for which the assertion of Theorem 0.1 follows from the classical four-
vertex theorem. Studying this example led Arnol’d to the formulation of the above
conjecture on four cusps. Let E0 be an embedded co-oriented curve in the plane.
We consider the family {Et∈[0,T ]} of equidistant curves, where Et is obtained from
E0 by shifting each point by the distance t along the positive normal; we co-orient
Et in the direction of this normal.
The family of equidistant curves of a generic curve E0 admits local bifurcations of

the forms shown in Fig. 1 a–e. From the physical point of view, a family of equidis-
tant curves describes a wave propagation in a homogeneous isotropic medium. For
more general systems (non-homogeneous, anisotropic, non-autonomous) a bifurca-
tion of positive self-tangency cannot occur, because a wave cannot overtake itself.
Thus, the embedding condition for Legendrian submanifolds in Theorem 0.1 is nat-
ural.
We return to the family {Et} of equidistant curves. Local singularities of the

curves Et cover the caustic of the curve E0, that is, the curve formed by the centers
of curvature. The caustic has a semicubical singularity at any center of curvature
corresponding to a vertex of the curve E0, and the family {Et} of fronts is subjected
to the bifurcation shown in Fig. 1 a.
Let E0 be a generic quadratically convex curve, co-oriented inwards. The radius

of curvature defines a smooth function R : E0 → R whose critical points are the
vertices of the curve E0. For a generic value t ∈ R the number of cusps in Et is
equal to the number of points in E0 at which the function R takes the value t. In
particular, for each sufficiently large T the front ET is a smooth convex curve co-
oriented outwards, and the family of Legendrian knots corresponding to the family
{Et∈[0,T ]} of fronts satisfies the assumptions of Theorem 0.1 (up to a change of

1Russian Editor’s note: The authors’ results should also be compared with those in the follow-

ing papers: R. Osserman, “The four-or-more vertex theorem”, Amer. Math. Monthly 92 (1985),
332–337; T. Bisztriczky, “On the four-vertex theorem for space curves”, J. Geom. 27 (1986),

no. 2, 166–174; G. Cairns and R.W. Sharpe, “On the inversive differential geometry of plane
curves”, Enseign. Math. (2) 36 (1990), nos. 1-2, 175–196; S. I.R. Costa and M. Firer, “Four-or-

more-vertex theorems for constant curvature manifolds”, in: Real and Complex Singularities (Sao
Carlos, 1998), Chapman and Hall/CRC, Boca Raton, FL 2000, pp. 164–172; M. Maeda, “Remarks

on the four-vertex theorem”, Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. (1997),
no. 44, 65–72; E. Heil, “A four-vertex theorem for space curves”,Math. Pannon. 10 (1999), no. 1,

123–132; O.R. Musin, “Chebyshev systems and zeros of a function on a convex curve”, Proc.
Steklov Inst. Math. 221 (1998), 236–246; V. Ovsienko and S. Tabachnikov, “Sturm theory, Ghys

theorem on zeroes of the Schwarzian derivative and flattening of Legendrian curves”, Selecta Math.
(N.S.) 2 (1996), no. 2, 297–307.
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the parameter t). For this family, the assertion of Theorem 0.1 follows from the
classical four-vertex theorem, because each function on the circle having at least
two minima takes some regular value at least four times.

0.4. A remarkable contactomorphism. By introducing a Euclidean structure
on R2 one canonically determines a contactomorphism between ST ∗R2 and J1(S1),
where the circle S1 is identified with the unit circle in R2. We describe this map.
A contact element in ST ∗R2 is uniquely represented by a unit covector cos q dx1+
sin q dx2 ∈ T ∗(x1,x2)R

2, where q ∈ S1 = R/2πZ. Thus, the triple (x1, x2, q) defines
coordinates on ST ∗R2. The natural contact structure on ST ∗R2 is given by the
form cos q dx1+ sin q dx2. The map ST

∗
R
2 → J1(S1), (x1, x2, q) �→ (p, q, u), where

p = −x1 sin q + x2 cos q, u = x1 cos q + x2 sin q, is a contactomorphism, because it
takes the form du−p dq to the form cos q dx1+sin q dx2. This contactomorphism is
shown in Fig. 3. One can similarly define a contactomorphism between ST ∗Rn+1

and J1(Sn) for any n. We identify ST ∗R2 with J1(S1). This identification plays
an important role in the proof of Theorems 0.1 and 0.3. The main objects of our
study are the fronts σ(L) ⊂ J0(S1) of Legendrian links L ⊂ J1(S1).

�������
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Figure 3

0.5. Decompositions of fronts. The theory of pseudo-involutions of fronts in
J0(M), where dimM = 1, is the combinatorial tool used in the proof of Theo-
rems 0.1 and 0.3. Let us present here some definitions of this theory in the simpler
case of M = R and formulate a result using the language of proper decompositions
rather than the language of pseudo-involutions (which is equivalent for M = R).
Let Σ ⊂ J0(R) be the front of a generic Legendrian link in J1(R). Along with

the restriction on the singularities of the front, we extend the genericity conditions
by including the assumption that the q-coordinates of the crossings of this front
are different. By a section of Σ we mean a subset that is the graph of a continuous
function h : [q1, q2] → R such that the points (q1, h(q1)) and (q2, h(q2)) are cusps
of Σ.
An unordered collection D = {Γ1, . . . ,ΓN} of sections of Σ is called a decompo-

sition of Σ if Σ =
⋃N
i=1 Γi and any two different sections intersect at only finitely

many points. A crossing x of Σ is said to be switching for the decomposition D if a
section in D containing the point x has a break at this point. Each decomposition
D is uniquely determined by the set Sw(D) of its switching points. A decomposi-
tion {Γ1, . . . ,ΓN} of Σ is said to be proper if the sections Γi can be partitioned into
pairs in such a way that the sections forming a pair intersect exactly at their ends.
This partition into pairs defines a free involution θD on the set D. We note that a
front need not have a proper decomposition. For example, a front containing the
‘zigzag’ fragment (disjoint from the other branches of the front) has no proper
decomposition.
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Proper decompositions were first introduced by Eliashberg [12]. The present
paper was mainly inspired by the constructions in [12].

0.6. Positivity. Suppose that D is a proper decomposition and x = (q0, u0) ∈
Sw(D). Let Γ and Γ′ be sections in D passing through x. The sections Γ, Γ′,
θD(Γ), and θD(Γ

′) are pairwise distinct, because the decomposition D is proper.
We consider the line lq1 = {q = q1}, where q1 	= q0 is close to q0, and write
z1 = Γ ∩ lq1 , z2 = Γ′ ∩ lq1 , z′1 = θD(Γ) ∩ lq1 , and z′2 = θD(Γ′) ∩ lq1 .
A switching point x is said to be positive (for the decomposition D) if the fol-

lowing either-or condition holds: either the intervals [z1, z
′
1] and [z2, z

′
2] are disjoint

or one of them is a subset of the other. This definition does not depend on the
choice of q1. A proper decomposition D of the front Σ is said to be positive if all
the switching points are positive.

Theorem 0.4. Let L and L′ be generic Legendrian links in J1(R) homotopic in the
class of Legendrian links. Then the fronts σ(L) and σ(L′) have the same number
of positive decompositions.

It should be noted that the notion of positive proper decomposition was inde-
pendently introduced by Fuchs in [16], where the relationship between the existence
of a positive decomposition for a front of a Legendrian knot L ⊂ J1(R) and the
augmentations of the differential graded algebra associated with L was studied (for
the definition of differential graded algebra and its augmentations, see [11]).

0.7. Plan of the paper. A proof of Theorem 0.1 for a special case is given in §1.
This proof illustrates the ideas used in the full proof, which involve the Hurwitz
theorem. In §2 we give the basic definitions of the theory of pseudo-involutions and
formulate the main result of this theory, Theorem 2.5 on the extension of positive
pseudo-involutions to generic one-parameter families of fronts. Theorem 2.5 is
proved in §3, where the desired extension of a pseudo-involution is constructed
explicitly. In §4 we study the (non-)uniqueness of the extension of positive pseudo-
involutions and the monodromy group arising from the extension along loops. The
extension of pseudo-involutions to non-generic fronts is studied in §5. In §6 we prove
some results on the combinatorics of decompositions of fronts. In §7 we formulate
generalizations of the Hurwitz theorem in which a function on the circle is replaced
by the front of a Legendrian submanifold of J1(S1). The proofs are given in §8. In
§9 we prove the Arnol’d conjectures on cusps and vertices (by using results in the
previous sections) and present some generalizations of these conjectures and other
results on cusps and vertices of fronts. Critical points of Legendrian knots (and
their relationships to the Hurwitz theorem) are discussed in §10. The theory of
pseudo-involutions enables one to construct invariants of Legendrian knots. These
invariants are described in §11. In §12 we explain the relationship between the
theory of generating families for Legendrian manifolds and the theory of pseudo-
involutions. In particular, we explain how a generating family of a special type
produces a pseudo-involution on the front of the Legendrian submanifold of J1(S1)
determined by this family.
We express our deep gratitude to our teacher V. I. Arnol’d, who discovered

(among many other things) the remarkable relationship between differential geom-
etry and contact topology. We are extremely thankful to him for his support and
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persistence, without which this paper would not have been completed. We thank
F. Aicardi, Ya.M. Eliashberg, E. Ferrand, D.B. Fuchs, V. V. Goryunov, M.L. Kont-
sevich, M. F. Prokhorova, V. D. Sedykh, and O.Ya. Viro for their stimulating inter-
est in this research and for helpful discussions.

§ 1. Application of the Hurwitz theorem
1.1. Curvature and 111-forms. Let us give a description of the map CurvL in
terms of differential forms. We consider the 1-forms ω = dq and β = − sin q dx1 +
cos q dx2 on ST

∗
R
2. They satisfy the relations 〈ω, v0〉 = 〈β, v1〉 = 1 and 〈ω, v1〉 =

〈β, v0〉 = 0, where v0 and v1 are the vector fields in the definition of CurvL given
in 0.2. Thus, we have CurvL(z) = 〈ω(z), w〉/〈β(z), w〉 for each point z ∈ L and
each non-zero tangent vector w ∈ TzL.
1.2. Proof of Proposition 0.2. If the link L is tangent to a fibre of ρ, then
〈β(z), w〉 = 0, and the assertion is proved. Suppose that L is not tangent to a fibre
of ρ at the point z. We choose a local parameterization t �→ (x1(t), x2(t), q(t)),
0 �→ z of L such that ẋ21 + ẋ22 ≡ 1, that is, t �→ (x1(t), x2(t)) is a natural param-
eterization of the front ρ(L). The curvature of ρ(L) at the point ρ(z) is equal to√
ẍ21(0) + ẍ

2
2(0) by definition. We show that this number coincides with |q̇(0)|. It

follows from the contact condition ẋ1 cos q+ẋ2 sin q = 0 and the condition ẋ
2
1+ẋ

2
2 ≡

1 that (ẋ1(t), ẋ2(t)) = ±(sin(q(t)),− cos(q(t))) for any t. Hence, (ẍ1(t), ẍ2(t)) =
±(cos(q(t)), sin(q(t)))q̇(t), and therefore

√
ẍ21(0) + ẍ

2
2(0) = |q̇(0)|. Since we have

the relations
〈
ω(z), (ẋ1(0), ẋ2(0), q̇(0))

〉
= q̇(0) and

〈
β(z), (ẋ1(0), ẋ2(0), q̇(0))

〉
=

−ẋ1(0) sin(q(0)) + ẋ2(0) cos(q(0)) = ±1 (because the vectors (cos(q(0)), sin(q(0)))
and (ẋ1(0), ẋ2(0)) are orthogonal), it follows that CurvL(z) = ±q̇(0). �
1.3. Curvature and the Sturm differential operator. Let L ⊂ ST ∗R2 =
J1(S1) be a Legendrian link. We need a description, in terms of the front σ(L),
of the set of points at which the link L is tangent to the fibres of ρ. Let GL
be the set of non-critical points of the projection σ|L. We introduce the map
FL : L→ RP1 = R∪{∞} and set FL(y) =∞ for y /∈ GL. In a neighbourhood of a
point y ∈ GL the link L coincides with the 1-graph j1h of some function h : U → R,
U ⊂ S1, that is, L is given locally by the equations u = h(q), p = h′(q), where
q ∈ U . We consider the Sturm differential operator D1h = d2h/dq2 + h and write
FL(y) = D1h(qy), where qy stands for the q-coordinate of the point y.

Lemma 1.1. The maps FL and 1/CurvL coincide (it is assumed that 1/0 = ∞
and 1/∞ = 0). A point z is critical for the projection ρ|L if and only if z ∈ GL
and FL(z) = 0.

Proof. If z ∈ L is a critical point of the projection σ|L, then FL(z) = ∞, and
CurvL(z) = 0 because β|L(z) = dq|L(z) = 0. Suppose that z ∈ GL and L coincides
with j1h near z. Then 1/CurvL(z) = 〈β(z), v〉/〈ω(z), v〉. The vector ζ = ∂

∂q
+

h′(qz)
∂
∂u + h

′′(qz)
∂
∂p , where qz stands for the qth coordinate of z, is tangent to L

at z. Since β = − sin q dx1 + cos q dx2 = dp + u dq, we see that 1/CurvL(z) =
〈β(z), ζ〉/〈ω(z), ζ〉 = h′′(qz) + h(qz) = FL(z). The second assertion of the lemma
follows from the fact that the equality CurvL(z) =∞ is equivalent to the condition
β|L(z) = 0, and β|L(z) = 0 if and only if v0(z) is tangent to L. �
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1.4. Hurwitz theorem and smooth fronts. When proving Theorem 0.1, we can
assume that the origin lies inside the (quadratically convex) fronts ρ(L0) and ρ(L1).
In this case σ(L0) (σ(L1)) is the graph of a negative (positive) smooth function
on S1. If {ρ(Lt)} is a family of equidistant curves, then all the fronts σ(Lt) are
obtained from the front σ(L0) by shifts along the u-coordinate.
Suppose that the fronts σ(Lt) are the graphs of smooth functions Ht. The fol-

lowing proof of Theorem 0.1 in this special case is due to Arnol’d [1]. Let t0 ∈ [0, 1]
be such that

∫
S1
Ht0(q) dq = 0. The coefficients of the zeroth and first harmonics

in the Fourier series of the function D1Ht0 vanish. By the Hurwitz theorem [19],
the function D1Ht0 has at least four zeros. Since the zeros of D1Ht0 correspond
to the zeros of FLt0 , this proves the assertion of Theorem 0.1 for this family.

1.5. Hurwitz theorem and fronts with singularities. The main idea of the
proof of Theorem 0.1 is to extend this argument to arbitrary families {Lt} of Leg-
endrian knots. We shall construct a continuous family {Ht∈[0,1]} of continuous
functions on S1 such that the graph of Ht is a subset of the front σ(Lt) for each t.
We claim that if

∫
S1
Ht0(q) dq = 0, then FLt0 has at least four zeros.

As an illustration, we consider a Legendrian knot L whose front Σ = σ(L) has
the same combinatorial structure as the front shown in Fig. 4. Omitting the details,
we claim that if

∫
S1 H(q) dq = 0, where H is a continuous function on S

1 whose
graph is a subset of Σ, then L is tangent to the fibres of ρ at least at four points.

����

�

Figure 4

Suppose for simplicity that the function FL is non-zero at the two pre-images of
the crossing point z = (q0, u0) of the front Σ. The function D1H can be regarded
as a distribution on S1 of the form Cδq0 + g, where δq0 is the Dirac delta function
supported at q0 and g is a continuous function on S

1 \ {q0} having non-zero left
and right limits at q0. It can be seen in Fig. 4 that C < 0. The distribution
D1H vanishes on the trigonometric polynomials of degree ≤ 1. This readily implies
(by using a modification of the standard proof of the Hurwitz theorem) that D1H
changes its sign at least at four points. Suppose that the sign of the distribu-
tion D1H at the point q0 is negative (that is, coincides with the sign of C). We say
that D1H changes sign from the right (from the left) at q0 if the right (left) limit
of g at q0 is positive.
If the four changes of sign occur away from the point q0, then the assertion is

proved. If changes of sign (one or two) occur at q0, then we shall seek the missing
zeros of the map FL on the pre-images of the sides [z, cl] and [z, cr] of the curvilinear
triangle with vertices z, cr, cl. We claim that if D1H changes sign from the right
(left) at q0, then FL vanishes at one of the points in the pre-image of [z, cl] (of [z, cr]).
Indeed, the interval [z, cl] ⊂ Σ is the graph of a function h : [ql, q0] → R,
where cl = (ql, ul). The function h is smooth everywhere except for the point ql,



104 Yu. V. Chekanov and P. E. Pushkar’

and its second derivative h′′ tends to −∞ as q → ql. Therefore, there is a point
q ∈ [ql, q0] such that D1h(q) = 0. The proof for a change of sign from the left at q0
is similar. This completes the proof.
The proof of Theorem 0.1 for an arbitrary front follows the same scheme. It

involves the construction of a certain decomposition of the front into pieces that
generalizes the above decomposition of the front Σ into four pieces. The construc-
tion of this decomposition is based on the theory of pseudo-involutions.

1.6. Scheme of the proof of Theorem 0.3. We claim that the front σ(L) of
any Legendrian knot L ∈ L1 contains a continuous section {u = HL(q)} of the fibre
bundle J0(S1)→ S1 that is continuously dependent on L. A shift of the link L (and
of the front σ(L)) along u takes the vertices to vertices. The proof of Theorem 0.3
uses the following trick: by shifting the link L along u, we can achieve the condition∫
S1
HL(q)dq = 0. Using the same argument as in the proof of Theorem 0.1, we find

four points at which FL vanishes. The vertices of L are the critical points of the
map FL. We then show (by using an analogue of Rolle’s theorem for maps into
the circle) that between any two neighbouring zeros of these four zeros there is a
vertex of L. This will complete the proof.

§ 2. Pseudo-involutions and the continuation theorem

2.1. Singularities of fronts. Let M = S1, M = R, or M = I, where I is a
closed interval in R or S1. If M = I, then by a Legendrian link in J1(M) we mean
a compact Legendrian submanifold L with boundary such that ∂L = ∂J1(M) ∩ L
(that is, the projection J1(I) → I takes the boundary of L to the ends of I),
L is transverse to ∂J1(I) at all points of the boundary, and any two points of ∂L
projected onto the same end of I have distinct u-coordinates. We denote by π
the projection J0(M) → M given by the rule (q, u) �→ q and by σ the projection
J1(M) → J0(M). Let Σ = σ(L) ⊂ J0(M) be the front of a Legendrian link
L ⊂ J1(M). We denote by GΣ the set of non-singular points of Σ, by XΣ the set of
transverse double self-intersections, by CΣ the set of non-degenerate cusps (points
admitting neighbourhoods in which the front is diffeomorphic to the semicubical
parabola), and by ZΣ = Σ \ (GΣ ∪XΣ ∪ CΣ) the set of points at which the front
has a more complicated singularity. If M = I, then we put any point x ∈ Σ with
π(x) ∈ ∂I in the set GΣ.
Let us consider the following two (singular) hypersurfaces in the space L of all

Legendrian links in J1(M): the hypersurface S formed by the links L such that
Zσ(L) is non-empty (that is, the front σ(L) has complicated singularities) and the
hypersurface E formed by the links L such that σ(L) has two singular points with
the same projections on M . The hypersurface D = S ∪ E is referred to as the
discriminant. A Legendrian link L ⊂ J1(M) (and its front σ(L)) is said to be
σ-generic if L ∈ L \D.

2.2. Definition of pseudo-involution. A continuous map P: GΣ ∪ CΣ → Σ is
called a pseudo-involution of a front Σ ⊂ J0(M) if it satisfies the following four
conditions:

(PI1) π|Σ = π|Σ ◦ P;
(PI2) P2(x) = x for P(x) ∈ GΣ ∪ CΣ;



Combinatorics of fronts of Legendrian links and the Arnol’d 4-conjectures 105

(PI3) P(x) = x if and only if x ∈ CΣ;
(PI4) for any point x ∈ XΣ there is a neighbourhood U ⊂ J0(M) such that

P(U ∩GΣ) is disjoint from U .

2.3. Pseudo-involutions and decompositions. Suppose that Σ ⊂ J0(M) is
the front of a Legendrian link, Λ is a closed interval or a circle, and γ : Λ → Σ
is a continuous map such that: (1) locally, the composition of γ and the projection
J0(M) → M is an embedding; (2) each non-singular point of Σ has at most one
γ-pre-image; (3) if Λ is a closed interval, then γ takes each of its ends either to a
cusp of Σ or to a point of the boundary ∂J0(M) = π−1(∂M). A map γ of this kind,
regarded up to homeomorphisms of Λ, is called a section of the front Σ. If M = R
or M = I, then a section γ is uniquely determined by its image Γ = γ(Λ), which
we shall also call a section (and use both meanings equally). Thus, this definition
agrees with that in the Introduction for the case M = R.

Let Σ ⊂ J0(M) be a σ-generic front. A set D of sections of Σ is called a
decomposition of Σ if each non-singular point of Σ belongs to the image of exactly
one section in D. For x ∈ XΣ there are sections γi : Λi → Σ (i ∈ {1, 2}) in D and
points si ∈ Λi such that γi(si) = x (if γ1 = γ2, then s1 	= s2). A crossing point x is
said to be switching for the decomposition D if the images of small neighbourhoods
of the points s1 and s2 under the maps γ1 and γ2 have break points at x, and
non-switching if the images are smooth. We denote by Sw(D) the set of switching
crossings for D. The map D �→ Sw(D) is a one-to-one correspondence between the
set of decompositions of Σ and the set of subsets of XΣ.

Proposition 2.1. Each pseudo-involution P of a σ-generic front Σ ⊂ J0(M)
uniquely determines a decomposition DP of Σ and a free involution θP : DP → DP
such that the point P(x) belongs to the image of the section θP(γ) for each section
γ : Λ→ Σ in DP and each point x ∈ γ(Λ) ∩ (GΣ ∪ CΣ).

Proof. By dividing M into pieces, one can reduce the proof to the case in which
M = I and the front Σ has exactly one singular point (the claim is obvious if all
points of Σ are non-singular). Suppose that x is the crossing point of Σ. The non-
singular components of Σ are taken by P to sections of Σ. Two of these sections,
say Γ1 and Γ2, pass through x (otherwise the pseudo-involution P would transpose
points close to x, which contradicts the condition (PI4)). In this case the sections
of DP are Γ1, Γ2, and the non-singular branches of the front. Clearly, the desired
involution θP exists and is unique. The case in which the only singular point of the
front Σ is a cusp is obvious. �

The elements of the decomposition DP are called P -sections of the front Σ. A
point x ∈ XΣ is called a switching crossing for the pseudo-involution P if x is
switching for the decomposition DP, and a non-switching crossing for P otherwise.
The set of switching crossings of a pseudo-involution P is denoted by Sw(P).

Let Σ ⊂ J0(M) be a σ-generic front, where M = R or M = I. A pair (D, θ),
where D is a decomposition of Σ and θ : D → D is a free involution, is said to be
proper if π(Γ) = π(θ(Γ)) and the points of the intersection Γ ∩ θ(Γ) are cusps of
the front Σ for each Γ ∈ D.
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Proposition 2.2. If M = R or M = I, then the map P �→ (DP, θP) is a one-
to-one correspondence between the set of pseudo-involutions of a σ-generic front Σ
and the set of proper pairs for Σ.

Proof. If P is a pseudo-involution of Σ, then the pair (DP, θP) is proper by the
construction given in the proof of Proposition 2.1. If (D, θ) is a proper pair, then it
follows from the definition of the map P �→ (DP, θP) in Proposition 2.1 that there
is exactly one pseudo-involution P such that (DP, θP) = (D, θ). �
We note that if M = R, then for each proper decomposition D there is exactly

one involution θ : D→ D such that the pair (D, θ) is proper. Thus, Proposition 2.2
implies that the pseudo-involutions of a σ-generic front Σ ⊂ J0(R) are in one-to-one
correspondence with the proper decompositions of the front Σ.
The number of pseudo-involutions is finite, in view of the following assertion.

Proposition 2.3. Suppose that Σ ⊂ J0(M) is a σ-generic front. Let q0 ∈M be a
point such that the set Σq0 = Σ ∩ π−1(q0) contains no singular points of the front,
and let P and P′ be pseudo-involutions of Σ such that Sw(P) = Sw(P′) and both
pseudo-involutions act in the same way on Σq0 . Then P = P′.

Proof. It suffices to prove the assertion in the case ofM = I (indeed, if the pseudo-
involutions are distinct, then so are their restrictions to some σ-generic front ΣI =
Σ ∩ π−1(I) ⊂ J0(I), where I is a closed interval in M containing q0). Since
Sw(P) = Sw(P′), the decompositions DP and DP′ coincide. It remains to show
that θP(Γ) = θP′(Γ) for each Γ ∈ DP. Suppose that Γ intersects Σq0 at a point y.
Then each of the sections θP(Γ) and θP′(Γ) contains the point P(y) = P

′(y), and
hence θP(Γ) = θP′ (Γ). If Γ is disjoint from Σ

q0 , then Γ contains a cusp. Let Γ1 be
another section in DP = DP′ containing this cusp. Then each of the sections θP(Γ)
and θP′(Γ) also contains the cusp, and hence θP(Γ) = θP′ (Γ). �
2.4. Positivity. Suppose that P is a pseudo-involution of the front Σ ∈ J0(M)
and x = (q0, u0) ∈ Sw(P). Let us consider the line {q = q1} ⊂ J0(M), where
the point q1 	= q0 is close to q0. Let z1 and z2 be points in Σ ∩ l close to x. The
crossing point x is said to be positive (with respect to P) if the following either-or
condition holds: either the intervals [z1,P(z1)] and [z2,P(z2)] are disjoint or one
is a subset of the other. A non-positive switching point is said to be negative.
This definition does not depend on the choice of the point q1 and agrees with the
definition in the Introduction for the case M = R.
A pseudo-involution P is said to be positive if all its switching crossings are

positive.

2.5. Maslov potential. Let l : [0, 1] → L be a generic smooth path with ends
in the set GL of non-singular points of the projection L → M . The Maslov index
m(l) ∈ Z of a generic link L is equal to the number of cusps on this path, counted
with regard to signs defined as follows. If the point σ(l(t)) ∈ σ(L) goes from the
lower to the upper branch as it passes through a given cusp of σ(L), then the sign
of this cusp is +1, and if the point goes from the upper to the lower branch, then
the sign is −1. If L is non-generic, then the number m(l) is defined as the Maslov
index of a nearby path on a nearby generic link (the result does not depend on the
perturbation). The Maslov number m(L) of a Legendrian knot L is the absolute
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value of the Maslov index of a closed path that goes around the knot exactly once.
The Maslov number m(L) is always even. Indeed, its parity coincides with that of
the number of cusps of σ(L) (we assume that L is a generic Legendrian knot). Upon
a circuit of L, the pre-images of the right cusps

( )
and those of the left cusps( )

of the front σ(L) alternate. Therefore, there are equally many right cusps
and left cusps, and their total number is even. The Maslov number of a Legendrian
link L is the greatest common divisor of the Maslov numbers for the components
of L diffeomorphic to a circle.
Let m ∈ Z be a non-negative divisor of the number m(L). A Maslov potential

on a Legendrian link L is a locally constant function µ : GL → Z/mZ such that
the difference µ(z2) − µ(z1) is equal to the Maslov index (modulo m) of the path
connecting z1 to z2 for each pair of points z1, z2 ∈ GL belonging to the same
component of L. All Maslov potentials with values in Z/mZ are obtained from one
such function by adding a function that is constant on each component of L.

2.6. Maslov pseudo-involution. A crossing point x of the front σ(L) is said
to be a Maslov point with respect to a Maslov potential µ on L if µ(z) = µ(z′),
where z and z′ are two distinct points of L projected onto x. A decomposition of
a σ-generic front is said to be a Maslov decomposition with respect to a Maslov
potential µ if all its switching crossings are Maslov points with respect to µ. If
L is connected, then for a given m a decomposition of σ(L) is either Maslov or
non-Maslov, independently of the choice of the potential µ : GL → Z/mZ.
A pseudo-involution P of a σ-generic front σ(L) is said to be a Maslov pseudo-

involution with respect to µ if for each pair y, y′ of non-singular points of Σ such
that P(y) = y′ and y′ is above y (that is, its u-coordinate is greater) the pre-image
z of y and the pre-image z′ of y′ in L satisfy the condition µ(z′) = µ(z) + 1. A
section γ : Λ→ Σ of a front Σ ⊂ J0(M) is said to be long if either M = S1 and Λ
is a circle, or M = I and γ takes both the ends of the interval Λ to the boundary
∂J0(M). The following assertion can be helpful when verifying whether or not a
given pseudo-involution is a Maslov pseudo-involution.

Proposition 2.4. Suppose that µ is a Maslov potential on a σ-generic link
L ⊂ J1(M) and P is a pseudo-involution of Σ = σ(L). Then P is a Maslov
pseudo-involution with respect to µ if and only if the decomposition DP is a
Maslov decomposition with respect to µ and for each long P-section there is a pair
y, y′ of non-singular points of Σ such that one of them belongs to the image of the
section, P(y) = y′, y′ lies above y, and the pre-image z of y and the pre-image z′

of y′ in L satisfy the condition µ(z′) = µ(z) + 1.

Proof. Suppose that P is a Maslov pseudo-involution. We claim that each crossing
point x ∈ Sw(P) is a Maslov point. Consider a point z ∈L such that P(σ(z))=x.
Let z′ and z′′ be points in L belonging to distinct small half-neighbourhoods
of z. The points P(σ(z′)) and P(σ(z′′)) belong to different smooth branches of Σ
intersecting at z. The Maslov potential µ takes the same value at z′ and z′′, and
hence it takes the same values at the pre-images of P(σ(z′)) and P(σ(z′′)) in L.
Then µ takes the same values at the pre-images of x, and x is a Maslov point.
Therefore, DP is a Maslov decomposition; the second part of the assertion is satis-
fied automatically.
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We prove the converse assertion. SinceDP is a Maslov decomposition, the Maslov
potential µ takes the same value on the pre-images in L of all non-singular points
of Σ belonging to the image of γ for any P-section γ. Thus, to prove that P is a
Maslov pseudo-involution, it suffices to show that for each P-section there is a pair
y, y′ of non-singular points of Σ such that one of them belongs to the image of this
section, P(y) = y′, y′ lies above y, and the pre-image z of y and the pre-image z′ of
y′ in L satisfy the condition µ(z′) = µ(z) + 1. By assumption, this condition holds
for long sections. The image of each short (non-long) P-section γ contains a cusp.
Consider a pair of points y, y′ ∈ Σ that are close to this cusp and have the same
q-coordinates; one of these points belongs to the image of γ. It follows from the
definition of Maslov potential that the above condition holds for the pair y, y′. �
2.7. Families of pseudo-involutions and the continuation theorem. A
smooth one-parameter family {Lt∈[a,b]} of Legendrian links (and the family of their
fronts) is said to be σ-generic if La and Lb are σ-generic and the path t �→ Lt
transversely intersects the hypersurfaces S and E at smooth points of them and is
disjoint from S ∩ E.
Let us consider a family {Pt∈[a,b]} of pseudo-involutions, where Pt is a pseudo-

involution of the front σ(Lt). The family {Pt} is said to be continuous if the map
(t, x) �→ (t,Pt(x)), defined on the set

{(t, x)|x ∈ Gσ(Lt) ∪ Cσ(Lt)} ⊂ [a, b]× J0(M),
is continuous. A family {Pt} of pseudo-involutions is said to be positive if the
pseudo-involutions Pt are positive for any t such that Lt is σ-generic.
Let D be a decomposition of a σ-generic front Σ. By the Euler characteristic of

this decomposition we mean the number

χ(D) =
1

2
#(CΣ)−#(Sw(D)).

By the Euler characteristic χ(P) of a pseudo-involution P we mean the Euler char-
acteristic of the decomposition DP. A family {Pt} is said to be characteristic if the
Euler characteristics χ(Pt) are the same for all values of t such that the link Lt is
σ-generic.
Let a link La be equipped with a Maslov potential µa. Then this potential

can be uniquely extended to a continuous (in the obvious sense) family {µt∈[a,b]}
of Maslov potentials on links of the family {Lt∈[a,b]}. A family {Pt} of pseudo-
involutions is said to be a Maslov family of pseudo-involutions with respect to the
Maslov potential µa (and with respect to the family {µt}) if Pt is a Maslov pseudo-
involution with respect to the potential µt for any t such that Lt is σ-generic.

Theorem 2.5 (the continuation theorem). Suppose that M = S1, M = R, or
M = I and that {Lt∈[a,b]} is a σ-generic family of Legendrian links in J1(M).
Each positive pseudo-involution Pa of the front σ(La) can be uniquely extended to
a continuous positive characteristic family {Pt∈[a,b]} of pseudo-involutions.
If in addition Pa is a Maslov pseudo-involution with respect to a Maslov potential

µa, then the family {Pt} is a Maslov family with respect to µa.
The definitions of continuous, positive, and characteristic families of pseudo-

involutions are invariant under a change of direction of the parameter t. This
implies the following assertion.
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Proposition 2.6. Under the assumptions of Theorem 2.5 the map Pa �→ Pb is
a one-to-one correspondence between the sets of positive pseudo-involutions for the
fronts σ(La) and σ(Lb), and this correspondence preserves the Euler characteristics.

Theorem 0.4 is an immediate corollary to Proposition 2.6.

§ 3. Proof of the continuation theorem
3.1. Fibred diffeomorphisms and pseudo-involutions. Let GM be the group
formed by the diffeomorphisms of J0(M) fibred over M . A fibred diffeomorphism
g ∈ GM defines a one-to-one map of the set of pseudo-involutions of the front
Σ ⊂ J0(M) to the set of pseudo-involutions of the front g(Σ) which takes posi-
tive pseudo-involutions to positive pseudo-involutions. The following lemma is an
immediate corollary to our definitions.

Lemma 3.1. Let {Σt∈[a,b]} be a σ-generic family of fronts in J0(M), let {gt∈[a,b]}
be a smooth family of elements of the group GM , and let ga = id. In this case {gt}
defines a one-to-one map from the set of continuous families of pseudo-involutions
for {Σt} to the set continuous families of pseudo-involutions for {gt(Σt)}. This map
takes positive families to positive families, characteristic families to characteristic
families, and Maslov families with respect to µa to Maslov families with respect
to µa.

If the family {Lt} of links in Theorem 2.5 does not intersect the discriminant D,
then Lemma 3.1 reduces the assertion of the theorem to the case of a constant
family (Lt ≡ La), for which the assertion obviously holds.
3.2. Typical bifurcations. If {Lt} is a σ-generic family of links, Lc ∈ D, then
as t passes through the value c, the fronts Σt = σ(Lt) can be subjected to a
bifurcation (up to the action of one-parameter families of fibred diffeomorphisms)
as shown in Fig. 5 (the local bifurcations are intersections with S) and Fig. 6 (the
non-local bifurcations are intersections with E). Only the components involved in
the bifurcation are shown; we note that a bifurcation of type III coincides (up to
symmetry) with its inverse III−1, a bifurcation of type XX coincides with XX−1,
and the bifurcation of type CC+ coincides with CC

−1
+ .

III
1

I

I

II

1II

Figure 5

Figure 6
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3.3. Simple and semisimple families of fronts. A σ-generic family {Lt∈[a,b]}
of Legendrian links in J1(I) (and the related family {Σt = σ(Lt)} of fronts) is
said to be simple if the ‘boundary’ ∂Σt = Σt ∩ ∂(J0(I)) does not depend on t,
the relation Lt ∈ D holds for exactly one parameter value t = c ∈ ]a, b[, and the
front Σc contains exactly one singular point if the bifurcation is local (Lc ∈ S) and
exactly two singular points with coinciding q-coordinates if the bifurcation is non-
local (Lc ∈ E). A σ-generic family {Lt∈[a,b]} of Legendrian links in J1(M) (and
the related family {Σt = σ(Lt)} of fronts) is said to be semisimple with respect to
an interval I ⊂ M if the fronts Σt coincide outside J0(I) for all t and the family
{ΣIt = Σt ∩ J0(I)} of fronts in J0(I) is simple. By dividing [a, b] into pieces and
applying Lemma 3.1, we see that it suffices to prove the assertion of Theorem 2.5
for semisimple families.
Let us show that we can restrict ourselves to the consideration of simple families.

Indeed, let a family {Σt} be semisimple with respect to a closed interval I and let
Pa be a pseudo-involution of the front Σa. In this case every continuous family
{PIt } of pseudo-involutions for the fronts ΣIt such that PIa is the restriction of Pa
can be uniquely extended to a continuous family {Pt} of pseudo-involutions for the
fronts Σt, and Pt coincides with Pa outside J

0(I) for any t. Clearly, the family
{Pt} is positive (characteristic, a Maslov family) if {PIt } is positive (characteristic,
a Maslov family, respectively).

Lemma 3.2. Let {Σt∈[a,b]} be a simple family of fronts in J0(I) and let Pa and Pb
be pseudo-involutions of the fronts Σa and Σb coinciding on ∂Σa = ∂Σb. Then
Pa and Pb can be included into a unique continuous family {Pt∈[a,b]} of pseudo-
involutions.
If Pa and Pb are positive, then the family {Pt} is positive. If χ(Pa) = χ(Pb),

then the family {Pt} is characteristic. If {µt} is a continuous family of Maslov
potentials, Pa is a Maslov pseudo-involution with respect to µa, and all switching
crossings of the pseudo-involution Pb are Maslov points with respect to µb, then
{Pt} is a Maslov family.

Proof. By Lemma 3.1, the pseudo-involution Pa can be extended to a unique contin-
uous family {Pt} of pseudo-involutions, where t ∈ [a, c[, and the pseudo-involution
Pb can be extended to a unique continuous family {Pt} of pseudo-involutions, where
t ∈ ]c, b].
We construct the map Pc. Denote by q0 ∈ I the projection of the singular points

of the front Σc and take a point x ∈ Σc such that π(x) 	= q0. Let us consider a closed
interval I′ ⊂ I \ {q0} containing an end q′ of the interval I and a neighbourhood
of π(x). There are numbers a0 ∈ [a, c[, b0 ∈ ]c, b] such that all points of the front ΣI

′

t

are non-singular for t ∈ [a0, b0]. Since all pseudo-involutions Pt with t ∈ [a0, b0]\{c}
act in the same way on Σq

′

t = π
−1(q′)∩Σt, it follows from Lemma 3.1 that there is

a unique continuous family {P′t∈[a0,b0]} of pseudo-involutions of the fronts Σ
I′

t such

that P′t(y) = Pt(y) for t ∈ [a0, b0] \ {c} and y ∈ ΣI
′

t . We set Pc(x) = P
′
c(x). The

map (t, y) �→ (t,Pt(y)) is continuous at the point (c, x).
Let x be a non-singular point of Σc such that π(x) = q0. Since the family {Σt} of

fronts is simple, there is a unique continuous family of sections Γt∈[a,b] consisting
of non-singular points of Σt and such that x ∈ Γc. The map (t, y) �→ (t,Pt(y)),
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which is already defined for y ∈ Γt, t ∈ [a, b], (t, y) 	= (c, x), admits a unique
continuous extension to the point (c, x), because the functions ft : I → R,
t ∈ [a, b] \ {c}, with the sections Pt(Γt) as their graphs are uniformly Lipschitzian
and converge uniformly outside any given neighbourhood of q0 as t→ c.
If x is a cusp of Σc, then we set Pc(x) = x. The continuity of the map (t, y) �→

(t,Pt(y)) at (c, x) follows from the fact that every pseudo-involution transposes two
branches entering a cusp. This proves the continuity of the family {Pt∈[a,b]} and
easily implies that Pc is a pseudo-involution of the front Σc.
Suppose that Pa is a Maslov pseudo-involution with respect to µa, and all switch-

ing crossings of Pb are Maslov points with respect to µb. For any given long Pb-
section there are two points y, y′ ∈ ∂Σb such that one of them belongs to the image
of this section, Pb(y) = y

′, and y′ is above y. In this case Pa(y) = y
′ by the

assumption of the lemma. We consider points z, z′ ∈ ∂Lb such that σ(z) = y and
σ(z′) = y′. Since Pa is a Maslov pseudo-involution, we have µa(z

′) = µa(z) + 1. It
follows from the continuity of the family {µt} that the restrictions of µa and µb to
∂Lb = ∂La coincide. Thus, µb(z

′) = µb(z) + 1. By Proposition 2.4, Pb is a Maslov
pseudo-involution with respect to µb. The other assertions of the lemma are now
obvious. �

In the remaining part of the proof of the continuation theorem we treat each
type of the bifurcations separately.

3.4. Bifurcation III. Suppose that a bifurcation of type I occurs at t = c. The
crossing xb of Σb is switching for any pseudo-involution of Σb. This follows from
the fact that a C1-smooth section of Σb connecting the cusps can be mapped
by the pseudo-involution Pb only to a section having a break point at xb. There is
exactly one pseudo-involution Pb of Σb coinciding with Pa on ∂Σb = ∂Σa, and
χ(Pb) = χ(Pa) = 0. The pseudo-involution Pb is positive, because there are no
other points of Σb between the two sections of the front Σb connecting the cusps.
The point xb is a Maslov point for all Maslov potentials. Applying Lemma 3.2, we
complete the proof of the theorem in the case of bifurcations of type I.

3.5. Bifurcation I−1I−1I−1. The crossing of Σa is switching for all pseudo-involutions.
The subsequent arguments are similar to those used above for a bifurcation of
type I.

3.6. Bifurcation IIIIII. Let Pb be a positive pseudo-involution of Σb coinciding
with Pa on ∂Σb = ∂Σa. Applying the next lemma to Σb, we conclude that the
pseudo-involution Pb is unique and Sw(Pb) = ∅.

Lemma 3.3. If a front Σ has the fragment shown in Fig. 7 on the right (and this
fragment is disjoint from the other parts of the front), then the points x and y are
non-switching for every positive pseudo-involution P.

Proof. Suppose that y is switching. In this case the condition (PI4) fails at the
point x, because every neighbourhood of x contains points of both P-sections inter-
secting at the cusp z. Thus, y is non-switching. Suppose that x is switching (and
y is non-switching). In this case x is a negative point, because P(e1) = e3 and the
point P(e2) does not belong to the interval [e1, e3]. �



112 Yu. V. Chekanov and P. E. Pushkar’

�

��
�

�
�

�
�

�

�� ��

Figure 7

Since χ(Pb) = χ(Pa) = 1/2 and the pseudo-involutions Pa and Pb have no
switching crossings, the family of pseudo-involutions with the desired properties is
unique by Lemma 3.2.

3.7. Bifurcation II−1II−1II−1. The assertion of the theorem for a bifurcation of type II−1

follows as above from Lemma 3.3.

3.8. Bifurcation IIIIIIIII. We present the case of bifurcations of type III (see Fig. 8)
under four headings IIIi, where i stands for the number of switching crossings of
the pseudo-involution Pa.
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Let us define a one-to-one map fa : {d1, d2, d3} → {e1, e2, e3} such that for
each i ∈ {1, 2, 3} there is a Pa-section Γi connecting di to fa(di). Similarly, each
decomposition D of the front Σb determines a one-to-one map fD : {d1, d2, d3} →
{e1, e2, e3}.
Lemma 3.4. The map taking a pseudo-involution Pb of the front Σb to a decom-
position DPb of Σb defines a one-to-one correspondence between the set of pseudo-
involutions of Σb coinciding with the pseudo-involution Pa on ∂Σa = ∂Σb and the
set of decompositions D of Σb such that fD = fa.

The proof of Lemma 3.4 uses the following assertion.

Lemma 3.5. Each positive pseudo-involution Pa transposes no pair of points of
the form di, ei, i ∈ {1, 2, 3}.
Proof. Suppose that Pa(d1) = d2. Then the condition (PI4) fails at x. If Pa(d2) =
d3, then x is non-switching (otherwise the condition (PI4) fails at y). Then y is
switching (otherwise the condition (PI4) fails at z). Thus, y is a negative switching
point, a contradiction. Suppose that Pa(d1) = d3. Then x is switching (otherwise
the condition (PI4) fails at y). We arrive at a contradiction, because x is negative.
The points ei cannot be permuted for the same reasons. �



Combinatorics of fronts of Legendrian links and the Arnol’d 4-conjectures 113

Proof of Lemma 3.4. We claim that fDPb (di) = fa(di) for any i ∈ {1, 2, 3}. Accord-
ing to Lemma 3.5, there is a section Γ of Σa formed by non-singular points and
such that the image Pa(Γ) contains both di and fa(di). The section Γ

′ of Σb having
the same ends as the section Γ is taken by the pseudo-involution Pb to a Pb-section
connecting di to fa(di). Thus, the map of Lemma 3.4 is well defined.

Let D be a decomposition of Σb. There is exactly one free involution θ : D→ D
such that the left ends of the sections θ(Γ) and θPa (Γ

′) coincide if and only if the
left ends of the given sections Γ ∈ D and Γ′ ∈ DPa coincide. It follows from
Lemma 3.5 that the sections θ(Γ) and Γ are disjoint for each Γ ∈ D. According
to Proposition 2.2, there is exactly one pseudo-involution Pb of Σb coinciding with
Pa over the left end of I and satisfying D = DPb . If fD = fa, then these pseudo-
involutions coincide over the right end of I as well, and hence the map in Lemma 3.4
is invertible. �

3.9. Bifurcation III0III0III0. It can readily be seen that there is exactly one decompo-
sition D of the front Σb such that fD = fa, namely, the decomposition for which
the crossings z′, y′, and x′ (see Fig. 8) are non-switching. By Lemma 3.4, this
decomposition determines a pseudo-involution Pb, and we have χ(Pb) = χ(Pa) = 0.
Since the pseudo-involution Pb has no switching crossings, it is positive (and it is a
Maslov pseudo-involution if Pa is). The assertion of the theorem for the bifurcation
in question follows now from Lemma 3.2.

3.10. Bifurcation III1III1III1. Let Sw(Pa) = {x}. A decomposition D of Σb such that
fD = fa is unique, and x

′ is the only switching crossing of D (it follows from the
relation fD(d3) = e1 that the points z

′ and y′ are non-switching). By Lemma 3.4,
there is a unique pseudo-involution Pb coinciding with Pa on ∂Σb = ∂Σa; moreover,
Sw(Pb) = {x′} and χ(Pb) = χ(Pa) = −1. Since the point x is positive, it follows
from Lemma 3.5 (see also Lemma 3.6 below) that x′ is positive. The crossing x′ is a
Maslov point, because x is a Maslov point. The assertion of the theorem in the case
of Sw(Pa) = {x} follows from Lemma 3.2. The case Sw(Pa) = {z} is completely
similar.

Let Sw(Pa) = {y}. Then there are exactly two decompositions D of Σb satisfying
the condition fD = fa. All the crossings z

′, y′, and x′ are switching for the
first decomposition, in which case −3 = χ(Pb) 	= χ(Pa) = −1. For the second
decomposition we have Sw(D) = {y′}, and the argument is the same as in the
case Sw(Pa) = {x} above.

3.11. Lemmas on signs. We formulate and prove some auxiliary assertions
needed below. Let P be a pseudo-involution of a σ-generic front Σ ⊂ J0(M) and let
d1 and d2 be two different non-singular points of the front such that π(d1) = π(d2)
and P(d1) 	= d2. We introduce the sign εP(d1, d2) as follows: let εP(d1, d2) = −1 if
the intersection of the intervals [d1,P(d1)] and [d2,P(d2)] is non-empty and differs
from each of them; otherwise let εP(d1, d2) = +1. Let x ∈ Sw(P). We write
εP(x) = +1 if x is a positive crossing of the pseudo-involution P, and εP(x) = −1
otherwise (a crossing of this type is said to be negative). Thus, the sign of a
switching crossing coincides with the sign of a pair of non-singular points close to
it. The following assertion is obvious.
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Lemma 3.6. Let P be a pseudo-involution of a σ-generic front Σ ⊂ J0(I) and let
Γ1 and Γ2 be two distinct P-sections of Σ not transposed by θP. Let d1, e1 ∈ Γ1
and d2, e2 ∈ Γ2 be non-singular points of Σ such that π(d1) = π(d2) and π(e1) =
π(e2), and let x be the only crossing point of Σ whose projection on I lies
between π(d1) and π(e1). Then εP(d1, d2) = −εP(e1, e2) if and only if the fol-
lowing two conditions hold : (1) the crossing x is non-switching for P; (2) two of
the sections Γ1, Γ2, θP(Γ1), θP(Γ2) meet at x.

Lemma 3.7. Suppose that P is a pseudo-involution of the front Σ⊂J0(M), q∈M ,
and the set Σq = π−1(q) ∩ Σ = {h1, . . . , h2N} consists of non-singular points of Σ
indexed in ascending order of u-coordinates. If εP(hk−1, hk) = εP(hk, hk+1) = +1,
then εP(hk−1, hk+1) = +1.

Proof. We equip Σq with an order relation defined by the rule hk+2 ≺ · · · ≺ h2N
≺ h1 ≺ · · · ≺ hk+1. It follows from the condition εP(hk−1, hk) = +1 that P(hk−1) 	=
hk+1. Therefore, if k − 1 ≤ i < j ≤ k + 1, then εP(hi, hj) = +1 if and only if
P(hj) ≺ P(hi). It follows from the relations P(hk) ≺ P(hk−1) and P(hk+1) ≺ P(hk)
that P(hk+1) ≺ P(hk−1). �
3.12. Bifurcation III2III2III2. Let Sw(Pa) = {x, y}. The only decomposition D of Σb
such that fD = fa is determined by the rule Sw(D) = {z′, x′}. By Lemma 3.4,
there is a unique pseudo-involution Pb coinciding with Pa on ∂Σb = ∂Σa, and we
have Sw(Pb) = {z′, x′} and χ(Pb) = χ(Pa) = −2.
We prove that the crossings z′ and x′ of the pseudo-involution Pb correspond-

ing to the decomposition D are positive. The sign εPb(z
′) is equal to the sign

εPb(d2, d3) = εPa (d2, d3). By Lemma 3.6, εPa (d2, d3) = εPa (y) = +1. Thus,
εPb(z

′) = εPa (y) = +1. Applying Lemma 3.6 twice, we see that εPb(x
′) =

εPb(d1, d3) = εPa (d1, d3). The sign εPa (d1, d2) is equal to the sign εPa (x) = +1.
It follows from Lemma 3.7 that εPb(d1, d3) = +1. Hence, x

′ is positive. If Pa
is a Maslov pseudo-involution, then µa takes the same value on the pre-images of
all branches shown in Fig. 8, because the crossings x and y are Maslov points.
Thus, Pb is a Maslov pseudo-involution. The assertion of the theorem in the case
Sw(Pa)={x, y} is proved. The case Sw(Pa)={y, z} can be treated in the same way.
Let us consider the case in which Sw(Pa) = {x, z}. There are exactly two decom-

positions D1 and D2 of Σb such that fD1 = fD2 = fa; moreover, Sw(D1) = {z′, y′}
and Sw(D2) = {y′, x′}. We claim that exactly one of the two pseudo-involutions
P〈i〉 corresponding to the decompositions Di is positive. Since εPa (x) = +1, it
follows that εPa (d1, d2) = +1. By Lemma 3.6, the relation εPa (z) = +1 implies
that εPa (d1, d3) = +1. Since εPa (d1, d2) = +1, it follows from Lemma 3.6 that
εP〈1〉 (y

′) = +1. Since εPa (d1, d3) = +1, it follows from Lemma 3.6 that εP〈2〉 (y
′) =

+1. Moreover, εP〈1〉 (z
′) = εPa (d2, d3) and we have εP〈2〉 (x

′) = −εPa (d2, d3) by
Lemma 3.6. Thus, exactly one of the pseudo-involutions P〈1〉, and P〈2〉 is positive:
P〈1〉 for εPa (d2, d3) = +1 and P〈2〉 for εPa (d2, d3) = −1. We have the equality
χ(P〈1〉) = χ(P〈2〉) = χ(Pa) = −2. The proof of the Maslov property is the same as
in the case Sw(Pa) = {x, y}.

3.13. Bifurcation III3III3III3. In this case Sw(Pa) = {x, y, z}. There are exactly two
decompositions D of Σb such that fD = fa. There is a case in which Sw(Pb) = {y′}
and χ(Pb) 	= χ(Pa). In the other case Sw(Pb) = {z′, y′, x′}. Applying Lemma 3.6,
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we can readily see that the switching points z′, y′, and x′ are positive if the switching
points x, y, and z are positive. The rest of the proof is the same as in the case III2.

3.14. Bifurcations XCXCXC, CC±CC±CC±, XC
−1XC−1XC−1, CC−1−CC

−1
−CC
−1
− . The assertion of the theorem for

these bifurcations is obvious.

3.15. Bifurcation XXXXXX. We break up the case of this bifurcation (see Fig. 9)
into three sub-cases XXi, where the index i stands for the number of switching
crossings of Pa. Extending the pseudo-involution by continuity, we obtain the
following assertion.
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Figure 9

Lemma 3.8. In the case of a bifurcation of type XX, for each pseudo-involution Pa
there is a continuous family {PSt∈[a,b]} of pseudo-involutions such that the switching
crossings depend smoothly on the parameter t and PSa = Pa. The family is a Maslov
family if Pa is a Maslov pseudo-involution.

3.16. Bifurcation XX0XX0XX0. It follows from the condition χ(Pb) = χ(Pa) that Pb has
no switching crossings. The existence of the desired family of pseudo-involutions
follows from Lemma 3.8, and the uniqueness of the family follows from Proposi-
tion 2.3 and Lemma 3.2.

3.17. Bifurcation XX1XX1XX1. We denote by Γi the Pa-section of Σa containing the
point di, i ∈ {1, 2, 3, 4}. We note that θ(Γ1) 	= Γ2, where θ = θPa .
Let Sw(Pa) = {x1}. Suppose that {θ(Γ1), θ(Γ2)} 	= {Γ3,Γ4}. Let P′ be a pseudo-

involution of Σb coinciding with Pa on ∂Σb = ∂Σa. We claim that Sw(P
′) = {x′1}.

Let x′1 /∈ Sw(P′). There is an index i ∈ {1, 2} such that θ(Γi) = Γ5 /∈ {Γ3,Γ4}.
In this case Pa(di) = d5 and Pa(ei) = e5, where d5 and e5 are the ends of the
Pa-section Γ5. Consider the P

′-section Γ′5 with ends d5 and e5 and the P
′-sections

Γ′i with ends di and e3−i. It follows from the relation Pa(d5) = di ∈ Γ′i that
θP′(Γ

′
5) = Γ

′
i. On the other hand, Pa(e5) = ei /∈ Γ′i, a contradiction. Suppose

that Sw(P′) = {x′1, x′2}. There is an i ∈ {3, 4} such that θ(Γi) = Γ5 /∈ {Γ1,Γ2}.
Consider the P′-section Γ′5 with ends d5 and e5 and the P

′-sections Γ′i with ends
di and ei. It follows from the relation Pa(d5) = di ∈ Γ′i that θP′(Γ′5) = Γ′i. On the
other hand, Pa(e5) = e7−i /∈ Γ′i, a contradiction.
It follows now from Lemma 3.8 that if {θ(Γ1), θ(Γ2)} 	= {Γ3,Γ4}, then there is a

unique pseudo-involution Pb coinciding with Pa on ∂Σb = ∂Σa; moreover, Sw(Pb) =
{x′1}. The pseudo-involution Pb is positive, because εPb(x′1) = εPb(e1, e2) =
εPa (x1) = +1 by Lemma 3.6. The assertion of the theorem follows in this case
from Lemma 3.8 and Lemma 3.2.
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Suppose that {θ(Γ1), θ(Γ2)} = {Γ3,Γ4}. Then it is easy to see that there are
exactly two pseudo-involutions P and P′ of Σb coinciding with Pa on ∂Σa = ∂Σb;
moreover, Sw(P) = {x′1} and Sw(P′) = {x′2}. We claim that P′ is positive and P is
not. Since x1 is positive for Pa, we see that P(d1) = P

′(d1) = Pa(d1) = d4, P(d2) =
P′(d2) = Pa(d2) = d3, P(e1) = e3, and P(e2) = e4. Thus, εP(x

′
1) = εP(e1, e2) = −1

and εP′(x
′
2) = εP(d3, d4) = +1.

If Pa is a Maslov pseudo-involution with respect to µa, then µa(d4) = µa(d1)+1,
µa(d3) = µa(d2) + 1, and µa(d1) = µa(d2). Therefore, µa(d3) = µa(d4), and hence
µb(d3) = µb(d4), and P

′ is a Maslov pseudo-involution. Applying Lemma 3.2, we
complete the proof for any bifurcation of type XX1 (the case Sw(Pa) = {x2} can
be reduced to the case Sw(Pa) = {x1} by symmetry).

3.18. Bifurcation XX2XX2XX2. The condition χ(Pb) = χ(Pa) implies that both the
crossings of the front Σb are switching points. A continuous family {Pt} of pseudo-
involutions with two switching crossings exists by Lemma 3.8 and is unique by
Proposition 2.3 and Lemma 3.2. It remains to show that Pb is positive. It followsfrom
εPa (x1) = εPa (x2) = +1 and from Lemma 3.6 that εPa (e1, e2) = εPa(d3, d4) = +1.
The pseudo-involution Pb is positive, because εPb(x

′
1) = εPb(e3, e4) = εPa (e3, e4) =

+1 and εPb(x
′
2) = εPb(d1, d2) = εPa (d1, d2) = +1. This completes the proof of

Theorem 2.5.

§ 4. Non-uniqueness of a continuous extension
and the monodromy of pseudo-involutions

4.1. Non-characteristic continuations. It turns out that if one omits the
assumption that the family {Pt} is characteristic under the conditions of Theo-
rem 2.5, then the uniqueness of a continuation can fail; however, as before there
is an explicit description for all possible extensions of a pseudo-involution Pa to
a continuous positive (not necessarily characteristic) family {Pt∈[a,b]} of pseudo-
involutions. There are at most two continuations of this kind if the σ-generic family
{Lt} intersects the discriminant D exactly once. A description of the continuations
can be extracted from the proof of Theorem 2.5; here we present the description in
a more explicit form. We assume that the family {Lt} is simple.

4.2. Unique continuations. If the bifurcation has one of the forms I, II, XC, and
CC± (or one of their inverses; see 3.1), then the corresponding continuous positive
family {Pt} is unique. The same holds if the bifurcation is of type III0, III2 (see 3.9
and 3.12), or XX1 (see 3.17).

4.3. Non-unique continuations. If the bifurcation is of type III3, then there
are always exactly two continuous positive families {Pt}: one is characteristic,
and for the other the number of switching crossings is less by 2. In the notation
of Fig. 8, the switching crossings x, y, and z are transformed into the switching
crossing y′.
Suppose that the bifurcation is of type III1. If either x or z is the switching

crossing of Pa, then a continuation is unique. Let y be the switching crossing.
Suppose that there is a pseudo-involution P′a that coincides with Pa on ∂Σa and
has the points x, y, and z as switching crossings. Then the pseudo-involution
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Pa admits two continuations. One is indicated in Theorem 2.5 and the other can
be constructed from the family {P′t} extending P′a by Theorem 2.5. If such a
pseudo-involution P′a does not exist, then a continuation is unique.
Suppose that the bifurcation is of type XX0 or XX2. A continuation of Pa is

non-unique if and only if Pa(d1) = d4 and Pa(d2) = d3 (see Fig. 9). Then there are
exactly two continuations: for one of them the crossings x′1 and x

′
2 are switching

and for the other both the crossings are non-switching.

4.4. Characteristic continuations and monodromy. Let {Lt∈[0,1]} be a σ-
generic path (a σ-generic family) in the space of Legendrian links in J1(M). We
deform the path {Lt} into another σ-generic path {L′t} in the class of paths in L
having fixed ends. These paths define one-to-one maps Φ and Φ′ of the set of positive
pseudo-involutions of the front σ(L0) to the set of positive pseudo-involutions of
the front σ(L1). It turns out that the maps Φ and Φ

′ need not coincide.
One can readily see that if the deformation involves only σ-generic paths, then

Φ = Φ′. Moreover, one can show (using the uniqueness of the continuation of a
pseudo-involution along a path) that Φ = Φ′ if each Legendrian link involved in
the deformation is either a σ-generic link or a non-singular point of the discrim-
inant D. Therefore, the non-uniqueness of the continuation is determined by the
operations of going around codimension-two strata (in L) of the discriminant D.
The proof of Theorem 2.5 gives us an explicit description of a continuation of a
pseudo-involution. Using this description, we can describe one-to-one maps (mon-
odromy transformations) of the set of positive pseudo-involutions determined by
the operations of going around diverse codimension-two strata of the discriminant.
A complete description is tedious, and we state only selected results.
There are only two strata for which the monodromy transformation can be non-

trivial. We describe these strata and list some properties of the monodromy around
them. We introduce the stratum D2,3 consisting of the Legendrian links L such that
the front σ(L) has a triple point x and a double point x′ with the condition π(x) =
π(x′), and is σ-generic in all other respects. Let {Lt∈[0,1]} be a small σ-generic
loop going around the stratum D2,3 near L exactly once. One can show that the
square of the monodromy map corresponding to a circuit around this stratum is
the identity transformation. The positive pseudo-involutions which are not pre-
served by this monodromy map are contained in the set of pseudo-involutions P of
σ(L0) such that exactly two points of the set Sw(P) are close to the points x and x

′.
By definition, the stratum D4 consists of the Legendrian links L such that the

front σ(L) has a quadruple point and is σ-generic in other respects. Let {Lt∈[0,1]}
be a small σ-generic loop going around the stratum D4 near L exactly once. We
denote by Φ the monodromy transformation of the set of positive pseudo-involutions
of σ(L0) and by Ai the set of positive pseudo-involutions P of σ(L0) such that
exactly i points of the set Sw(P) are close to the quadruple point of σ(L). The
map Φ preserves each of the sets Ai. One can show that the restriction of Φ to Ai
is the identity transformation for i /∈ {3, 4} and both the cubed restriction of Φ to
A4 and the squared restriction of Φ to A3 are the identity transformations.
We illustrate these phenomena by the following examples.

4.5. First example. We consider the Legendrian knot L ∈ D2,3 whose front is
shown in Fig. 10 a. Suppose that a loop {Lt∈[0,1]} goes around the stratum D2,3 in
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a neighbourhood of L exactly once and the front σ(L0) is as shown in Fig. 10 b. We
assume for simplicity that the family {Lt} intersects the stratum D3 of fronts with a
single triple point and the stratum D2,2 of fronts with two double points with
the same q-coordinates a minimal number of times, namely, at 2 and 6 points,
respectively. The front σ(L0) admits exactly three positive pseudo-involutions
P0, P1, and P2. They are determined by the conditions Sw(P0) = {x2, x4},
Sw(P1) = {x3, x4}, and Sw(P2) = {x1, x2, x3, x4}. Using the explicit description of
the continuation of the pseudo-involutions P0 ∈ {P0,P1,P2} given in the proof
of Theorem 2.5, one can show that the monodromy around the loop {Lt} trans-
poses the pseudo-involutions P0 and P1.
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4.6. Second example. We consider the Legendrian link L ∈ D4 whose front
is shown in Fig. 11 a. Suppose that {Lt} is a loop going around the stratum
D4 in a neighbourhood of L exactly once and the front σ(L0) is as shown in
Fig. 11b. We assume for simplicity that the family {Lt} intersects the strata
D3 and D2,2 at a minimal number of points, namely, 8 and 6 points, respec-
tively. The front σ(L0) admits exactly five positive pseudo-involutions P

0, P1,
P2, P3, P4. They are determined by the conditions Sw(P0) = {y3, y4}, Sw(P1) =
{y3, y4, y5, y6}, Sw(P2) = {y1, y2, y3, y4}, Sw(P3) = {y1, y2, y5, y6}, and Sw(P4) =
{y1, y2, y3, y4, y5, y6}. Using the explicit description of the continuation for P0 ∈
{P1,P2,P3} given in the proof of Theorem 2.5, one can show that going around
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the loop {Lt} permutes these three pseudo-involutions cyclically (and the pseudo-
involutions P0 and P4 are taken to themselves, because the number of switching
crossings is preserved by the monodromy map due to the characteristic property).

4.7. Third example. We consider the Legendrian link L ∈ D4 whose front
is shown in Fig. 12 a. Suppose that {Lt} is a loop going around the stratum
D4 in a neighbourhood of L exactly once and the front σ(L0) is as shown in
Fig. 12b. The front σ(L0) admits exactly five positive pseudo-involutions P

0, P1,
P2, P3, P4, determined by Sw(P0) = {y2, y3}, Sw(P1) = {x2, y2, y5, y6}, Sw(P2) =
{x2, y2, y3, y4}, Sw(P3) = {y2, y3, y5, y6}, and Sw(P4) = {x2, y2, y3, y4, y5, y6}.
Using the explicit description of the continuation for P0 ∈ {P1,P2} given in the
proof of Theorem 2.5, one can show that these two pseudo-involutions are trans-
posed under a circuit around the loop {Lt} (and the pseudo-involutions P0, P3,
and P4 are preserved by this operation).
We note that the link L belongs to the connected component of the space of

Legendrian links containing the link in the previous example. This readily implies
that every permutation of the pseudo-involutions P1, P2, P3 of the front σ(L0) can
be realized by a monodromy transformation along some σ-generic loop.

§ 5. Extension of pseudo-involutions to the discriminant
5.1. Let k be an integer. We consider the set Lσk of all σ-generic Legendrian links
in J1(M) whose fronts admit exactly one positive pseudo-involution, with Euler
characteristic equal to k. Let L′k be the closure of L

σ
k in the space L of Legen-

drian links. It follows from Proposition 2.6 that L′k is a union of some connected
components of L.
Let us consider the map P0 taking a Legendrian link L ∈ Lσk to the positive

pseudo-involution P0(L) of σ(L) such that χ(P0(L)) = k. Our objective is to
extend the map P0 to a continuous map P defined on L

′
k and taking a Legendrian

link to a pseudo-involution of the front of the link. The continuity condition here is
understood as follows. Let us consider the set AP = {(x, L)|x ∈ Gσ(L) ∪ Cσ(L)} ⊂
J0(M)×L′k and the map ΦP : AP → J0(M) given by the rule ΦP(x, L) = P(L)(x).
We equip the set AP with the topology induced by the product of the natural
topology on J0(M) and the C∞-topology on L′k. The map P is said to be continuous
if ΦP is continuous.
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Theorem 5.1. The map P0 can be uniquely extended to a continuous map P taking
each link L ∈ L′k to a pseudo-involution of σ(L).
5.2. Proof of Theorem 5.1. If x is a cusp of the front Σ = σ(L), then we set
P(L)(x) = x. If x is a non-singular point of Σ, then we consider a sequence (Li) of
Legendrian links in Lσk and a sequence of points xi ∈ σ(Li) such that Li → L and
xi → x. Let P(L)(x) = limi→∞ P0(Li)(xi). We claim that this definition is correct
and the map P has the desired properties.
Let Γ be a set of non-singular points of Σ = σ(L) that is the graph of a

smooth function defined on a closed interval I ⊂ M . We denote by Wε(Γ) the
ε-neighbourhood of Γ in J0(I). Let ε > 0 be small enough that the neighbourhood
Wε(Γ) does not contain points of Σ outside Γ. A Legendrian link L

′ is said to be Γ-
convenient if the intersection of its front withWε(Γ) consists of non-singular points
of the front and is the graph of a smooth function on I. Suppose that L′ ∈ Lσk is
a σ-generic Γ-convenient link and P′ = P0(L

′) is a pseudo-involution of σ(L′). In
this case the set P′(σ(L′) ∩Wε(Γ)) is the graph of a continuous function on I. We
denote this function by fL′ .

Lemma 5.2. For each δ > 0 there is a neighbourhood U of a Legendrian link L
in L′k consisting of Γ-convenient links and such that ‖fL1 − fL2‖C0 < δ for all
L1, L2 ∈ Lσk ∩ U .
We first prove the following auxiliary assertion.

Lemma 5.3. Let L0 ⊂ J1(M) be a Legendrian link and let TL0 be the set consisting
of all points q0 ∈ M such that the line {q = q0} intersects the front σ(L0) only at
non-singular points. Then TL0 is open and dense in M .

Proof. Obviously, TL0 is open in M . By Sard’s theorem, the set of critical values
of the projection L0 → M is closed and of measure zero. We claim that every
closed interval K ⊂M consisting of non-singular values of this projection contains
a point of the set TL0 . Indeed, the set LK0 = L0∩J1(K) is a union of finitely many
1-graphs of smooth functions f1, . . . , fm on K. Since the graphs of these functions
cannot be tangent (because L0 is embedded), it follows that any two graphs of
this kind can meet at only finitely many points. Therefore, almost all points of K
belong to TL0 . Thus, TL0 is dense in M . �
Proof of Lemma 5.2. Every sufficiently small neighbourhood of L in L′k consists
of Γ-convenient links. We claim that for any δ0 > 0 and any point s ∈ TL0 ∩ I
there is a neighbourhood Us,δ0 of L in L

′
k such that |fL1(s) − fL2(s)| < δ0 for

any L1, L2 ∈ Lσk ∩ Us,δ0 . Indeed, we choose first a connected neighbourhood Us,δ0
such that s belongs to TL0 for every L0 in this neighbourhood. Suppose that
L0 ∈ Lσk ∩ Us,δ0 . We denote by x

L0
1 , x

L0
2 , . . . , x

L0
2n the points of the set σ(L0) ∩

{q = q0} enumerated in ascending order of u-coordinates. The pseudo-involution
P0(L0) defines an involution θ of the set {1, . . . , 2m} by the formula P0(L0)(xL0j ) =
xL0θ(j). The involutions θ corresponding to different links L0 ∈ Lσk ∩ Us,δ0 coincide.
This follows from Theorem 2.5 and the fact that any two links of this kind can
always be connected by a σ-generic family of Legendrian links in Us,δ0 . Since
these involutions coincide, there is an index j ∈ {1, . . . , 2m} such that fL0(s) is
equal to the u-coordinate of the point xL0j for each L0 ∈ Lσk ∩ Us,δ0 . Thus, by
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reducing the neighbourhood Us,δ0 , we can achieve the validity of the inequality
|fL1(s) − fL2(s)| < δ0.
One can find a constant C > 0 and a neighbourhood UC of the Legendrian link L

in L′k such that the absolute value of the p-coordinate of each element L
′ ∈ UC does

not exceed C. In this case, |fL0(s1) − fL0(s2)| � C|s1 − s2| for any L0 ∈ Lσk ∩ UC
and s1, s2 ∈ I. There are positive numbers ε0 and δ0 such that δ0 +2Cε0 < δ. For
any point s ∈ TL0 ∩ I the inequality |fL1(s1)− fL2(s1)| < δ holds for any s1 in the
ε0-neighbourhood of s in I and for any Legendrian links L1, L2 ∈ Lσk ∩ Us,δ0 . By
Lemma 5.3, the set TL0 ∩ I is dense in I, and hence it contains points s1, . . . , sl
whose ε0-neighbourhoods cover the closed interval I. The desired neighbourhood U
is the intersection of the neighbourhoods Usi,δ0 .

Let us return to the proof of Theorem 5.1. We claim that the above definition of
the map P(L) : Gσ(L) ∪ Cσ(L) → σ(L) is correct. Suppose that x is a non-singular
point of the front σ(L), (Li) is a sequence of Legendrian links in L

σ
k , xi ∈ σ(Li),

Li → L, and xi → x. Consider a set Γ of non-singular points of σ(L) that contains
the point x and is the graph of a smooth function defined on some closed interval
I ⊂M . By Lemma 5.2, the sequence of functions fLi : I → R converges in the space
C0 to some function f . Thus, the sequence P0(Li)(xi) converges to (π(x), f(π(x)))
(where π stands for the projection J0(M) → M). Therefore, the map P is well
defined.
The map P(L) satisfies the conditions imposed on a pseudo-involution. This

follows by continuity considerations, because the maps P0(L
′) are pseudo-involu-

tions for any σ-generic Legendrian links L′ close to L. We claim that the map ΦP is
continuous at the point (x, L), where x ∈ Gσ(L). By Lemma 5.2, it suffices to show
that the point P(L′)(x′) is sufficiently close to the point P(L)(x) if the link L′ ∈ Lσk
is sufficiently close to L and x′ is a non-singular point of σ(L′) sufficiently close
to x. In turn, these conditions follow from Lemma 5.2. Finally, the continuity of the
map ΦP at the point (x, L), where x is a cusp, follows from the fact that there is
a small neighbourhood V of x in J0(M) such that the intersection of the front of
L′ with V can be obtained from V ∩ σ(L) by a C∞-small diffeomorphism for any
Legendrian link L′ sufficiently close to L. The proof of Theorem 5.1 is complete. �

§ 6. Combinatorics of decompositions of fronts

6.1. Resolution. Starting from a decomposition D = {γ1, . . . , γN} of a σ-generic
front Σ = σ(L) ⊂ J0(M) (where M = S1, M = R, or M = I), we shall construct
a topological manifold R(D) (with boundary if M = I), the so-called resolution

(the D-resolution) of Σ. The resolution R(D) is obtained from
⋃N
i=1 Λi (where

γi : Λi → Σ and the closed intervals and circles Λi are pairwise disjoint) by gluing
together two ends y ∈ Λj and y′ ∈ Λj′ such that γj(y) = γj′(y′) = c for each cusp
c of Σ. The maps γi define a natural continuous projection ψD : R(D) → Σ under
which each crossing point of Σ has two pre-images and each non-crossing point has
one pre-image.

6.2. Tree-like decompositions. Let L ⊂ J1(S1) be a σ-generic Legendrian link
and let D be a decomposition of its front Σ ⊂ J0(S1). We denote by SwL(D) ⊂ L
the pre-image of the set Sw(D) under the action of σ|L.
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To a decomposition D we assign a graph KD as follows. The vertices of KD
correspond to the connected components of the space R(D). For each point x ∈
Sw(D) we construct an edge of KD joining the vertices (possibly coinciding) that
correspond to the components containing the pre-images of x under the map ψD.
A decomposition D is said to be tree-like if KD is a tree. We say that a connected
component S of the space R(D) is a k-component if ψD(S) contains exactly k cusps.
A decomposition D is said to be tame if L is connected, χ(D) = 0 (for the definition
of the Euler characteristic χ(D), see 2.7), each connected component of R(D) is
either a 2-component or a 0-component, and there is at least one 0-component.

Lemma 6.1. If D is a tame decomposition, then D is tree-like and the resolution
space R(D) has exactly one 0-component.

Proof. To each oriented interval J ⊂ L whose ends lie outside the set SwL(D)
one can assign a path on the graph KD, that is, a finite sequence of edges such
that the beginning of each edge coincides with the end of the previous edge. This
path is constructed as follows. The points of the set J ∩ SwL(D) are ordered by
using the orientation on J . Passing to the images of these points in Σ, we obtain
a sequence of points in Sw(D). Corresponding to this sequence is a sequence of
edges in KD . Using this construction, one can readily see that the connectedness
of the knot L implies the connectedness of the graph KD. The condition χ(D) = 0
means that the number of edges of KD is equal to the number of 2-components
of the space R(D). Thus, the Euler characteristic χ(KD) is equal to the number of
0-components, and therefore χ(KD) ≥ 1. Since KD is connected, it follows that
χ(KD) ≤ 1. Therefore, KD is a tree and the resolution R(D) has exactly one
0-component. �

Suppose that a decomposition D is tree-like. If Sw(D) is non-empty, then the
knot L is divided by the points of SwL(D) into pieces homeomorphic to a closed
interval. Let S be a component of the space R(D). We denote by SL ⊂ L the union
of the pieces that are projected on ψD(S) ⊂ Σ (if Sw(D) is empty and S = R(D),
then we set SL = L). We say that a component S is cyclic if for each pair of points
y1, y2 ∈ ∂SL with σ(y1) = σ(y2) there is a closed interval J ⊂ L with ends y1 and
y2 such that J ∩SL = {y1, y2} (or, informally speaking, L is transformed into S by
contracting each of these intervals to a point).

Lemma 6.2. Suppose that L ⊂ J1(S1) is a σ-generic Legendrian link and D
is a tree-like decomposition of its front Σ ⊂ J0(S1). Then L is connected and
every component of the space R(D) is cyclic. Moreover, for each switching point
x ∈ Sw(D) and each component S∗ ⊂ R(D) the set S∗L is entirely contained in one
of the two closed intervals into which L is divided by the pre-images of x.

Proof. We proceed by induction on the number k = #(Sw(D)). For k = 0 the
assertion is obvious. Suppose that the assertion is proved for all tree-like decompo-
sitions D0 such that #(Sw(D0)) = k − 1. Let D be a tree-like decomposition with
#(Sw(D)) = k > 0. Then the tree KD has at least two univalent vertices. There-
fore, there is a component S ⊂ R(D) such that the set ψD(S) contains exactly one
switching crossing of the decomposition D. We denote this point by xS and the
pre-images of xS in L by z1 and z2.
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Let us consider a decomposition D0 of Σ such that Sw(D0) = Sw(D) \ {xS}.
Since KD is obtained from KD0 by contracting one of the edges into a point, D0
is tree-like. The assertion of the lemma for the decomposition D follows from
the assertion for D0, and the assertion for D0 holds by the induction assumption.
Indeed, this results from the following description of the sets SL, where S ranges
over the components of R(D): one of these sets is an interval JS ⊂ L with ends at
the points z1 and z2 that contains no other points of the set SwL(D), and another
is S′L \ JS , where S′ is the component of R(D0) containing the pre-images of the
point xS ; the remaining sets are of the form S

′′
L, where S

′′ is a connected component
of the space R(D0). �

6.3. Tame decompositions and intervals in a Legendrian link. Let γ : Λ→ Σ
be a section of the front Σ and let y be an interior point of the closed interval Λ.
By the half-sections (with respect to the point y) we mean the restrictions of γ
to the closed intervals into which the point y divides the interval Λ. By the right
half-section (left half-section) we mean the map whose graph ends at the right (left)
cusp of the front Σ.

Lemma 6.3. Let D be a tame decomposition of a σ-generic Legendrian knot
L ⊂ J1(S1) and let S0 be a 0-component of the resolution R(D). Then each point
x ∈ Sw(D) uniquely determines the following objects.
(1) A closed interval J∗x(D) ⊂ L with ends at the pre-images of x and containing

no interior points of S0L.
(2) A section γx : Λ → σ(L) of D, where Λ is a closed interval, such that the

image of γx contains x and is contained in the set σ(J
∗
x(D)) (denote by γ

r
x (γ

l
x)

the right (left) half-section of γx with respect to the pre-image of x in Λ).
(3) Disjoint closed intervals Jrx(D), J

l
x(D) ⊂ J∗x(D) whose ends are taken by σ

to the ends of the half-sections γrx and γ
l
x, respectively.

Let J∗x(D) and J
∗
x′(D) be any two distinct closed intervals of the above form.

Either these intervals are disjoint or one of them is a subset of the interior of
the other. The intervals J∗x(D) corresponding to distinct switching crossings x
contained in the section ψD(S

0) are disjoint, and L is the union of all these intervals
and the set S0L. The sections γx corresponding to different switching crossings are
different, and every cusp is an end of exactly one of these sections. The points
of the intervals Jrx(D) and J

l
x(D) that are sufficiently close to the ends of these

intervals are taken by σ to points of the half-sections γrx and γ
l
x, respectively.

Proof. The decomposition D is tree-like by Lemma 6.1. By Lemma 6.2, the set
S0L is contained in one of the two closed intervals into which L is divided by the
pre-images of x. We denote this interval by I∗x(D), and the other by J

∗
x(D). The

interval J∗x(D) ⊂ L contains no interior points of S0L by definition. The ends of
the interval J∗x′(D) ⊂ L, where x′ 	= x, belong to the set S′L, where S′ is some
component of the space R(D). It follows from Lemma 6.2 that these ends both
belong to one of the intervals I∗x(D) and J

∗
x(D). Thus, we consider the following

possibilities: the closed intervals J∗x(D) and J
∗
x′(D) are disjoint, or one of them is

a subset of the interior of the other, or their union is L. However, the last case
is impossible, since the interior points of the non-empty set S0L belong to neither of
these intervals.
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Let x be a point of the set Sw0(D) of switching points belonging to the
section ψD(S

0). Then the interval J∗x(D) ⊂ L is the closure of a connected com-
ponent of the complement to S0L in L (because the ends of the interval belong to
S0L). Thus, the intervals J

∗
x(D) ⊂ L corresponding to different points x ∈ Sw0(D)

are disjoint, and L is the union of all such intervals and the set S0L.
Since D is tree-like, each crossing point x ∈ Sw(D) belongs to the images of two

different sections; denote these sections by γ1 and γ2. Let S
1 and S2 be components

of R(D) such that the image of γi is contained in ψD(S
i). By Lemma 6.2, each of

the sets SiL is contained in one of the intervals I
∗
x(D) and J

∗
x(D). Each pre-image

of x in L has one small half-neighbourhood contained in S1L and the other in S
2
L.

Thus, there is exactly one index i ∈ {1, 2} such that the closed interval J∗x(D)
contains SiL. We write γx = γi and S

x = Si. Then the image of γx is a subset
of σ(J∗x(D)). It follows from the relation S

i
L ⊂ J∗x(D) that Si 	= S0. Therefore, Si

is a 2-component, and thus the domain of γx is a closed interval.
We claim that the sections γx and γx′ corresponding to different crossings are

different. Suppose the contrary. Then Sx = Sx
′
, and the intersection of the intervals

J∗x(D) and J
∗
x′(D) contains S

x
L, hence is non-empty. Thus, one of these intervals is

a subset of the interior of the other. However, this contradicts the fact that the
ends of both the intervals belong to SxL. Therefore, γx 	= γx′ and Sx 	= Sx

′
.

Since the decomposition D is tame, the number of switching crossings of D is
equal to the number of 2-components of R(D). Hence, the map x �→ Sx defines a
one-to-one correspondence between the switching crossings and the 2-components.
Thus, for each cusp of the front σ(L) there is exactly one switching crossing x such
that the pre-image in R(D) of the cusp belongs to the component Sx, and so x is
the only switching crossing for which the cusp is an end of the section γx.
We denote by ZrL (by Z

l
L) the closure of the subset of L consisting of all points z

such that σ(z) is a non-singular point of σ(L) belonging to the image of the half-
section γrx (γ

l
x, respectively). Suppose that a crossing point x

′ ∈ Sw(D) belongs to
the image of the half-section γrx and denote the set of all such crossings by Sw

r
x.

Let Jrx(D) be the union of the set Z
r
L and all intervals J

∗
x′ with x

′ ∈ Swrx. The ends
of the interval J∗x′ belong to the set Z

r
L, and its interior points do not belong to S

x
L

by Lemma 6.2. The boundary points of ZrL are exactly the ends of the intervals J
∗
x′

with x′ ∈ Swrx and the points mapped by the projection σ to the ends of the half-
section γrx. Hence, the set J

r
x(D) is a closed interval, and the assertions of the

lemma about its ends and their neighbourhoods are valid. The interval Jrx(D) is a
subset of J∗x (D), because Z

r
L ⊂ J∗x(D) and each of the intervals J∗x′ with x′ ∈ Swrx is

a subset of J∗x(D) by Lemma 6.2 (since the ends of J
∗
x′ are interior points of J

∗
x(D)).

One can similarly define the closed interval J lx(D) and verify its properties. The
intervals Jrx(D) and J

l
x(D) are disjoint, because otherwise the cusp at which the

right half-section ends would also belong to the left half-section, which is impossible.
�

§ 7. Hurwitz theorems for fronts

7.1. Generalized curvature map. Let λ ∈ R. We consider the 1-forms ω = dq
and βλ = dp+ λu dq on J

1(S1). For a given Legendrian link L ⊂ J1(S1) we define
the map CurvL,λ : L→ RP1 = R∪ {∞} by setting CurvL,λ(z) = [ω|L(z) : βλ|L(z)]
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(that is, CurvL,λ(z) = ∞ for βλ|L(z) = 0 and ω|L(z) = CurvL,λ(z)βλ|L(z) for
βλ|L(z) 	= 0). This definition is correct (that is, the 1-forms βλ|L(z), ω|L(z) ∈ T ∗z L
do not vanish simultaneously), because the 1-forms α = du − p dq, βλ, and ω are
linearly independent at each point. For λ = 1 this definition coincides with the
definition of the map CurvL given in 0.2. We define a map FL,λ : L → RP1 =
R ∪ {∞} as follows. Let FL,λ(y) = ∞ for y /∈ GL. In a neighbourhood of the
point y ∈ GL the link L coincides with the 1-graph j1f of a function f : U → R,
where U ⊂ S1. We then set FL,λ(y) = f ′′(qy) + λf(qy), where qy stands for
the q-coordinate of y. Arguing as in the proof of Lemma 1.1, one can show that
FL,λ = 1/CurvL,λ.

7.2. Sturm points and Arnol’d points. A point z ∈ L is called a Sturm λ-point
if FL,λ(z) = 0. We call critical points of the map FL,λ : L→ RP1 Arnol’d λ-points.
For each λ ∈ R the Sturm λ-points belong to GL, because GL consists of all points
z ∈ L such that ω|L(z) 	= 0. A point z = (p0, q0, u0) ∈ L is called a critical point of
L if p0 = 0.

7.3. Continuous sections of fronts. Let L1 be the connected component of
the space of Legendrian links in J1(S1) that contains the zero section of the vector
bundle J1(S1) → S1. Let us consider the space L+1 of Legendrian links that are
obtained from elements L ∈ L1 by adding a component Vc = {p = 0, u = c} for
which the value of u on L is less than c.
The canonical projection L+1 → L1 is a fibration with contractible fibre. The

component L+1 contains the link V0 ∪ V1, whose front admits exactly one pseudo-
involution P0, which is positive. According to Proposition 2.6, the front of a σ-
generic link in L+1 admits exactly one positive pseudo-involution, and the Euler
characteristic of this pseudo-involution vanishes. Consider the map L+ �→ P(L+)
in Theorem 5.1 that takes a link L+ to a pseudo-involution of the front σ(L+).
We define the map H : L1 → C0(S1) as follows. If L ∈ L1, then we take an
L+ = L ∪ Vc ⊂ L+1 and define H(L) as the function whose graph is P(L+)(Vc).
One can readily see that H is well defined (that is, it does not depend on c). The
following assertion results from Theorem 5.1.

Proposition 7.1. The map H : L1 → C0(S1) continuously assigns to any Legen-
drian link L a function H(L) whose graph ΓH(L) is a subset of the front σ(L).

7.4. Canonical Maslov potential. Let us consider the cover M1 over L1 whose
fibre over L ∈ L1 consists of integer-valued Maslov potentials on L.

Lemma 7.2. The cover M1 admits a unique continuous section L �→ µL such
that µV0 = 0. For any generic knot L ∈ L1 the Maslov potential µL vanishes on
the pre-images of non-singular points of σ(L) belonging to ΓH(L). For each pre-

image L+ ∈ L+1 of L the pseudo-involution P(L+) is a Maslov pseudo-involution
with respect to the potential which coincides with µL on L and is equal to 1 on the
complementary component.

Proof. Let µ be a Maslov potential on V0∪V1 such that µ(V0) = 0 and µ(V1) = 1. To
prove the first assertion of the lemma, it suffices to show that each Maslov potential
µ′ obtained from µ by a continuous extension along a loop in L+1 coincides with µ.
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But this follows from Theorem 2.5 and the relation µ′(V1) = 1. The other assertions
follow immediately from Theorem 2.5. �

7.5. Three generalizations of the Hurwitz theorem. Let L ∈ L1. We denote
byNSλ (L) the set of Sturm λ-points on L at which the Maslov potential µL vanishes.
We denote by NAλ (L) the set of Arnol’d λ-points on L.

The inner product of functions on S1 is defined by the L2-pairing, 〈f, g〉 =∫
S1
f(q)g(q) dq. The following three theorems generalize the Hurwitz theorem and

reduce to it in the case when L is the 1-graph of a smooth function on S1.

Theorem 7.3. Let L ∈ L1 be a Legendrian knot for which the function H(L)
is orthogonal to each of the 2k + 1 functions 1, cos q, sin q, . . . , cos kq, sinkq. Then
#
(
NSλ (L)

)
� 2k + 2 for any λ ∈ R and #

(
NSλ (L)

)
� 2k + 4 for λ = (k + 1)2.

Theorem 7.4. Let L ∈ L1 be a Legendrian knot for which the function H(L)
is orthogonal to each of the 2k functions cos q, sin q, . . . , cos kq, sin kq. Then the
inequality #

(
NAλ (L)

)
� 2k + 2 holds for any λ ∈ R, and #

(
NAλ (L)

)
� 2k + 4 for

λ = (k + 1)2.

Theorem 7.5. Let L ∈ L1 be a Legendrian knot for which the function H(L) is
orthogonal to each of the 2k functions cos q, sin q, . . . , cos kq, sinkq. Then L has at
least 2k + 2 critical points.

7.6. Remark on the zeros of higher derivatives. For any smooth function
on the circle its nth derivative has at least two zeros, for any positive integer n.
One can ask whether analogues of this assertion hold for Legendrian knots in the
component L1.

Let L ∈ J1(S1) be a Legendrian link. We define a function hn,L : GL → R.
Suppose that y ∈ GL and f is a smooth function whose 1-graph coincides with L
in a neighbourhood of y. We set hn,L(y) = f

(n)(qy), where qy is the q-coordinate

of y, and we denote by Qn(L) the set of zeros of hn,L. Let Qn(L) be the set of
points y ∈ L such that there is a Legendrian link L′ arbitrarily C∞-close to L which
contains a point y′ ∈ Qn(L′) close to the point y. Then Qn(L) ⊂ Qn(L) for each n,
the set Q1(L) is formed by the critical points of L, Q2(L) = Q2(L) is the set of
Sturm 0-points of L, and Q3(L) is the set of Arnol’d 0-points of L.

It follows from the theorems stated above that each of the sets Q1(L), Q2(L),
and Q3(L) contains at least two points for any L ∈ L1. One can readily see that
the set Qn(L) also contains at least two points for each odd n ≥ 3 and each L ∈ L1.
(Let us sketch the proof for a σ-generic L which is not a 1-graph. It follows from
the relation m(L) = 0 that there are at least two closed intervals J ⊂ L such that
their ends (but not their interior points) are projected on cusps of σ(L) and the
curve σ(J) either enters both cusps from above or enters both from below. In this
case the function hn,L tends to +∞ when approaching one end of J and to −∞
when approaching the other end. Thus, J contains a point of Qn(L).) However,
there is an example of a σ-generic Legendrian knot L ∈ L1 (whose front has two
cusps and one crossing point) such that the set Q4(L) is empty. Similar examples
can probably be constructed for all even n > 4.
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§ 8. Proof of generalizations of the Hurwitz theorem

8.1. A Legendrian link L ⊂ J1(S1) is said to be λ-generic if it is σ-generic, the
images of Sturm λ-points are non-singular points of σ(L), and the differential of
the map FL,λ is non-zero at each Sturm λ-point. We first prove the assertion
of Theorem 7.3 for a λ-generic knot L.
We take a Legendrian link L+ = L ∪ Vc ∈ L+1 mapped to the knot L ∈ L1

under the projection L+1 → L1. Let P = P(L+) be a positive pseudo-involution
of σ(L+). The graph ΓHL of the function HL = H(L) coincides with the set
P(Vc) ⊂ Σ = σ(L). We denote by Y the projection of the set Sw(P) ∩ ΓHL on S1.
The piecewise smooth function HL is smooth outside Y , and its left and right
derivatives are different at each point of Y . Let GY be the set of distributions
(elements of the space dual to C∞(S1)) of the form ϕ =

∑
s∈Y b

s
ϕδs + gϕ, where

δs is the Dirac delta function supported at s, b
s
ϕ is a non-zero number, and gϕ is a

smooth function on S1 \Y with regular zeros that has non-zero left and right limits
at each point s ∈ Y . (More precisely, the result of applying the distribution ϕ to
f ∈ C∞(S1) is equal to

∑
s∈Y b

s
ϕf(s) +

∫
S1\Y f(q)g(q) dq.)

8.2. Changes of sign. Let us define the sign of a distribution ϕ ∈ GY at a point
q ∈ S1 as the sign of the number bqϕ for q ∈ Y and as the sign of gϕ(q) for q /∈ Y .
We say that a function ϕ ∈ GY changes sign from the right (from the left) at s ∈ Y
if the sign of bsϕ differs from the sign of the right (left) limit of gϕ at the point s.
Thus, ϕ can change its sign at a point s ∈ Y twice. We say that ϕ changes sign at
q ∈ S1 \ Y if gϕ changes sign at q.
If a knot L is λ-generic, then applying the differential operator Dλ =

d2

dq2 + λ

to the function HL gives a distribution in GY , and we have gDλHL(q) = HL
′′(q) +

λHL(q) for q ∈ S1 \Y . Arguing as in the proof of Lemma 1.1, one can readily show
that if DλHL(q0) = 0 for q0 /∈ Y , then FL,λ(z0) = 0, where z0 ∈ L is such that
σ(z0) = (q0, HL(q0)). It follows from Lemma 7.2 that z0 ∈ NSλ (L).

8.3. Hurwitz theorem for distributions.

Lemma 8.1. If a distribution ϕ ∈ GY vanishes at the functions 1, cos q, sin q, . . . ,
cos lq, sin lq, then it changes sign at least 2l+ 2 times.

Proof. Let Yi, i ∈ {1, 2}, be the set of points at which DλHL changes its sign
exactly i times. Then Y2 ⊂ Y . Suppose that

2l′ = #(Y1) + 2#(Y2) < 2l + 2.

By multiplying appropriate trigonometric polynomials of degree 1, we can construct
a trigonometric polynomialQ of degree l′ which vanishes exactly on the set Y1∪Y2,
changes sign at the points of Y1, and does not change sign at the points of Y2.
Reversing the sign of Q if necessary, we can assume that DλHL and Q have the
same sign at each point of the set S1 \ (Y1 ∪ Y2). We claim that

〈DλHL, Q〉 =
∑
s∈Y
bsDλHLQ(s) +

∫
S1\Y

Q(q)gDλHL(q) dq > 0.
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Indeed, it follows from the construction of Q that the second summand on the
right-hand side is positive and the first summand is equal to∑

s∈Y \(Y1∪Y2)
bsDλHLQ(s) � 0.

Hence, DλHL does not annihilate Q, a contradiction. �
8.4. Application of Lemma 8.1. The space Tk of trigonometric polynomials of
degree at most k is invariant under the action of the differential operator Dλ. Since
Dλ is selfadjoint and HL is orthogonal to Tk, we conclude that DλHL vanishes on
functions in Tk. If λ = (k + 1)

2, then the functions sin(k + 1)q and cos(k + 1)q
belong to the kernel ofDλ, and hence DλHL vanishes on these functions. Therefore,
under the assumptions of Theorem 7.3, the distribution DλHL (for a λ-generic L)
always has at least 2k + 2 changes of sign, and at least 2k + 4 changes of sign if
λ = (k + 1)2.
For each change of sign of the distribution DλHL occurring at some point of

Y we shall find a point of the set NSλ (L). The Sturm λ-points found in this way
will be pairwise different and will differ from the points corresponding to the zeros
of gDλHL . This will complete the proof of Theorem 7.3 in the case of a λ-generic
knot.

8.5. Pseudo-involutions and tame decompositions. Let L+ = L ∪ Vc be
a pre-image of L in L+1 under the projection L

+
1 → L1. The pseudo-involution

P+ = P(L+) defines a decomposition DP+ of the front σ(L) ∪ σ(Vc). Let DL
denote the decomposition of the front Σ = σ(L) obtained from DP+ by removing
the section σ(Vc). The decomposition DL does not depend on the choice of L

+.
The definition of a tame decomposition was given in 6.2.

Lemma 8.2. The decomposition DL is tame.

Proof. If P is a pseudo-involution of a σ-generic front Σ′ ⊂ J0(S1), then each
component of the resolution space R(DP) is either a 2-component or a 0-component.
This holds because if two sections of DP have the same right ends, then their left
ends also coincide. Therefore, each component of R(DL) is either a 2-component
or a 0-component. The space R(DL) has a 0-component which projects to ΓHL . It
follows from Theorem 2.5 that χ(DL) = χ(P

+) = 0. �
8.6. Search for zeros of FL,λFL,λFL,λ corresponding to generalized changes of
sign. The graph ΓHL is the image of a unique (by Lemma 6.1) 0-component S

0

of the space R(DL) under the action of ψDL . For any point s ∈ Y we denote by
ŝ = (s,HL(s)) ∈ Sw0(DL) = ΓHL ∩ Sw(DL) the corresponding break point of the
graph. Since DL is tame, Lemma 6.3 assigns closed intervals J

r
ŝ (DL), J

l
ŝ(DL) ⊂ L

to each point ŝ.

Lemma 8.3. Let s ∈ Y . If DλHL changes sign at s from the left, then the interval
Jrŝ (DL) contains a point of the set N

S
λ (L). If DλHL changes sign at s from the

right, then the interval J lŝ(DL) contains a point of N
S
λ (L).

By Lemma 8.3, corresponding to each change of sign for the distribution DλHL
at a point s ∈ Y is a point of NSλ (L). According to Lemma 6.3, the points of
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NSλ (L) corresponding to different changes of sign are different and do not belong
to ΓHL . Hence, the number of points in the set N

S
λ (L) is not less than the number

of changes of sign for the distribution DλHL, and the assertion of Theorem 7.3
holds for a λ-generic knot. Before proving Lemma 8.3, we formulate and prove
Lemma 8.4, which is also used below in the proof of Lemma 8.12.

8.7. Maslov index and the curvature. Let e : R→ RP1 be the universal cov-
ering. We fix some function ie : R \ e−1({∞}) → Z which is constant on each
open interval making up R \ e−1({∞}) and such that ie(x2) = ie(x1) + 1 for
each point y ∈ e−1({∞}) and each pair of points x1, x2 ∈ R \ e−1({∞}) close
to y for which e(x1) < 0 and e(x2) > 0 (e(x1), e(x2) ∈ RP1 \ {∞}). Suppose
that l : [0, T ]→ L is a path (a continuous map) such that l(0), l(T ) ∈ GL. Let us
consider a lifting l̃λ of the map FL,λ ◦ l : [0, T ]→ RP1, that is, a continuous map
l̃λ : [0, T ]→ R such that e◦ l̃λ = FL,λ◦ l. We write iλ(l) = ie(l̃λ(T ))− ie(l̃λ(0)). One
can readily see that the number iλ(l) does not depend on the choice of the lifting.
For the definition of the Maslov index m(l) of a path l, see 2.5.

Lemma 8.4. iλ(l) = m(l).

It also follows from Lemma 8.4 that the Maslov number of a Legendrian knot L
is equal to the degree (winding number) of the map FL,λ under a certain choice of
orientations.

Lemma 8.5. Let x be a cusp of the front Σ = σ(L). Then for each point y ∈ GΣ
sufficiently close to x the value of FL,λ on the pre-image of y in L is positive if y
belongs to the upper branch of Σ entering the cusp and negative if y belongs to the
lower branch.

Proof. The assertion follows from the definition of FL,λ and from the following fact:
when the cusp is approached, the second derivative of the function whose graph is
some branch entering the cusp tends to +∞ for the upper branch and to −∞ for
the lower branch. �

Proof of Lemma 8.4. It suffices to prove the assertion for a generic smooth path
l : [0, T ]→ L. Let lt be the path lt = l|[0,t] : [0, t]→ L. By Lemma 8.5, the numbers
iλ(lt) and m(lt) change by the same amount as t passes through any value t0 such
that l(t0) ∈ L \GL. This completes the proof. �

Lemma 8.6. Suppose that L ⊂ J1(S1) is a Legendrian link and l : [0, T ] → L is
a path such that l(0), l(T ) ∈ GL. If the numbers FL,λ(l(0)) and FL,λ(l(T )) have
different signs and m(l) = 0, then there is an t1 ∈ [0, T ] such that FL,λ(l(t1)) = 0
and m(l1) = 0, where l1 stands for the restriction of l to [0, t1].

Proof. Let us consider the closed interval Z ⊂ R ⊂ RP1 with ends at the points
FL,λ(l(0)) and FL,λ(l(T )). It follows from the condition on the signs that 0 ∈ Z.
Consider a lifting l̃λ : [0, T ] → R of the map FL,λ ◦ l : [0, T ] → RP1. It follows
from the condition m(l) = 0 and Lemma 8.4 that the points l̃λ(0) and l̃λ(T ) belong
to the same connected component of R \ e−1({∞}). Thus, the closed interval Z′
with ends at the points l̃λ(0) and l̃λ(T ) is taken to Z by the projection e. There
is a point r ∈ Z′ such that e(r) = 0 ∈ RP1. Since r lies between the ends of



130 Yu. V. Chekanov and P. E. Pushkar’

the interval Z′, there is a t1 ∈ [0, T ] such that l̃λ(t1) = r. Then FL,λ(l(t1)) = 0.
Moreover, ie(l̃λ(0)) = ie(l̃λ(t1)), and hence m(l1) = 0 by Lemma 8.4. �
8.8. Proof of Lemma 8.3. We prove the assertion for a change of sign from the
left (the proof for a change of sign from the right is similar). Let Jr ⊂ L be a closed
interval obtained from Jrŝ (DL) by removing small neighbourhoods of the ends. Let
ar be the end of Jr close to the end of Jrŝ (DL) that is projected on a cusp and
let xr be the end of Jr close to zr .
The switching crossing ŝ belongs to the images of two sections in DL. The image

of one of these sections is ΓHL , and the other coincides with the section γŝ : Λ→ Σ
defined in Lemma 6.3. Let us consider non-singular points of Σ close to ŝ. By
definition, the Maslov potential µL vanishes on the pre-images in L of non-singular
points of Σ belonging to ΓHL . Hence, µL vanishes on the pre-image in L of a small
neighbourhood of ŝ. Since DL is a Maslov decomposition, the potential µL vanishes
on the pre-images in L of non-singular points of Σ belonging to γŝ(Λ). Since σ(a

r),
σ(xr) ∈ γŝ(Λ), µL vanishes at the ends of Jr . We show that the numbers FL,λ(xr)
and FL,λ(a

r) have different signs. After this, the proof of Lemma 8.3 will be
completed by applying Lemma 8.6 to a path parameterizing the interval Jr .
Suppose that the distributionDλHL is negative at the point s, that is, the graph

ΓHL has an ‘upward’ break at ŝ (the proof is similar if the sign is positive). Since
DλHL changes sign from the left at the point s, the function FL,λ is positive on
a neighbourhood of the point zr . In particular, FL,λ(x

r) > 0. Consider the point
d ∈ ΓHL whose q-coordinate coincides with that of σ(xr). The point σ(xr) is
above the point d (that is, it has a greater u-coordinate), because the graph ΓHL
forms an ‘upward’ break at ŝ. Since P+ is positive, the point P+(σ(xr)) is above
the point σ(xr). Therefore, for each generic y ∈ γŝ(Λ) the point P+(y) is above the
point y. Hence, the section γŝ enters the right cusp σ(a

r) of the front Σ from below.
Thus, FL,λ(a

r) < 0 by Lemma 8.5. This completes the proof of Lemma 8.3. �
8.9. Reduction to the case of a λλλ-generic knot. Let us prove the assertion of
Theorem 7.3 for arbitrary (non-generic) Legendrian knots L ∈ L1. By a small per-
turbation we can transform L into a λ-generic knot without increasing the number
of points in the set NSλ (L) (we assume that this set is finite). For a smooth function
η ∈ C∞(S1) we denote by Ψη the contactomorphism

(p, q, u) �→ (p+ η′(q), q, u+ η(q)).

The assertion of the theorem is reduced to the case of a λ-generic knot by using
the following two lemmas.

Lemma 8.7. There is a λ-generic Legendrian knot L0 ∈ L1 arbitrarily C∞-close
to L and such that #NSλ (L0) � #NSλ (L).
Lemma 8.8. If L0 ∈ L1 is a λ-generic Legendrian knot sufficiently C∞-close
to L, then there is a function η ∈ C∞(S1) such that the Legendrian link L1 =
Ψη(L0) satisfies the following conditions: (1) #N

S
λ (L1) = #N

S
λ (L0); (2) HL1 is

orthogonal to the functions 1, sin q, cos q, . . . , sin kq, cos kq.

Proof of Lemma 8.7. We first prove the following assertion.
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Lemma 8.9. Let FL,λ(x) = 0 and let U be a neighbourhood of the point x in
J1(S1) such that x is the only zero of FL,λ on the set L∩U . There is a Legendrian
link LU ∈ L1 arbitrarily C∞-close to L, coinciding with L outside U , and such
that the following conditions hold : (1) if FL,λ does not change sign at x, then
FLU ,λ has no zeros on LU ∩ U ; (2) if FL,λ changes sign at x, then there is exactly
one point x′ ∈ LU ∩ U such that FLU ,λ(x′) = 0; moreover, dFLU ,λ(x′) 	= 0 and
µLU (x

′) = µL(x).

Proof. In a small neighbourhood of the point x = (p0, q0, u0) the knot L coincides
with the 1-graph of a function f defined on an interval W ⊂ S1. We choose a
compactly supported function g : W → R as follows: if f ′′ + λf does not change
sign at q0, then g is positive and constant on a neighbourhood of q0, and if f

′′+λf
changes sign at q0, then g(q) is equal to q − q0 on a neighbourhood of q0. Let Lt
be the Legendrian manifold obtained from L by replacing the 1-graph of f by the
1-graph of f + tg. For a sufficiently small positive number ε the knots belonging to
one of the families {Lε} and {L−ε} satisfy the assertion of the lemma (the values
of the Maslov potentials coincide because the knots are C∞-close). �
Let us choose disjoint neighbourhoods U of all the points of the set NSλ (L) and

apply Lemma 8.9. All zeros of the map FL′,λ for the resulting knot L
′ are regular.

Therefore, by using an arbitrarily C∞-small perturbation we can make L′ λ-generic
without changing the number of points in the set NSλ (L

′). The proof of Lemma 8.7
is complete. �
Proof of Lemma 8.8. Using Lemma 5.3, we choose a closed interval I ⊂ S1 such
that the set σ(L0) ∩ J0(I) consists of non-singular points of the front σ(L0), and
its pre-image in L0 contains no points of the set N

S
λ (L

′).
Each continuous function η on S1 determines a linear function η∗ on the space Tk

of trigonometric polynomials of degree at most k by using the L2-pairing, namely,
η∗(f) =

∫
S1
η(q)f(q) dq. The following simple assertion is well known.

Lemma 8.10. There are functions η1, . . . , η2k+1 ∈ C∞(S1) supported in I such
that the functionals η∗1, . . . , η

∗
2k+1 are linearly independent.

Consider the linear functional H∗L0 on the space Tk. According to Lemma 8.10,
there is exactly one linear combination η of the functions η∗1, . . . , η

∗
2k+1 such that

η∗ = −H∗L0 . We set L1 = Ψη(L0). Since L0 and L are C
0-close, the functions HL0

and HL are C
0-close (by Proposition 7.1), and hence η is C∞-small. Therefore,

the knots L1 and L are C
∞-close if L0 and L are sufficiently C

∞-close. Hence,
NSλ (L1) = N

S
λ (L0), because L1 and L0 are C

∞-close to L and can differ only on
the set {(p, q, u) | q ∈ I}.
To complete the proof of Lemma 8.8, it remains to show that H∗L1 = 0. This is

a corollary to the following assertion.

Lemma 8.11. For each L′ ∈ L1 and each η ∈ C∞(S1)

HΨη(L′) = HL′ + η.

Proof. Let U be a dense subset of S1 formed by regular values of the projection
L′ → S1. Consider the family of knots L′t = Ψtη(L′), t ∈ [0, 1]. The function
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HL′t − tη depends continuously on t but does not really depend on t, because it can
take only finitely many values at each point of U . Thus, HΨη(L′) − η = HL′ . �

This completes the proof of Theorem 7.3.

8.10. Proof of Theorem 7.4. Let us consider the Legendrian knot Lc = Ψc(L) ∈
L1 obtained from L by shifting by c along the u-coordinate. If c = −

∫
S1 HL(q) dq,

then HLc is orthogonal to the functions 1, cos q, . . . , sin kq by Lemma 8.11, and
hence the knot Lc satisfies the conditions of Theorem 7.3. This shift takes the
Arnol’d λ-points of L to Arnol’d λ-points of Lc. Therefore, the assertion of the
theorem is a corollary to Theorem 7.3 and the following lemma, which is a variant
of Rolle’s theorem.

Lemma 8.12. Each closed interval J ⊂ L whose ends belong to NSλ (L) has at least
one interior point belonging to NAλ (L).

Proof. Consider a smooth path l : [0, 1] → L diffeomorphically parametrizing the
interval J . Since the ends of J belong to NSλ (L), it follows that m(l) = 0. By

Lemma 8.4, it follows that iλ(l) = 0. Therefore, every lifting l̃λ : [0, 1]→ R of the
map FL,λ◦ l : [0, 1]→ RP1 satisfies the condition l̃λ(0) = l̃λ(1). By Rolle’s theorem,
there is a t ∈ ]0, 1[ such that dl̃λ(t) = 0, and hence dFL,λ(l(t)) = 0. Thus, l(t) is an
Arnol’d λ-point. �

8.11. Proof of Theorem 7.5. We assume that the knot L ⊂ L1 has finitely many
critical points. Arguing as in the proof of Theorem 7.3, we can reduce Theorem 7.5
to the case in which L is σ-generic and the images of critical points of L under the
action of σ are non-singular points of Σ = σ(L).
Let a function HL : S

1 → R and a set Y = Y (L) ⊂ S1 be defined as in the
proof of Theorem 7.3. The derivative H ′L of HL is a smooth function defined on
S1 \Y and having non-zero one-sided limits at the points of Y . The function H ′L is
L2-orthogonal to the trigonometric polynomials of degree � k. Then H ′L changes
sign at least 2k times (when we also take into account the changes of sign at the
points of Y ). This follows from the Hurwitz theorem (the proof of Lemma 8.1 is
valid).
If H ′L changes sign at a point s0 ∈ S1 \Y , then the point of L projected onto the

point (s0, HL(s0)) is critical. According to Lemma 8.2 and Lemma 6.3, each point
s ∈ Y determines a closed interval J∗ŝ (DL) ⊂ L, where ŝ = (s,HL(s)) ∈ ΓHL . If H ′L
changes sign at s ∈ Y , then the values of the p-coordinate at the ends of J∗ŝ (DL)
have different signs. Hence, the interval J∗ŝ (DL) contains at least one critical point
of L. It follows from Lemma 6.3 that all the critical points thus constructed are
distinct. �

§ 9. The Arnol’d conjectures

9.1. Proof of Theorem 0.1. According to Lemma 1.1, the points at which the
Legendrian link L ∈ ST ∗R2 is tangent to the fibres of the projection ρ are exactly
the zeros of FL. Since the function FL coincides with the function FL,1 defined
in 7.1, the points at which L is tangent to the fibres of ρ are the Sturm 1-points of
L (the zeros of the map FL,1).
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We can assume that the origin of the plane is inside the fronts ρ(L0) and ρ(L1).
Using the identification between ST ∗R2 and J1(S1) (see Fig. 3), we see that the
front σ(L0) is the graph of a negative function f0 ∈ C∞(S1) and the front σ(L1)
is the graph of a positive function f1 ∈ C∞(S1). According to Proposition 7.1, the
family {Lt} of Legendrian links determines a family {Ht = H(Lt)} of continuous
functions on S1. Clearly, f0 = H0 and f1 = H1. Therefore, there is a t0 ∈ [0, 1]
such that

∫
S1 Ht0(q) dq = 0. Applying Theorem 7.3 to Lt0 for λ = 1 and k = 0,

we see that the knot Lt0 is tangent to the fibres of the projection ρ at least at four
points. The main assertion of Theorem 0.1 is thus proved.
Suppose now that the family {Lt} is generic in the following sense: the only

bifurcations occurring in the family {ρ(Lt)} of fronts are those shown in Fig. 1 a–e.
We claim that among the fronts {ρ(Lt)} there is a front having at least four non-
degenerate cusps. Indeed, it was already shown that there is a knot Lt0 such
that the projection ρ|Lt0 has at least four critical points. If t0 is not a point of
bifurcation, then the assertion is proved. If t0 is a point of bifurcation, then the
fronts {ρ(Lt)} have at least four non-degenerate cusps if t belongs to at least one
of the (two) sufficiently small half-neighbourhoods of t0. �
9.2. Proof of Theorem 0.3. The vertices of the Legendrian link L are exactly
the Arnol’d 1-points defined in 7.2. Applying Theorem 7.4 (for λ = 1 and k = 0),
we prove Theorem 0.3. �
9.3. Tame knots. Analogues of Theorem 0.1 and Theorem 0.3 hold for some
other components of the space of Legendrian knots in ST ∗R2 = J1(S1).
For any connected component L0 of the space of Legendrian links in J

1(S1) one
can define a space L+0 of Legendrian links in the same way that the space L

+
1 was

constructed from L1 in §7, namely, a link L+ ∈ L+0 is obtained from a link L ∈ L0
by adding a component Vc = {u = c, p = 0} whose front lies above the front σ(L).
There is a natural projection L+0 → L0.
Let L+ ∈ L+0 be a σ-generic link. A pseudo-involution P+ of σ(L+) is said to be

tame if it is positive and χ(P+) = 0. A component L0 of the space of Legendrian
knots is said to be tame if the front of some (and hence every (by Theorem 2.5))
σ-generic link in L+0 admits a tame pseudo-involution. A Legendrian knot is said
to be tame if it belongs to a tame component.

Lemma 9.1. Let L ⊂ J1(S1) be a tame σ-generic knot. Then the Maslov number
m(L) of L vanishes. Suppose that P+ is a tame pseudo-involution of σ(L+), where
L+ = L ∪ Vc is a lifting of L to L+0 . Then there is a unique integer-valued Maslov
potential µP+ on L

+ taking the value 1 on Vc and such that P
+ is a Maslov pseudo-

involution with respect to µP+ .

Proof. Let us consider the decomposition DP+ of σ(L
+) associated with P+. After

removing the section σ(Vc), we obtain a decomposition D− of the front σ(L). Argu-
ing as in the proof of Lemma 8.2, we show that D− is tame in the sense of the
definition given in 6.2. We claim that the Maslov index of the path lx diffeomor-
phically parameterizing the interval J∗x(D−) defined in Lemma 6.3 vanishes for each
x ∈ Sw(D−). Indeed, by Lemma 6.3, each cusp of σ(L) is an end of exactly one
section of the form γx′ with x

′ ∈ Sw(D−). All pre-images in R(D) of the cusps that
are ends of γx′ belong to the same component of the resolution R(D). It follows
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from Lemma 6.2 that the two pre-images of these cusps in L either both belong
or both do not belong to J∗x(D−). Since the decomposition D− was obtained from
a pseudo-involution, the section γx′ either enters both cusps from above or enters
both cusps from below. Hence, when the Maslov index of the path lx is computed,
these cusps are taken into account with opposite signs. Therefore, m(lx) = 0.
We write Γ = P+(σ(Vc)). It follows from Lemma 6.3 that the Maslov number

of L is the sum over all x ∈ Sw(D−) ∩ Γ of the Maslov indices of the paths lx,
computed with certain signs. Thus, m(L) = 0.
Suppose that y0 ∈ Γ is a non-singular point of the front σ(L), z0 is the pre-image

of y0 in L, and z1 ∈ Vc is a point such that P+(y0) = σ(z1). The Maslov potential
µP+ is uniquely determined by the condition that it takes the value 1 on Vc and
the value 0 at z0. For each switching crossing x we have m(lx) = 0, and hence the
values of µP+ on the pre-images of x in L coincide. Since µP+(z1) = µP+(z0) + 1,
P+ is a Maslov pseudo-involution with respect to µP+ by Proposition 2.4. In turn,
this implies that µP+ vanishes on the pre-images in L of the non-singular points
of σ(L) belonging to Γ. Hence, the definition of µP+ does not depend on the
choice of y0. �
9.4. The Arnol’d conjectures for tame knots.

Theorem 9.2. Let {Lt∈[0,1]} be a smooth path in a tame component of the space of
Legendrian knots such that the restriction of u to L0 is negative and its restriction
to L1 is positive. Then there is a point t0 ∈ [0, 1] such that the Legendrian knot Lt0
is tangent to the fibres of the projection ρ at least at four points.

Theorem 9.3. Every tame Legendrian knot has at least four vertices.

9.5. Example. We present an example of a tame Legendrian knot with a smooth
ρ-front but not in the component L1 studied above.
We first describe a convenient geometric way to construct from a front σ(L) ⊂

J0(S1) a front ρ(L1) ⊂ R2 of some Legendrian knot L1 belonging to the same
connected component of L to which the knot L belongs. The front ρ(L1) is the
image of σ(L) under the embedding of the cylinder J0(S1) in R2, that is, (q, u) �→
(eu cos q, eu sin q), and ρ(L1) is co-oriented from the origin.

���

�

Figure 13

This embedding takes the σ-front of L′ shown in Fig. 13 a to a front diffeomorphic
to that shown in Fig. 13b. Then it is easy to see (by constructing an appropriate
sequence of bifurcations of fronts on the plane) that the knot L ⊂ ST ∗R2 with front
ρ(L) shown in Fig. 13 c belongs to the connected component L′ of L containing the
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knot L′. This component is tame since σ(L′) admits a tame pseudo-involution
P determined by the condition Sw(P) = {x}. The components L′ and L1 differ,
because the knot L′ is not isotopic in the class of smooth embeddings to a section
of J1(S1) → S1. By Theorem 9.3, every Legendrian knot in L′ has at least four
vertices.

9.6. Hurwitz theorems for tame knots. The key role in the proof of Theo-
rems 9.2 and 9.3 is played by Theorems 9.4 and 9.5, which are analogues of The-
orems 7.3 and 7.4 for tame components. Let L be a σ-generic Legendrian knot
in a tame component L0. We consider a lifting L

+ = L ∪ Vc of L to L+0 . By
Theorem 2.5, the front σ(L+) admits at least one tame pseudo-involution, say P.
We denote by HL,P : S

1 → R the continuous function whose graph coincides with
P(σ(Vc)) ⊂ σ(L) and by R(L) the set of functions H : S1 → R such that H = HL,P
for some tame pseudo-involution P. The set R(L) is always finite. In general, the
number of elements in R(L) can differ for knots L belonging to different components
of L0 \D.
For any Legendrian link L ∈ L0 ∩ D we define a set R(L) consisting of the

continuous functions on S1 whose graphs are continuous sections of σ(L), namely,
a function H belongs to R(L) if and only if there exist a sequence (Li) of knots in
L0 \D which C∞-converges to L and a sequence of functions Hi ∈ R(Li) which
C0-converges to H. Arguing as in the proof of Theorem 5.1, one can show that
R(L) is non-empty and finite.
It follows from Lemma 7.2 that every tame Legendrian knot admits an integer-

valued Maslov potential which is unique up to an additive constant. The following
theorems generalize Theorems 7.3 and 7.4.

Theorem 9.4. Let L be a tame knot such that there is a function H ∈ R(L)
orthogonal to the 2k + 1 functions 1, cos q, sin q, . . . , cos kq, sinkq. Then for each
λ ∈ R there are at least 2k + 2 Sturm λ-points on L at which any integer-valued
Maslov potential takes the same values. If λ = (k + 1)2, then the link L has at least
2k+4 Sturm λ-points at which any integer-valued Maslov potential takes the same
values.

Theorem 9.5. Let L be a tame knot such that there is a function H ∈ R(L)
orthogonal to the 2k functions cos q, sin q, . . . , cos kq, sinkq. Then #

(
NAλ (L)

)
�

2k + 2 and #
(
NA(k+1)2(L)

)
� 2k + 4 for each λ ∈ R.

The proofs of these theorems practically repeat the proofs of Theorems 7.3
and 7.4 literally. The only difference is that the proof of Theorem 9.4 for non-
generic knots uses the following continuity property instead of Proposition 7.1: for
any knot L ∈ L0 and any function H ∈ R(L), if L′ is sufficiently C∞-close to L,
then R(L′) contains a function that is sufficiently C0-close to H.

9.7. Dual projective spaces and Legendrian projections. We pass to the
consideration of some problems formulated by Arnol’d about fronts on the projec-
tive plane.
For any manifold N the contact manifold ST ∗N is a natural two-sheeted cov-

ering over the contact manifold PT ∗N of the non-co-oriented contact elements
in N . The natural projection ρ× : PT ∗N → N is Legendrian. Suppose that
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N = RPn, and consider the projective space (RPn)∨ dual to RPn, that is, the
manifold of hyperplanes ((n − 1)-dimensional projective subspaces) in the space
RPn. Along with the projection ρ× : PT ∗RPn → RPn, there is a natural
projection ρ∨ : PT ∗RPn → (RPn)∨. The projection ρ∨ takes a contact element to
the hyperplane to which it is tangent.

9.8. Cusps and inflection points of fronts on the projective plane. We
restrict ourselves to the case n = 2. One can readily see that if x is a point of a
generic Legendrian link L ⊂ PT ∗RP2, then the front ρ×(L) has a cusp at ρ×(x) if
and only if the front ρ∨(L) has an inflection point at ρ∨(x). Conversely, the front
ρ×(L) has an inflection point at ρ×(x) if and only if the front ρ∨(L) has a cusp
at ρ∨(x).

9.9. Non-co-oriented fronts on the plane. We state a conjecture related to
the Arnol’d conjecture on three inflection points in [3]: if {Lt} is a generic path
in the space of Legendrian knots in PT ∗RP2 such that L0 is a fibre of ρ

×, then
the front ρ×(L1) has at least three cusps (and hence the front ρ

∨(L1) has at least
three inflection points). It is unknown whether or not this conjecture is true.
We can only prove a weaker assertion about fronts of Legendrian submanifolds of
PT ∗R2 ⊂ PT ∗RP2.
Let us consider a connected component L×1 of the space of Legendrian knots in

PT ∗R2 such that L×1 contains a fibre of the natural projection ρ
× : PT ∗R2 → R2.

Theorem 9.6. Every Legendrian knot L ∈ L×1 is tangent to the fibres of the
projection ρ× at least at three points. For any generic fibre L ∈ L×1 the front ρ×(L)
has at least three cusps.

Proof. We denote by L the space of Legendrian links in J1(S1) invariant under the
action of the contactomorphism ∆ : J1(S1)→ J1(S1) given by the rule (p, q, u) �→
(−p, q + π,−u). The pre-images in ST ∗R2 of the Legendrian links in PT ∗R2
are exactly the Legendrian links in L (we use the identification between ST ∗R2

and J1(S1)). Let L1 denote the set of ∆-invariant Legendrian knots in L1. Since
the component L1 contains the Legendrian knot V0 = {u = p = 0} which is a lifting
to J1(S1) of the fibre of the projection ρ× over the origin, Theorem 9.6 results from
the following theorem.

Theorem 9.7. Every Legendrian knot L1 admits at least six Sturm 1-points.

Proof. Let L ∈ L1. We consider the function HL defined in Proposition 7.1.
Lemma 9.8. If L ∈ L1, then the function HL is odd, in the sense that HL(q+π) =
−HL(q) for any q ∈ S1 = R/2πZ.

Theorem 9.7 follows from Lemma 9.8 and Theorem 7.3. Indeed, Lemma 9.8
implies that HL is orthogonal to the functions 1, cos 2q, sin2q. We write η(q) =
a1 sin q + a2 cos q. The Legendrian knot Lη = Ψη(L) belongs to the space L1. It
follows from Lemma 8.11 that HLη = HL + η, and we can choose the numbers
a1 and a2 such that HLη is orthogonal to the functions 1, cos q, sin q, cos 2q, sin2q.
By Theorem 7.3, the knot Lη has at least six Sturm 1-points. Since the contacto-
morphism Ψη defines a one-to-one map of the Sturm 1-points of L to the Sturm
1-points of Lη, the knot L also has at least six Sturm 1-points.
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Proof of Lemma 9.8. It suffices to prove the assertion for generic knots; one can
extend it to non-generic knots by continuity using Proposition 7.1. Let L be a
generic Legendrian knot invariant with respect to the involution ∆. We choose
a c > 0 such that σ(Vc) lies above σ(L) and σ(V−c) lies below σ(L). Let L+ = L∪Vc
and L− = L ∪ V−c, and let B(L±) be the set of positive pseudo-involutions of the
front σ(L±). We define a one-to-one map T : B(L+) → B(L−) by the following
condition: T (P)(x) = P(x) if x /∈ σ(Vc) and P(x) /∈ σ(Vc). Let ∆′ : J0(S1) →
J0(S1) be given by the rule (q, u) �→ (q + π,−u). We define a one-to-one map
T∆ : B(L+) → B(L−) by the formula T∆(P)(x) = ∆′P∆′(x). By Proposition 2.6,
the set B(L+) contains exactly one pseudo-involution; denote it by P. The assertion
of the lemma reduces to the invariance of the section P(σ(Vc)) ⊂ σ(L) under the
action of the involution ∆′. This invariance follows from the equality

∆′(P(σ(Vc)) = (T
−1T∆(P))(σ(Vc)) = P(σ(Vc)).

The proof of Lemma 9.8 and of Theorem 9.7 is thus complete. �

9.10. Persistence of cusps. If L is a Legendrian knot in ST ∗R2 and ifm(L) = 0,
then this cusp can be deformed in the class of Legendrian immersions to a Legen-
drian knot whose ρ-front is a smooth immersed curve. This assertion is no longer
valid if self-intersections are forbidden, namely, for any k there is a component Lk

of the space of Legendrian knots such that the Maslov number of each Legendrian
knot in Lk vanishes and the ρ-front of each generic knot in Lk has at least 2k
cusps ([14], [15]). One can also readily prove this assertion by using the approach
of the present paper.

§ 10. Critical points of Legendrian links
A point (p, q, u) of a Legendrian link L ⊂ J1(M) is said to be critical if p = 0.

This definition generalizes the definition of a critical point of a function on M .
Let M = Sn. A point z ∈ L is critical if and only if the vector ρ(z) ∈ Rn+1 is
orthogonal to the hyperplane tangent to ρ(L) at the point ρ(z) (with J1(Sn) and
ST ∗Rn+1 identified). Therefore, the critical points of L correspond to the normals
to the front ρ(L) that pass through the origin.

10.1. Positive links and their critical points. Let M = S1. A σ-generic
Legendrian link L ⊂ J1(S1) is said to be positive if the front of the link L+ =
L ∪ Vc (such that σ(Vc) lies above σ(L)) admits a positive pseudo-involution. A
component L0 of the space of Legendrian links is said to be positive it there is a
positive σ-generic link in L+0 (in which case, by Theorem 2.5, all σ-generic links
in L+0 are positive). A Legendrian link is said to be positive if it belongs to a
positive component. For a positive Legendrian link L we introduce the set R′(L)
of continuous functions on S1 in the same way that the set R(L) was defined
in 9.6 for a tree-like knot L. The only difference is that the definition now involves
all positive pseudo-involutions (and not just tame pseudo-involutions) of the front
σ(L∪Vc). The set R′(L) is non-empty and finite. The following theorem generalizes
Theorem 7.5.
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Theorem 10.1. Let L be a positive Legendrian link such that there is a function
H ∈ R′(L) orthogonal to the 2k functions cos q, sin q, . . . , cos kq, sinkq. Then L has
at least 2k + 2 critical points.

In particular, every positive Legendrian link has at least two critical points. We
note that there is an example of a positive link that is a disjoint union of two knots
for each of which there is a Legendrian knot without critical points and in the same
component (of the space of Legendrian knots) as the given knot.

A critical point z of a Legendrian link L ⊂ J1(S1) is said to be non-degenerate
if σ(z) is a non-singular point of σ(L) and the restriction of p to L has a non-
degenerate zero at z. A Legendrian link L ⊂ J1(S1) (and its front σ(L)) is said
to be C-generic if L is σ-generic and all its critical points are non-degenerate. The
following assertion plays the crucial role in the proof of Theorem 10.1.

Proposition 10.2. Let L be a C-generic positive Legendrian link and let H ∈
R′(L). Then the number of critical points of L is not less than the number of local
extrema of the function H.

Before passing to the proofs of Proposition 10.2 and Theorem 10.1, we give
necessary definitions and prove some auxiliary assertions.

10.2. Internal and external critical points. A critical point z ∈ L is said to
be a maximum (minimum) point if the restriction of the coordinate u to L has a
local maximum (local minimum) at z. Let P be a pseudo-involution of a C-generic
front σ(L). A critical point z is said to be P-external if either z is a maximum
point and the point P(σ(z)) is below the point σ(z) or z is a minimum point and
the point P(σ(z)) is above the point σ(z). A critical point is said to be P-internal
if it is not P-external. We denote by the symbol BL the number of critical points
of L and by BEL,P (B

I
L,P) the number of P-external (P-internal, respectively) critical

points of the link L.

10.3. Smoothing. Let X be a subset of the set of crossing points of a C-generic
front σ(L) of a Legendrian link L. By a smoothing of L with respect to X we
mean a (non-unique) Legendrian link L′ whose front is constructed as follows.
For each point x ∈ X we choose a small neigbourhood Ux ⊂ J0(S1) of x. The
front σ(L′) of a Legendrian link L′ coincides with σ(L) outside the union U of the
neighbourhoods Ux. The intersection of σ(L

′) with each of the neighbourhoods
Ux consists of two smooth non-intersecting branches. We choose these branches in
such a way that either the pre-image in L′ of each of them contains a single critical
point (if the p-coordinates of the pre-images of x in L have different signs) or these
pre-images contain no critical points at all (if the p-coordinates of the pre-images
of x in L have the same sign). If P is a positive pseudo-involution of σ(L) and
X ⊂ Sw(P), then there is exactly one positive pseudo-involution P′ of σ(L′) such
that P′(y) = P(y) for each non-singular point y of σ(L′) satisfying the conditions
y /∈ U and P(y) /∈ U . The pseudo-involution P′ is said to be the smoothing of the
pseudo-involution P with respect to the set X.
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Lemma 10.3. Suppose that P is a positive pseudo-involution of some C-generic
front σ(L) and let X ⊂ Sw(P). Then

BEL′,P′ −BIL′,P′ � BEL,P −BIL,P,

where L′ and P′ are obtained from L and P by smoothing with respect to the set X.

Proof. The set of critical points of the Legendrian link L′ that belong to no pre-
image of any neighbourhood Ux ⊂ J0(S1) for any x ∈ X coincides with the set
of critical points of L. Moreover, the P-internal critical points are P′-internal and
the P-external points are P′-external. The pre-image in L′ of each neighbourhood
Ux either contains none of the critical points of L

′ or contains exactly two critical
points. In the latter case, since the pseudo-involution P is positive, either both
the critical points are P′-external, or one of them is P′-external and the other is
P′-internal. �
Lemma 10.4. Suppose that L0 ⊂ J1(S1) is a C-generic link and P0 is a positive
pseudo-involution of σ(L0). In this case the number of P0-internal critical points
is not less than the number of P0-external critical points.

Proof. Suppose that the set Sw(P0) is empty. Then the number of P0-internal
critical points is equal to the number of P0-external critical points. This holds
because the P0-internal and P0-external critical points alternate on each connected
component of the link L0.
Suppose now that the set Sw(P0) is non-empty. Consider a smoothing L

′
0 of the

Legendrian link L0 with respect to the set Sw(P0). We denote by P
′
0 the positive

pseudo-involution of the front σ(L′0) obtained from P
′
0 by the smoothing. Then the

set Sw(P′0) is empty and 0 = B
E
L′0,P

′
0
− BIL′0,P′0 � B

E
L0,P0

− BIL0,P0 by Lemma 10.3.
�
10.4. Proof of Proposition 10.2. We denote by X the subset of break points
in the graph Γ ⊂ J0(S1) of the function H. Consider the smoothing L′ of L
with respect to X. Let P be a positive pseudo-involution of the front σ(L ∪ Vc)
(where σ(Vc) is above σ(L)) such that Γ = σ(Vc). Then X ⊂ Sw(P ). We denote
by P′ the smoothing of the pseudo-involution P with respect to X. Consider the
Legendrian link L′′ whose front is σ(L′) \ P′(Vc). By restricting P′, we obtain a
positive pseudo-involution P′′ of σ(L′′).
We denote by W the set of critical points of L′′ that are critical points of L,

by BH the number of critical points of L projecting to Γ, and by b the number of
points at which the function H is non-smooth and has a local extremum. We must
show that BL � BH + b. When we apply smoothing, we obtain a single critical
point of L′′ from every non-smooth local extremum of H. All critical points of L′′

not belonging to W can be obtained in this way. Since P is positive, all critical
points of L′′ not belonging to W are P′′-external. Therefore, #(W ) � BIL′′,P′′ and
BEL′′,P′′ � b. It follows from these inequalities and the inequality BIL′′,P′′ � BEL′′,P′′
given by Lemma 10.4 that #(W ) � b. Since BL = BH + #(W ), it follows that
BL � BH + b. �
10.5. Remarks on the Maslov indices of critical points. Suppose that L is
a C-generic tame Legendrian link, P is a tame pseudo-involution of σ(L ∪ Vc),
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µP is the Maslov potential on L associated with P (see Lemma 9.1), and H ∈ R(L)
is the continuous function on S1 whose graph is the set P(σ(Vc)). Let νi(L) be the
number of critical points in L at which µP takes the value i. One can show that
the following stronger version of Proposition 10.2 holds: if H has 2k local extrema,
then ν−1(L) + ν0(L) � k, ν1(L) + ν0(L) � k, and ν−1(L) + ν0(L) + ν1(L) � 2k.
10.6. Proof of Theorem 10.1. Arguing as in the proof of Theorem 7.3, one can
show (we omit the details) that it suffices to prove the assertion for a C-generic
Legendrian link L. The function d

dqH is smooth on S
1 \Y , where Y ⊂ S1 is a finite

set. At each point of Y the derivative H ′ of H has non-zero left and right limits.
The function H ′ is L2-orthogonal to the trigonometric polynomials of degree at
most k. In this case H ′ changes sign at least 2k + 2 times (counting also the sign
changes at the points of Y ). This follows from the Hurwitz theorem (the proof of
Lemma 8.1 can be used). Therefore, H has at least 2k + 2 local extrema. The
theorem now follows from Proposition 10.2. �

§11. Invariants of Legendrian links
11.1. Classical invariants. The theory of pseudo-involutions enables one to
define invariants of Legendrian links in J1(M). (The invariants are locally constant
functions on the space L of Legendrian links.) To simplify the exposition, we restrict
ourselves to the case of Legendrian knots in J1(R). Let us recall the definitions of
the classical invariants of a (non-oriented) Legendrian knot. These invariants are,
first, the smooth type of the knot, second, the Maslov number m(L) defined in §2,
and third, the Thurston–Bennequin number2 β(L), which is defined as follows. Let
us choose an orientation on L (the result does not depend on the choice of it). The
Thurston–Bennequin number β(L) is the linking number between the knot L and
a knot L′ constructed by slightly shifting L along the u-coordinate. For a generic
Legendrian knot the number β(L) can be computed by counting the right cusps
and the crossings of the front with appropriate signs:

β(L) = #
( )

+#
( )

−#
( )

−#
( )

−#
( )

.

The Maslov number and the Thurston–Bennequin number are the only finite-order
invariants (in the sense of Vassiliev) which cannot be reduced to finite-order invari-
ants of smooth knots [17].

11.2. Pseudo-involutions and invariants. We denote by µL a unique (up to a
constant) Z/m(L)Z-valued Maslov potential on a Legendrian knot L ⊂ J1(R). For
any σ-generic Legendrian knot L we denote by PI(L) the number of positive Maslov
pseudo-involutions with respect to µL of the front σ(L), and by PI

′(L) the number
of all positive pseudo-involutions of σ(L). It follows from Proposition 2.6 that
each of the functions PI and PI′ takes the same value on all σ-generic Legendrian
knots belonging to a given connected component of the space of Legendrian knots.
Therefore, when extending the functions PI and PI′ to non-generic knots, we obtain
invariants of Legendrian knots.

2Russian Editor’s note: This invariant is also called the Bennequin–Tabachnikov number ; see,

for instance, S. Chmutov, V. Goryunov, and H. Murakami, “Regular Legendrian knots and the
HOMFLY polynomial of immersed plane curves,” Math. Ann. 317 (2000), no. 3, 389–413.
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11.3. Example. Let us consider Legendrian links L and L′ whose fronts Σ =
σ(L) and Σ′ = σ(L′) are shown in Fig. 14. Their classical invariants coincide,
namely, m(L) = m(L′) = 0 and β(L) = β(L′) = 1, and both knots are of smooth
type 52. We claim that they are distinguished by the invariant PI and hence
belong to different components of the space L. The fact that these components are
different was proved earlier by using another approach in [11] and independently
by Eliashberg (unpublished).
The front Σ admits exactly two positive pseudo-involutions. These pseudo-

involutions P0 and P1 are determined by the conditions Sw(P0) = {x1, x2, x5, x6}
and Sw(P1) = {x1, x2, x3, x4, x5, x6}. The front Σ′ also admits exactly two pos-
itive pseudo-involutions. These pseudo-involutions P′0 and P

′
1 are determined by

the conditions Sw(P′0) = {y1, y4, y5} and Sw(P′1) = {y1, y2, y3, y4, y5}. Therefore,
PI′(L) = PI′(L′) = 2. All crossings of Σ are Maslov points, and y1, y4, y5 are the
only Maslov crossings of Σ′ (with respect to an integer-valued Maslov potential).
Hence, the pseudo-involutions P0, P1, P

′
0 have the Maslov property and P

′
1 does

not. Thus, PI(L) = 2 and PI(L′) = 1.
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Figure 14

No examples are known in which the invariant PI′ distinguishes Legendrian knots
with coinciding classical invariants.

11.4. Refining the invariants. Actually, the theory of pseudo-involutions can
provide more refined invariants related to the invariants PI and PI′. Let m and k
be non-negative integers. For a generic Legendrian knot L we define the number
PIm,k(L) as follows. If m is a divisor of m(L), then PIm,k(L) is the number of
positive pseudo-involutions P of the front σ(L) that are Maslov pseudo-involutions
with respect to the potential µL ⊗ Z/mZ (taking values in Z/mZ) for which χ(P) =
1− k. In the particular case m = 1 this definition means that the value of PI1,k(L)
is the number of positive pseudo-involutions P of σ(L) for which χ(P) = 1 − k.
Finally, let PIm,k(L) = 0 if m is not a divisor of m(L).
It follows from Proposition 2.6 that each of the functions PIm,k(L) is an invariant

for the Legendrian knots. We define the Poincaré polynomials PILm as follows:

PILm(t) =
∑
k

PIm,k(L)t
k.

We note that
PI(L) = PILm(L)(1), PI′(L) = PIL1 (1).
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Let L ⊂ J1(R) be a σ-generic Legendrian knot. Then by Proposition 2.6, cor-
responding to every σ-generic loop in L beginning at the knot L is a one-to-one
map of the set of positive pseudo-involutions of the front σ(L) into itself. These
maps form the monodromy group acting on the positive pseudo-involutions of σ(L).
As was shown in §4, this group can be non-trivial. Using the action of the mon-
odromy group, one can define additional invariants of Legendrian knots (for exam-
ple, by counting the orbits of the action). We note that the set of positive pseudo-
involutions counted by the number PIm,k(L) is invariant with respect to the action
of the monodromy group.

11.5. Euler characteristic and the Thurston–Bennequin number.

Lemma 11.1. Let P be a positive pseudo-involution of the front σ(L) of a σ-generic
Legendrian knot L ⊂ J1(R). Then χ(P) ≡ β(L) (mod 2).
Thus, PIm,k(L) = 0 if the number k + β(L) is even.

Proof of Lemma 11.1. The Thurston–Bennequin number β(L) is congruent modulo 2
to the sum of the number of right cusps and the number of crossing points
of the front Σ = σ(L). The Euler characteristic χ(P) is equal to the difference
between the number of right cusps and the number of switching crossings of the
pseudo-involution P. Hence, it suffices to show that the number of non-switching
crossings of P is even. We denote by D the decomposition of Σ associated with
the pseudo-involution P. Every component of the resolution space R(D) (see 6.1)
is homeomorphic to a circle. Let S and S′ be two different components. Con-
sider their images ψD(S) and ψD(S

′) under the projection ψD : R(D) → Σ. We
claim that the number of non-switching crossings of P at which ψD(S) intersects
ψD(S

′) is even. This follows from the fact that the intersection index modulo 2
of the cycles ψD(S) and ψD(S

′) vanishes, the contribution of every non-switching
crossing in ψD(S)∩ψD(S′) to the intersection index is equal to 1, and the contribu-
tion of every switching crossing in ψD(S)∩ψD(S′) to the intersection index is equal
to 0. Since every non-switching crossing point of the front Σ belongs to the images of
exactly two components of the space R(D), it follows that the total number
of non-switching points is even, which completes the proof of the lemma. �
11.6. Connected sum and the invariants PIm,kPIm,kPIm,k. Suppose that L1 and L2 are
Legendrian knots in J1(R) whose fronts Σ1 = σ(L1) and Σ2 = σ(L2) are shown in
Fig. 15. By the connected sum of L1 and L2 we mean the Legendrian knot L whose
front is shown in Fig. 15 on the right. One can show that the operation of connected
sum introduces a uniquely defined operation on the connected components in the
space of oriented Legendrian knots, that is, in the corresponding components one
can choose knots of desired shape, and the connected component containing the
resulting knot does not depend on the choice of the knots.

Proposition 11.2. Let a Legendrian knot L be the connected sum of Legendrian
knots L1, L2 ⊂ J1(R). Then PIL1 (t) = PIL11 (t) · PIL21 (t) and PIL2 (t) = PIL12 (t) ·
PIL22 (t), and if m(L1) = m(L2) = 0 (and hence m(L) = 0), then PI

L
0 (t) = PI

L1
0 (t) ·

PIL20 (t).

Proof. Let P1 (P2) be a positive pseudo-involution of the front σ(L1) (σ(L2), respec-
tively). Then there is a unique positive pseudo-involution P of σ(L) such that
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Figure 15

Sw(P) = Sw(P1)∪Sw(P2). Moreover, every positive pseudo-involution of σ(L) can
be obtained by using this construction. Hence, PIL1 (t) = PI

L1
1 (t) ·PI

L2
1 (t). Let x be

a crossing point of σ(L). The pre-images of x in L can be joined in L by a path
entirely contained either in L1 or in L2. Therefore, if m(L1) = m(L2) = 0, then x
is a Maslov point for L if and only if x is a Maslov point for L1 ∪L2. The assertion
about the Maslov property of x always holds for Maslov potentials taking values in
Z/2Z, because the Maslov numbers of Legendrian knots are even. This completes
the proof. �
11.7. A refinement of the continuation theorem for links. In more com-
plicated cases (in which the link consists of several components or the base M is
a circle), the following construction of the quotient by a pseudo-involution can be
used to construct additional invariants.
Let P be a pseudo-involution of a σ-generic front Σ ⊂ J0(M), where M = I,

M = R, or M = S1. The resolution space R(DP) is equipped with a natural
continuous involution iP transposing the pre-images of the points x and P(x) for
{x,P(x)} ⊂ Σ \ XΣ. Consider the quotient space R(DP)/iP. For y ∈ R(DP)
we denote by y/iP the image of y in R(DP)/iP. The ‘quotient space’ Σ/P is
obtained from R(P)/iP by gluing together two points y/iP and y

′/iP such that
ψDP(y) = ψDP(y

′) = x for each switching crossing x ∈ Sw(P). The projection
Σ → M defines a natural continuous map HP : Σ/P → M . The space Σ/P is a
one-dimensional cell complex with vertices of two kinds, namely, univalent vertices
obtained from the cusps of Σ (and the boundary points if M = I) and four-valent
vertices obtained from the switching crossings of P.
Let Pi be a pseudo-involution of a σ-generic front Σi for i ∈ {1, 2}. We say that

the pseudo-involutions P1 and P2 are homotopically similar if there is a homotopy
equivalence h : Σ1/P1 → Σ2/P2 such that the maps HP2 ◦ h and HP1 are homo-
topy equivalent. Using the explicit continuation of pseudo-involutions described in
the proof of Theorem 2.5, one can establish the following assertion.

Proposition 11.3. Under the assumptions of Theorem 2.5, the map Pa �→ Pb
takes any pseudo-involution to a homotopically similar pseudo-involution.

For connected Legendrian links in J1(I) or J1(R) two pseudo-involutions are
homotopically similar if and only if their Euler characteristics are equal. In this
situation Proposition 11.3 gives no new information. In other cases one can readily
construct additional invariants of Legendrian links by using Proposition 11.3.

§ 12. Generating families and pseudo-involutions
In this section we discuss the relationships between the theory of generating

families for Legendrian submanifolds and the theory of pseudo-involutions.
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12.1. Generating families. Let us briefly recall the construction of a generating
family for a Legendrian manifold (for details, see [5]). Let M and W be smooth
manifolds and let F : M ×W → R be a smooth function. For any point q ∈M we
consider the set Bq ⊂ {q}×W formed by the critical points of the restriction of F
to {q} ×W . We write BF =

⋃
q∈M Bq ⊂ M ×W . Suppose that the rank of the

matrix (Fwq, Fww) of second derivatives is maximal (equal to the dimension of M)
at each point of BF (this condition holds for any generic function F ). Then the
set BF ⊂M ×W is a smooth submanifold whose dimension is equal to that of M ,
and the restriction to BF of the map (q, w)

lF�−→ (q, dM(F (q, w)), F (q, w)) (where
dM stands for the first differential alongM) defines a Legendrian immersion of BF
into J1(M). In this case F is called a generating family (or a generating function)
of the (immersed) Legendrian submanifold LF = lF (BF ).
We now describe a special class G of generating families and show that each

generic function F ∈ G determines a combinatorial structure on the front σ(LF ).
In the case dimM = 1 this structure is equivalent to introducing a positive pseudo-
involution defined on the front.
We assume for simplicity that the manifold M is closed. Let W have the form

W =W0×RN , whereW0 is closed andN ≥ 1. The class G consists of the generating
families which can be represented as sums of a non-zero linear function on RN and
a compactly supported function on W . Families of this kind are said to be linear
at infinity. The functions onW =W0 ×RN which can be represented as sums of a
non-zero linear function on RN and a compactly supported function are also said
to be linear at infinity.
Suppose that F ∈ G and the point q0 ∈ M is such that F (q0, · ) : W → R is a

strictly Morse function, that is, all its critical values are different. This condition
holds for any generic point. Let us consider the front ΣF = σ(LF ) of the Legendrian
manifold LF , that is, the image of LF under the projection σ : J

1(M) → J0(M)
given by the rule (p, q, u) �→ (q, u). This front consists of the points (q0, u0) such
that u0 is a critical value of the function F (q0, · ) : W → R.

12.2. Morse complexes. Each strictly Morse function f on W = W0 × RN
that is linear at infinity determines a partition of its set of critical values into
pairs (the partition also depends on the choice of the coefficient field involved in
the construction and playing the role of a parameter). This partition into pairs
is constructed by using a Morse complex which we are going to describe. We fix
a metric g0 on W = W0 × RN which is the product of the Euclidean metric on
R
N and some metric on W0. Let g be a metric on W representable in the form
g = g0 + h, where h is a compactly supported tensor 2-form on W . We denote
by the symbol Mg(x

′, x′′) the set of trajectories γ : R → M of the anti-gradient
vector field −∇gf that tend to x′ as t → −∞ and to x′′ as t → +∞. We write
M̂g(x

′, x′′) =Mg(x
′, x′′)/R, where R acts by shifting the parameter.

We suppose that the metric g is such that the trajectories in the set M̂g(x
′, x′′)

with ind(x′) = ind(x′′)+1 (the symbol ‘ind’ stands for the Morse index of a critical
point) are stable under small perturbations of g. This condition holds for generic
metrics. Let x1, . . . , xK be the critical points of f indexed in ascending order of the
critical values. We consider a free graded Z-module Cf = Z ⊗ {x1, . . . , xK} with
generators xi such that the degree of any generator is equal to its Morse index.
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We introduce an operator ∂g : Cf → Cf by defining its action on the generators by
the formula

∂g(xk) =
∑

ind(xj)=ind(xk)−1
#
(
M̂g(xk, xj)

)
xj,

where the trajectories of the set M̂g(xk, xj) are counted with properly defined signs.
(Strictly speaking, in order to define these signs uniquely, one must fix some orien-
tations; here the possible ambiguity leads to a transformation of the operators ∂g
by means of an automorphism of Cf that changes the signs of some generators.) We
note that the element ∂g(xj) is a linear combination of the generators x1, . . . , xj−1.
As is well known, ∂2g = 0 (see, for example, [22]). The homology ker∂g/ im∂g van-
ishes, since it coincides with the integer homology of the pair of topological spaces(
{f ≤ c}, {f ≤ −c}

)
, where c is a sufficiently large positive number.

Let us consider the group AutT(Cf) of upper-triangular automorphisms of the
Z-module Cf . This group consists of the graded automorphisms preserving each
submodule of the form Z⊗{x1, . . . , xj} ⊂ Cf , where j ∈ {1, . . . , K}. One can show
that distinct differentials ∂g1 and ∂g2 corresponding to distinct admissible metrics
g1 and g2 are related by the rule

∂g2 = A∂g1A
−1,

where A is an element of the group AutT(Cf) (and A depends on g1 and g2).

12.3. MMM-differentials and the combinatorics of the generators of an MMM-
complex. The following algebraic definition axiomatizes the properties of the com-
plex (Cf , ∂g) (that is, differential graded module). Let E be a commutative ring
and let C be a free graded E-module with a distinguished system of generators
(x1, . . . , xK). We say that an E-linear map ∂ : C → C of degree −1 is an M -
differential if ∂2 = 0 and ∂(xj) ∈ E ⊗ {x1, . . . , xj−1} for each j ∈ {1, . . . , K}; in
this case we call the pair (C, ∂) an M -complex. We consider the group AutT(C)
of upper-triangular automorphisms of C that preserve each of the submodules
E ⊗ {x1, . . . , xj}, j ∈ {1, . . . , K}. We say that two M -differentials ∂1, ∂2 : C → C
are equivalent if there is an A ∈ AutT(C) such that ∂2 = A∂1A−1. An example of
an M -complex is given by the pair (Cf ⊗ E, ∂g ⊗ E); the M -differentials ∂g1 ⊗ E
and ∂g2 ⊗ E constructed from different metrics g1 and g2 are equivalent.
An M -differential ∂ is said to be elementary if it satisfies the following two

conditions: (1) for each j ∈ {1, . . . , K} either we have ∂(xj) = 0 or there is an
index m ∈ {1, . . . , K} such that ∂(xj) = xm; (2) if ∂(xj) = ∂(xj′) = xm, then
j = j′.

Theorem 12.1 ([8], [6]). Let (C, ∂) be an M -complex over a field E. Then the M -
differential ∂ is equivalent to exactly one of the elementary M -differentials on C.

Each elementary M -differential ∂ defines the following combinatorial structure
on the set of generators: some of the generators represent a basis in the homology of
the complex (C, ∂) and the other generators are partitioned into pairs (xi, xj) such
that ∂(xi) = xj . If E is a field, then, by Theorem 12.1, an arbitrary M -differential
defines a structure of the same kind on the set of generators, and these structures
coincide for equivalent M -differentials.
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We note that the assertion of Theorem 12.1 fails for E = Z (already in the
existence part). By tensoring an M -complex with different fields E, we obtain
different combinatorial structures on the set of generators in general. One can
show that the assertion of the theorem holds also for E = Z if these structures
coincide for all fields of the form Z/pZ.
Let f be a strictly Morse function that is linear at infinity. We fix the field

E once and for all. By Theorem 12.1, the critical points (and hence the critical
values) of the function f are partitioned into pairs in a canonical way (that is,
independent of the choice of an admissible metric g), since the homology of the
complex (Cf ⊗ E, ∂g ⊗ E) vanishes.
One can show that the differential-algebra definition of the partition into pairs

is equivalent to the following topological definition. Two critical values a > b of
the function f form a pair if and only if the following condition holds for each
sufficiently small ε > 0:

dimH∗({f � a+ ε}, {f � b+ ε}) = dimH∗({f � a− ε}, {f � b− ε})
= dimH∗({f � a− ε}, {f � b+ ε}) + 1
= dimH∗({f � a+ ε}, {f � b− ε}) + 1.

12.4. From a generating family to a pseudo-involution. Let an embedded
Legendrian submanifold LF be defined by a generating family F ∈ G. Suppose that
a point q0 ∈ M is such that the line {q = q0} ⊂ J0(M) intersects the front ΣF =
σ(LF ) only at non-singular points of the front. Then F (q0, · ) is a strictly Morse
function. Thus, the set Σq0 = π−1(q0) ∩ ΣF is equipped with a free involution iq0F .
It follows from the topological definition of the partition into pairs that the map
iq0F depends continuously on q0, and moreover, the collection of maps i

q0
F can be

extended to a continuous map PGF : GΣF → ΣF , where GΣF stands for the set of
non-singular points of ΣF .
Suppose now that M = S1. We claim that the continuous map PGF arising from

the partition into pairs can be extended to a pseudo-involution PF of the front ΣF .
Indeed, it suffices to show that the branches entering a cusp are transposed by the
map PGF and the branches that intersect transversely cannot be transposed by P

G
F .

Let us consider two non-singular points (q, u1) and (q, u2) of ΣF that are close to a
singular point (q0, u0) ∈ ΣF . Suppose that u1 > u2. It follows from Morse theory
that the number dimH∗

(
{F (q1, · ) � u1 + ε}, {F (q1, · ) � u2 − ε}

)
is 0 if (q0, u0)

is a cusp and is 2 if (q0, u0) is a crossing. After these remarks the assertion follows
readily from Morse theory and the above topological definition of a pair of critical
values.
The link LF is equipped with a natural Maslov potential µF : GLF → Z whose

value at any point x = (p0, q0, u0) ∈ GLF is equal to the Morse index of the
corresponding critical point of the function F (q0, · ) with critical value u0. The
pseudo-involution PF is a Maslov pseudo-involution with respect to µF . This fol-
lows from the fact that if two critical values a and b, a > b, of the function F (q0, · )
form a pair, then the Morse index of the critical point with the critical value a is
greater by 1 than the Morse index of the critical point with the critical value b. The
pseudo-involution PF is positive. This can be verified by studying the bifurcations
of partitions of the critical values into pairs for generic one-parameter families of
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functions onW (see [6]). The very definition of positive pseudo-involution (and that
of Maslov pseudo-involution) is obtained by axiomatizing combinatorial structures
arising on the front of a Legendrian submanifold defined by a generating family.
One can also show that for any σ-generic link L and any positive pseudo-involution
P of σ(L) which is a Maslov pseudo-involution with respect to an integer-valued
Maslov potential µ there is a generating family F ∈ G such that L = LF , P = PF ,
and µ differs from µF by a constant (Pushkar’, unpublished).

12.5. Comparing families of pseudo-involutions. Let F : M ×W0×RN → R
be a generating family for a Legendrian submanifold of J1(M). We say that a

generating family F̃ is a stabilization of F if F̃ is of the form

F̃ : M ×W0 ×RN × Rk → R, F̃ (x, y) = F (x) +Q(y),

where x ∈M×W0×RN , y ∈ Rk, and Q is a non-degenerate quadratic form on Rk.
Two generating families in G̃ are said to be equivalent if they have stabilizations
defined on the same manifoldM ×W0×RN and these stabilizations can be trans-
formed one into another by a diffeomorphism of M ×W0×RN fibred overM . One
can readily see that if M = S1, then the pseudo-involutions arising from equivalent
generating families coincide.
Suppose that {Lt∈[0,1]} is a smooth family of Legendrian submanifolds of J1(M)

and L0 is determined by a generating family F ∈ G. Then, arguing as in [10], [13],
[21], and [9], one can prove that there is a family {Ft∈[0,1]} of generating families
in G such that LFt = Lt and F0 is equivalent to F . It should be noted that if
dimM = 1, then the existence proof for such a family was implicitly contained

already in [18]. Arguing as in [25] and [24], one can show that if {F̃t} is another
family satisfying the same conditions as {Ft}, then the generating family F̃t is
equivalent to the generating family Ft for any t ∈ [0, 1].
Suppose that M = S1 and the family Lt of Legendrian links is σ-generic.

Then the family {Ft} gives rise to a continuous family {PFt} of positive pseudo-
involutions of the fronts σ(Lt). If {F̃t} is another family satisfying the same con-
ditions as {Ft}, then the family of pseudo-involutions generated by {F̃t} coincides
with {PFt}. Thus, the theory of generating families determines a canonical con-
tinuation of the pseudo-involution PF . This observation was the starting point for
the formulation of Theorem 2.5.
Theorem 2.5 defines a continuation of the pseudo-involution P0 = PF0 to a

family {Pt∈[0,1]} of pseudo-involutions of the fronts σ(Lt). Let us compare the
families of pseudo-involutions given by {Pt} and {PFt}. If the front σ(L0) admits
exactly one positive pseudo-involution, then the families {Pt} and {PFt} coincide
by Theorem 2.5. In particular, this implies that the continuous section ΓH(L) of
the front σ(L) coincides with the minimax section defined in [9] for any L ∈ L1. In
general, the family {PFt} can be non-characteristic, in contrast to {Pt}.
Restricting ourselves to the consideration of a family {Ft} for which the path

{LFt} intersects the discriminant D exactly once, we note that, according to
the results in §4, a continuous non-characteristic family of pseudo-involutions can
exist only for bifurcations of types III and XX. Both for bifurcations of type III
and for bifurcations of type XX there are examples of families {Ft} such that



148 Yu. V. Chekanov and P. E. Pushkar’

the family {PFt} is non-characteristic. (Moreover, in the study of bifurcations of
Morse complexes for two-parameter families of functions, one can show that for
E = Z/2Z and for any bifurcation of type III3 (see 3.13) the family {PFt} is always
non-characteristic, and hence never coincides with the family {Pt}.) Since the fam-
ily {PFt} can be non-characteristic, without additional considerations one cannot
replace Theorem 2.5 by results of the theory of generating families in the proof of
the Arnol’d conjectures.
One can deduce from properties of generating families that PF1 = PF0 for any

family {Ft} determining a loop {Lt} that is contractible in L. As shown in §4, the
equality P1 = P0 does not always hold for the family {Pt}.
We also note that two different families {Ft} and {F̃t} determining the same

family {Lt} of Legendrian links can determine different families {PFt} and {PF̃t}
of pseudo-involutions even if PF0 = PF̃0 .
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