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UNIRATIONALITY AND EXISTENCE OF INFINITELY
TRANSITIVE MODELS

FEDOR BOGOMOLOV a,b, ILYA KARZHEMANOV a, KARINE KUYUMZHIYAN b

Abstract. We study unirational algebraic varieties and the fields of rational func-
tions on them. We show that after adding a finite number of variables some of these
fields admit an infinitely transitive model. The latter is an algebraic variety with the
given field of rational functions and an infinitely transitive regular action of a group
of algebraic automorphisms generated by unipotent algebraic subgroups. We expect
that this property holds for all unirational varieties and in fact is a peculiar one for
this class of algebraic varieties among those varieties which are rationally connected.

1. Introduction

This article aims to relate unirationality of a given algebraic variety with the property
of being a homogeneous space with respect to unipotent algebraic group action. More
precisely, let X be an algebraic variety defined over a field k, and Aut(X) be the group
of regular automorphisms ofX . Let also SAut(X) ⊆ Aut(X) be the subgroup generated
by algebraic groups isomorphic to the additive group Ga.

Definition 1.1 (cf. [1]). We call variety X infinitely transitive if for any k ∈ N and any
two collections of points {P1, . . . , Pk} and {Q1, . . . , Qk} on X there exists an element
g ∈ SAut(X) such that g(Pi) = Qi for all i. Similarly, we call X stably infinitely
transitive if X × km is infinitely transitive for some m.

Recall that in Birational Geometry adding a number m of algebraically independent
variables to the function field k(X) is referred to as stabilization. Geometrically this
precisely corresponds to taking the product X × km with the affine space. Note also
that if X is infinitely transitive, then it is unirational, i.e., k(X) ⊆ k(y1, ....ym) for some
k-transcendental elements yi (see [1, Proposition 5.1]). This suggests to regard (stable)
infinite transitivity as a birational property of X (in particular, we will usually assume
the test variety X to be smooth and projective):

Definition 1.2. We call variety X stably b-infinitely transitive if the field
k(X)(y1, ....ym) admits an infinitely transitive model (not necessarily smooth or projec-
tive) for some m and k(X)-transcendental elements yi. If m = 0, we call X b-infinitely
transitive.

Example 1.3. The affine space X := kdimX is stably infinitely transitive (and infinitely
transitive when dimX ≥ 2), see [9]. More generally, any rational variety is stably b-
infinitely transitive, and it is b-infinitely transitive if the dimension ≥ 2.

Example 1.3 suggests that being stably b-infinitely transitive does not give anything
interesting for rational varieties. In the present article, we put forward the following:

2010 Mathematics Subject Classification. 14M20, 14M17, 14R20.
Key words and phrases. Unirationality, algebraic group, infinitely transitive action.
The first author was supported by NSF grant DMS-1001662 and by AG Laboratory HSE, RF

government grant, ag. 11.G34.31.0023. The third author was supported by AG Laboratory HSE, RF
government grant, ag. 11.G34.31.0023, by the “EADS Foundation Chair in Mathematics”, Russian-
French Poncelet Laboratory (UMI 2615 of CNRS), and Dmitry Zimin fund “Dynasty”.

1

http://arxiv.org/abs/1204.0862v3


2 F. BOGOMOLOV, I. KARZHEMANOV, K. KUYUMZHIYAN

Conjecture 1.4. Any unirational variety X is stably b-infinitely transitive.

Thus, Conjecture 1.4 together with the above mentioned result from [1, Proposition
5.1] provides a (potential) characterization of unirational varieties among all those which
are rationally connected. Note also that the class of rationally connected varieties
contains all stably b-infinitely transitive varieties. We think that not every rationally
connected variety is stably birationally infinitely transitive. In particular we expect that
generic Fano hypersurfaces from the family considered by Kollar in [11] are not stably
birationally infinitely transitive. These are generic smooth hypersurfaces of degree d in

Pn+1, d >
2

3
(n+3). Our expectations are based on the Kollar’s fundamental observation

(see [11, Thm. (4.3)]) which yields strong restrictions on any surjective map of a uniruled
variety of the same dimension on such a hypersurface.

Remark 1.5. Originally, the study of infinitely transitive varieties was initiated in the
paper [9]. We also remark one application of these varieties to the Lüroth problem in
[1], where a non-rational infinitely transitive variety was constructed. See [4] for the
properties of locally nilpotent derivations (LNDs for short), [16] for the Makar-Limanov
invariant, and [2], [5], [6], [10], [13], and [15] for other results, properties and applications
of infinitely transitive (and related) varieties.

We are going to verify Conjecture 1.4 for some particular cases ofX (see Theorems 2.1,
2.2 and Propositions 3.4, 3.5 and 3.6 below). At this stage, one should note that it is
not possible to lose the stabilization assumption in Conjecture 1.4:

Example 1.6. Any three-dimensional algebraic variety X with an infinitely tran-
sitive model is rational. Indeed, let us take a one-dimensional algebraic subgroup
G ⊂ SAut(X) acting on X with a free orbit. Then X is birationally isomorphic to
G× Y (see Remark 2.16 below), where Y is a rational surface (since X is unirational).
On the other hand, if X := X3 ⊂ P4 is a smooth cubic hypersurface, then it is uni-
rational but not rational (see [3]). However, Conjecture 1.4 is true as stated for X3,
because X3 is stably b-infinitely transitive (see Proposition 3.4 below). In this context,
it would be also interesting to settle down the case of the quartic hypersurface X4 in P

4

(or, more generally, in Pn for arbitrary n), which relates our subject to the old problem
of (non-)unirationality of (generic) X4 (cf. Remark 3.7 below).

Notations 1.7. Throughout the paper we keep up with the following:

• k is an algebraically closed field of characteristic zero and k× is the multiplicative
group of k;

• X1 ≈ X2 denotes birational equivalence between two algebraic varieties X1 and
X2;

• we abbreviate infinite transitivity (transitive, transitively, etc.) to inf. trans.
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2. Varieties with many cancellations

2.1. The set-up. The goal of the present section is to prove the following:

Theorem 2.1. Let K := k(X) for some (smooth projective) algebraic variety X of
dimension n over k. We assume there are n presentations (we call them cancellations
(of K or X)) K = K ′(xi) for some K ′-transcendental elements xi, algebraically in-
dependent over k. Then there exists an inf. trans. model of K(y1, . . . , yn) for some
K-transcendental elements yi.

Let us put Theorem 2.1 into a geometric perspective. Namely, the presentation
K = K ′(xi) reads as there exists a model of K, say Xn

i , with a surjective regular map
πi : X

n
i → Y n−1

i and general fiber ≃ P1 such that πi admits a section over an open
subset in Y n−1

i . Moreover, by resolving indeterminacies, we may assume Xn
i := X fixed

for all i. Then, since K admits n cancellations, n vectors, each tangent to a fiber of
some πi, span the tangent space to X at the general point. Indeed, we have a map to
P
n

X 99K P
n, x 7→ (1 : x1(x) : . . . : xn(x)).

It is dominant since elements x1, . . . , xn are algebraically independent over k, and the
tangent map is surjective at the general point. So we obtain the geometric counterpart
of Theorem 2.1:

Theorem 2.2. Let X be a smooth projective variety of dimension n. Assume that there
exist n morphisms πi : X → Yi satisfying the following:

(1) Yi is a (normal) projective variety such that πi admits a section over an open
subset in Yi;

(2) for the general point ζ ∈ X and the fiber Fi = P1
i := π−1

i (πi(ζ)) ≃ P1, vector
fields TF1, ζ , . . . , TFn, ζ span the tangent space TX, ζ .

Then X is stably b-inf. trans.

Note that existence of a section over an open subset on Yi means (almost by definition)
birational triviality of the fibration πi.
In Sections 2.2 and 2.3 we illustrate our arguments by considering the cases when

dimX = 1 and 2, respectively. In higher dimensions we additionally need the following:

(3) for some ample line bundles Hi on Yi and their pullbacks π∗
iHi to X , the

n × n-matrix (2.5) (π∗
iHi · P

1
i ) is of maximal rank (in particular, the classes

of π∗
1H1, . . . , π

∗
nHn in Pic(X) are linearly independent).

In particular, this means that the fibers P1
1, P

1
2, . . ., P

1
n are linearly independent inH2(X).

In Sections 2.4, 2.10 and 2.11 we prove Theorem 2.2, assuming that the condition (3)
is satisfied. Furthermore, adding new variables (i.e., forming the product of X and an
affine space) and passing to a (good) birational model, we may assume that (3) holds,
see Sections 2.12 and 2.13.

2.2. One-dimensional case. Variety O(m)×
P1 (or, equivalently, O(−m)×

P1) is just an
affine cone minus the origin over a rational normal curve of degree m. Thus O(m)×

P1 is
a quasiaffine toric variety, so it is infinitely transitive by [2, Theorem 0.2(3)]. Indeed,
we can use only those automorphisms which preserve the origin, i.e., for m-transitivity
on k2 \ {0} we use (m+ 1)-transitivity on k2.

2.3. Two-dimensional case. Let us study now the next simplest case when X =
P1 × P1. Choose H2 := O(1) on the first factor P1 and, similarly, H1 := O(1) on the
second factor P1. Now take the pullbacks π∗

1H1 and π∗
2H2 to X and throw away their

zero sections. We obtain a toric bundle over X isomorphic to (k2 \ {0}) × (k2 \ {0}).
The latter is inf. trans. since k2 \ {0} is (cf. the one-dimensional case above).
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More generally, if one starts with H2 = O(m2) and H1 = O(m1) for some mi > 1,
then the resulting variety will be ((k2 \ {0})/(Z/m1Z)) × ((k2 \ {0})/(Z/m2Z)). It is
again inf-transitive being the product of two inf-transitive varieties. Indeed, for mi > 1
the corresponding variety is just the smooth locus on the corresponding toric variety,
and its inf-transitivity is shown in [2, Theorem 0.2(3)].

Remark 2.3. The product of two (quasiaffine or affine) inf-transitive varieties is inf-
transitive. Indeed, we call variety X flexible if the tangent space at every smooth point
on X is generated by the tangent vectors to the orbits of one-parameter unipotent
subgroups in Aut(X). It was shown in [1] that for affine X being flexible is equivalent
to inf-transitivity. But clearly the product of two flexible varieties is again flexible.

2.4. Construction of an inf. transitive model in the simplest case. Recall the
setting. In the notation of Theorem 2.2, we choose very ample line bundles Hi on
each Yi, i = 1, . . . , n, take their pullbacks π∗

iHi to X , put mij := (π∗
iHi)|P1

j
, and form

the intersection matrix

(2.5) Mn = Mn(X) = (mij)16i,j6n, mij = (π∗
iHi)|P1

j
.

Clearly, for all i we have (π∗
iHi)|P1

i
= 0; however, for i 6= j, (π∗

iHi)|P1

j
> 0, being equal

the restriction of Hi to an image of a generic P1
j via pi (i.e. the restriction of a bundle

on the variety Yi). The matrix Mn defines a linear map from a subgroup of the Pickard
group PicX to Zn. In this section we suppose that the classes of P1

1, . . ., P
1
n in H2(X) are

linearly independent, and also that detMn 6= 0. Our goal is to construct a quasiaffine
variety TX , TX ≈ X × kN for some N , equipped with a collection of projections to
quasiaffine varieties Ȳi with generic fibers being equal to (k2 \ {0})/(Z/mZ), and such
that an open subset of TX is inf-transitive, cf. Section 2.3. The existence of a good
open subset will be shown in Section 2.10.
To start with, let us set

Ȳi := the affine cone OYi
(Hi)

× minus the origin

over Yi embedded via Hi, 1 6 i 6 n. It is a quasiaffine variety.

2.5.1. Technical step – adding one more coordinate. We already embedded Yi into affine
varieties, now we also need to embed X . For this purpose, we take a very ample line
bundle H0 on X , replace X with X ′ = X × P1, and Yi with Y ′

i = Yi × P1. Let also
Y0 = X , clearly we have X ′ → Y0 = X , which makes the situation absolutely symmetric
with respect to indices 0, 1, . . . , n. We modify the set of His in the following way: for
every i > 0, we construct H ′

i on Y ′
i being the sum of the trivial lift of Hi from Yi and

O(1) on the new P1 (in fact here we can take any O(ni)). Now the intersection matrix
Mn+1(X

′) takes the form

Mn+1(X
′) =









0 k1 . . . kn
1
... Mn

1









.

Here ki := H0 · P
1
i . We further denote X ′ just by X and n + 1 = dimX ′ just by n,

keeping in mind that one of our projections is just a trivial projection. We also assume
that one column of our matrix contains only 1s (and one 0 on the diagonal).

2.5.2. The construction of TX . We construct a vector bundle

H1 ×X π∗
2H2 ×X π∗

3H3 ×X . . .×X π∗
nHn
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and furthermore a toric bundle

(2.6) TX = (H1)
× ×X (π∗

2H2)
× ×X . . .×X (π∗

nHn)
×.

We denote by δ the canonical projection TX → X . Line operations in the inter-
section matrix (2.5) correspond to base changes in this toric bundle (Neron-Severi
torus). For our convenience, we fix below the following set of line bundles L1, . . . , Ln ∈
〈H1, π

∗
2H2, . . . , π

∗
nHn〉:

(i) each of them should be primitive in the lattice Z(H1, π
∗
2H2, . . . , π

∗
nHn),

(ii) all in total, they should be linearly independent in the lattice

Z(H1, π
∗
2H2, . . . , π

∗
nHn).

They can be chosen in the following way. There is a map

Z(H1, . . . , Hn)
Mn−−−→ Zn ith coordinate

−−−−−−−−−−−→ Z.

Its kernel has dimension n− 1, and Hi itself belongs to the kernel. So in fact there is a
map Z(H1, . . . , Ȟi, . . . , Hn) → Z, and Li is any covector defining this map. All in total,
they can be chosen linearly independent.

2.6.3. Construction of local 2-dimensional coordinates. Recall that we denote by Ȳi the
total space of H×

i → Yi.

Lemma 2.4. For each i, there is a fibration ϕi : TX → Ȳi such that its general fiber
equals ((k2 \ {0})/(Z/miZ))× T n−2

i , where T n−2
i ≃ (k×)n−2.

Proof. Choose a basis 〈Hi, Li, H
′
1, . . . , H

′
n−2〉 and a linear map Zn → Z2 which is just

taking the two first coordinates in the new basis. Its kernel will correspond precisely to
a (n−2)-dimensional torus, the bundle Hi will provide us with the affine cone Ȳi over Yi,
and the bundle Li restricted to P1

i will form a quasiaffine fiber of form (k2\{0})/(Z/mZ)
over a general point of Ȳi. �

We have a commutative diagram.

(2.7)

TX

Tn−2

i−−−→ L×
i ×H×

i




y





y
(k2\{0})/(Z/niZ)×...

X −−−→ Yi

(2.8) where
TX

Tn−2

i
×L×

1
×P1

−−−−−−−−→ Ȳi −−−→ Yi

This realization will be intensively used below. Note that the fibration is trivial over
any open subset U in Yi such that all the fibers of πi are P

1s over U and the restriction
of all Hs are generic on these fibers, and respectively over Ȳi. So if one fixes a finite
number of points P1, . . . , Ps in Ȳi, we can choose an open subset U ′ in Ȳi containing the
fibers passing through all these points (since it is quasiaffine).

Lemma 2.5. At the general point x on TX , local coordinates on ((k2 \ {0})/(Z/miZ)-
fibers from Lemma 2.4, i = 1, . . . , n, form a system of local coordinates on TX at x.

Proof. In the notation of Lemma 2.4, tangent space to each fiber of ϕi is spanned by
a pair of the tangent vectors to (k2 \ {0})/(Z/miZ) and by tangent vectors to T n−2

i .
By the condition (2) of Theorem 2.2 and by non-degeneracy of matrix Mn, the tangent
vectors to (k2 \ {0})/(Z/miZ) are linearly independent, which proves the assertion. �
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2.8.4. Quasiaffineness of TX . Here we exploit the projections (2.8) and the technique
from the proof of Lemma 2.4.

Lemma 2.6. The variety TX is quasiaffine.

Proof. The bundle H1 gives an embedding of X to a projective space PN1 , and every
Hi, i = 2, . . . , n, embeds Yi to a PNi. The variety TX is now {(x, l2, . . . , ln)} such that
x ∈ X , li ∈ cone(πi(x)) in AN1+N2+...+Nn. �

Note that TX → X is a principal toric bundle which has a section (the diagonal),
and all the fibers are isomorphic to (k×)n (see formula (2.6)). In particular, we have
TX ≈ X × kn.

2.8.5. Idea of further proof.

Proposition 2.7. The variety TX is stably b-inf. trans.

Its proof will be given in Section 2.11. We use the ideas from [9], [2] and [1] to move
an m-tuple of general (in the sence of Section 2.10) points to another such m-tuple.

2.9. Stratification on X. Let q ∈ X be an arbitrary point. We denote by X(q)
the locus of all points on X connected to q by a sequence of smooth fibers P1

i of the
projections πi, 1 6 i 6 n.

Lemma 2.8. Let Z be an irreducible subvariety of X. Consider all smooth fibers P1
i

passing through the points of Z and the union Z ′ of all such fibers. Then either dimZ ′ >
dimZ or all smooth fibers P1

i which contain points in Z are actually contained in the
closure Z̄.

Proof. If the curve P1
i intersects Z but is not contained in Z then the curves in the same

family intersect an open subvariety in Z since the subvariety X̃i consisting of curves P1
i

is an open subvariety of X . Hence in the latter case dimZ ′ > Z. Otherwise all the
smooth fibers P1

i which contain points in Z are actually contained in the closure of Z.
Note that the same holds even if a line P1

i intersects the closure Z̄ but is not contained
in Z̄. �

Corollary 2.9. Every point in X(q) is connected to q by a chain of P1
i of length at

most n2.

Proof. Indeed, let Xp(q) be a subvariety obtained after adding the points connected by
the chains of curves of length at most p. It is a union of algebraic subvarieties of X of
dimension 6 p.
Then by adding the curves from all n families of P1

i we either increase the dimension
of every component of maximal dimension, or one of them X0

p (q) is invariant, i.e. all

smooth fibers P1
i which contain points in X0

p (q) are actually contained in the closure of
X0

p (q). Note that in the latter case since q ∈ X0
p (q), all other components are contained

in X0
p (q), and hence X0

p (q) = X(q). Thus after adding lines from different families we
obtain either X(q) or a variety Xp+n(q) with maximal component of greater dimension.
Thus we will need at most n2 lines to get X(q). �

Remark 2.10. If we started with a generic point q ∈ X , then it follows from Lemma 2.8
that dimX(q) = n. Indeed, the condition (2) of Theorem 2.2 implies that the tangent
vectors to the smooth P1

i -fibers in q generate the full tangent space in q, and if X(q)
was of lower dimension then the tangent space would also be of lower dimension.

Remark 2.11. The bound in Corollary 2.9 is not effective. By a more thorough exam-
ination one can show that the sequence

X0(q) ⊆ X1(q) ⊆ . . .
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stabilizes earlier than at the n2th step.

Corollary 2.12. We can apply the same in reverse. Consider x ∈ X(q). Then all
points in X which are connected to x ∈ X(q) can be connected by a chain of length at
most n2 + n.

Proof. Indeed, for any such point x′ we have Xn2(x′) of dimension n and hence contains
an open subvariety in X . It may take at most n P1

i s to connect to x. �

Thus the variety obtained from general points in X in n2 steps coincides with the
subvariety of all points in X connected to general point by a chain of smooth lines.

2.10. Construction of a big open subset in TX. Now we pass from stratification on
X to stratification on TX . We stratify TX in the following way: we take toric preimages
for every strata in X . For our needs we take the toric preimage of X(q) for a general
point q ∈ X . Note that for every fiber P1

i of πi its preimage is (((k2 \ {0})/(Z/mZ))×
T n−2, and for every chain P1 − P2 − . . . − Pk connecting two points in X there is a
chain P̄1 − P̄2 − . . .− P̄k in TX such that every two adjacent points belong to the same
((k2 \ {0})/(Z/mZ)) for one of the projections,

2.11. Proof of Proposition 2.7. Let a variety TX be as in (2.6). For each i we have a
fibration with the quasiaffine base and fiber being ((k2\{0})/(Z/miZ)×T n−2, see (2.8).

Definition 2.13. For the points C1, . . . , Cr in the base of projection (2.8), let
StabC1,...,Cr

be the subgroup in SAut(TX) preserving all the fibers of the projection and
fixing pointwise the fibers above C1, . . . , Cr.

Now we need some technique concerning locally nilpotent derivations (LNDs). To lift
automorphisms, we need to extend an LND on (k2 \ {0})/(Z/mZ) to a LND on TX

(i.e. to a locally nilpotent derivation of the algebra k[TX ]). More precisely, suppose
that we chose a fiber of form (k2 \ {0})/(Z/mZ) of the projection (2.8) and some other
fibers that we want to fix. We can project all these subvarieties to Ȳi and then take
a regular function on Ȳi which equals 1 at the projection of the first fiber and 0 in
the projections of other fibers. If we multiply the LND by this function (obviously
belonging to the kernel of the derivation) and trivially extend it to the toric factor, we
will obtain a rational derivation well-defined on an open subset U of TX corresponding
to the smooth locus of the corresponding πi. Now we can take a regular function on TX

(lifted from a regular function on Ȳi) such that its zero locus contains the singular locus
of the projection, multiply the derivation by some power of this function and obtain a
regular LND on TX .
For a given m-tuple of points P1, P2, . . . , Pm, we need the following lemma:

Lemma 2.14. In the notation as above (2.8), let C0 be a point on a base such that
the fiber over this point is general, and P1, . . . , Ps be some points from this fiber with
different projections to Ȳi. Let also C1, . . . , Cr be some other points of the base. Then
the subgroup StabC1,...,Cr

acts infinitely transitively on the fiber over C0, i.e. can map
P1, . . . , Ps in any other subset in the same fiber.

Proof. By [2, Theorem 0.2(3)], the fiber is infinitely transitive. For every one-parameter
unipotent subgroup of automorphisms on this fiber, we can lift it to TX , fixing pointwise
a given finite collection of fibers, see above. �

Now it remains to prove infinite transitivity for TX . There are two ways to show it.
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2.11.1. Way 1.

Lemma 2.15. For m + 1 points P1, P
′
1, P2, P3, . . . , Pm projecting to the chosen above

open subset in X, there exists an automorphism mapping P1 to P ′
1 and preserving all

the other points.

Proof. There always exists a small automorphism which moves the initial set to a set
where for all i all the (k2 \ {0})/(Z/miZ)-coordinates of the given points are different.
Let us connect the projections of P1 and P ′

1 by a chain of smooth P1
i -curves in X . We

denote by Q1, . . . , Qs the intersection points of these curves, Qi ∈ X , Q1 = δ(P1),
Qs = δ(P ′

1). For i = 2, . . . , (s − 1) we take some lifts Ri ∈ TX of these points in
such a way that all their (k2 \ {0})/(Z/miZ)-coordinates do not coincide with the
corresponding coordinates of the previous points. Let R1 := P1 and Rs = P ′

1. For
every i, 1 6 i 6 (s − 1), we want to map Ri to Ri+1 by an automorphism of TX

preserving all the other points in the given set. We may assume that Ri and Ri+1

belong to one two-dimensional fiber of form (k2 \{0})/(Z/mZ) of one of the projections
to Ȳj × T n−2

j (the toric fibration is generated by Lis, and we can densify the sequence
of Ris if needed to change only one Li-direction at every step to fulfill this condition).
Every such two-dimensional fiber is inf-transitive. Now we need to lift the corresponding
automorphism to TX . We need two following observations. First, if we are lifting a
curve with respect to the projection πi, then the resulting automorphism is well defined
over the singular fibers and is trivial there. Second, all the two-dimensional fibers
belonging to the same fiber of ϕi move together, and if several Pj belong to the same
fiber as the Ri which we are moving, then we use that their projections to the two-
dimensional fiber are different and also different from the projection of Ri+1, and we
use inf-transitivity (not only 1-transitivity) of the corresponding fiber. Now for every i
we lift the corresponding automorphism of the 2-dimensional fiber to an automorphism
of TX from the corresponding subgroup Stab fixing the points from the other fibers of δ,
and multiply all these automorphisms. It does not change P2, . . . , Pm and maps P1 to
P ′
1. This ends the proof. �

Now infinite transitivity follows easily: to map P1, P2, . . . , Pm to Q1, Q2, . . ., Qm, we
map P1 to Q1 fixing P2, . . . , Pm, Q2, . . . , Qm, etc. .

2.11.2. Way 2. The other way to finish the proof is as follows. It is enough to show
1-transitivity while fixing some other points of a given finite set. Let us consider auto-
morphisms of bounded degree fixing P2, . . . , Pm and the orbits of P1 and P ′

1 under this
group. Clearly, by flexibility every orbit is an open subset in TX , and every two domi-
nant subsets should have a nonempty intersection. So there is a common point, which
means that P1 can be mapped to P ′

1 by a subgroup in SAut(TX) fixing P2, . . . , Pm.

Remark 2.16. Conversely, in view of Theorem 2.2, given a b-inf. trans. variety
X there exist dimX cancellations of X . Indeed, for general point ζ ∈ X we can
find dimX tangent vectors spanning TX,ζ, such that each vector generates a copy of
Ga =: Gi ⊆ SAut(X), 1 ≤ i ≤ n. Let G ⊆ SAut(X) be the subgroup generated by the
groups G2, . . . , Gn. Then we have X ≈ G1 ×G · ζ .

2.12. Increasing the rank of the corresponding subgroup in H2. We want to
treat here the case when rk〈P1

1, . . . ,P
1
n〉 is t, t < n, as of a subgroup in H2(X).

Remark 2.17. Here we precise the ancient construction of TX . Indeed, if the rank is
not maximal, then the toric bundle contains a trivial part, and we need to get rid of
it. One way is to change it with the trivial vector bundle part. However here we give
another construction which uses stabilization.
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Lemma 2.18. There is a stabilization X ′ of X such that dimX ′ − t(X ′) < (n− t).

Proof. We assume that the cycles P1
i are dependent and in particular that an integer

multiple of P1
n is contained in the envelope of P1

i , i < n, on X . There is a natural
projection pn,n+1 : X × P1 → Yn with a generic fiber P1 × P1. Let us take P1 × P1 and
blow it up at 3 points. Thus we will have P2 with 5 blown up points. For every 4 points
there is a pencil of conics passing through four points. Indeed, if we fix two smooth
conics, there is a pencil of conics passing through the intersection. So on P1×P1 blown
up at three points we can choose two different 4-tuples of points on P2 and define two
projections π̄i : BlQ1,Q2,Q3

(P1 × P1) → P1. Now we can extend them to P1 × P1 ×B by
blowing up three constant sections and similarly extend projections. The projections
π̄1, π̄2 provide cancellations with new P̄1

i , i = 1, 2, independent with generic P1
j , j 6= 1, 2

on the blown up X . We denote the resulting variety by X̃ , it is a smooth model of
X × P1. Here the rank t1 = t+ 2. �

2.13. Increasing the rank of the matrix M . For a variety X with a given set of
cancellations and corresponding bundles, we constructed (2.5) a matrix Mn of restric-
tions. To prove birational stable infinite transitivity, we need the rank of this matrix to
be full. The aim of this section is to prove the following lemma.

Lemma 2.19. Let the rank of the subgroup generated by P1
i in H2(X,Z) be n, and let

matrix Mn = M(X) = (mi,j) be as in (2.5) and its rank be s < n = dimX. Then

there exists a birational model X̃ for X × P1 with n + 1 projections corresponding to
cancellations and a family H1

i , i = 1, 2, . . . , (n + 1), such that s1 ≥ n + 2 for the new
matrix M(X̃).

Proof. By Lemma 2.18, we may assume that all the classes [P1
1], [P

1
2], . . ., [P

1
n] are in-

dependent in H2(X). If s < n = dimX , then due to Hodge duality there is a divisor
with nonzero positive pairings with all the fibers P1

i , i.e. there is an ample divisor
Hn+1 on X such that it defines an element in the lattice Zn which is not contained
in M(Z(H1, H2, . . . , Hn)) (here we identify Hi with the elements of the standard basis
in Zn). Let us define in this case π1

i : X × P1 → (Yi × P1); take H1
i = Hi + OP1(ni)

for some positive numbers ni; πn+1 : X × P1 → X the trivial projection; and Hn+1

chosen above. Then if the restriction of Hn+1 on P1
i is O(ti), the new matrix M(X̃) is

as follows:

M(X̃) =









n1

M(X)
...

nn

t1 . . . tn 0









.

Note that all the diagonal elements mi,i = 0. The matrix M(X̃) in this case has rank

s + 2 for some choice of ni. Indeed, the last row of M(X̃) is independent with other
rows by the assumption on Hn+1. Now we can add ni in such a way that the rank of
M(X̃) will be (rkM + 1) + 1 (if rkM < n). Hence rkM1 = s+ 2 in this case. �

Corollary 2.20. In finite number of steps (not more than 2n), using Lemmas 2.18 and
2.19, we obtain a model X̃ of X × Pr with rkM(X̃) = dim(X × Pr) = dim(X̃).

3. Examples

Here we collect several examples and properties of (stably) b-inf. trans. varieties.
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3.1. Quotients. Let us start with the projective space Pn, n ≥ 2, and a finite group
G ⊂ PGLn+1(k). Notice that the quotient P

n/G is stably b-inf. trans. Indeed, let
us replace G by its finite central extension G̃ acting linearly on V := kn+1, so that
V/G̃ ≈ Pn/G × P1. Further, form the product V × V with the diagonal G̃-action,

and take the quotient V ′ := (V × V )/G̃. Then, projecting on the first factor we get
V ′ ≈ V × V/G̃, and similarly for the second factor. This implies that V ′ admits 2n+ 2
cancellations (cf. Theorem 2.1). Hence V ′ is stably b-inf. trans. by Theorem 2.2. The
argument just used can be summarized as follows:

Lemma 3.1. Let X → S be a Pm-fibration for somem ∈ N. Then the product X×SX ≈
X × km admits 2m algebraically independent cancellations over S.

Proof. Note that X ×S X has two projections (left and right) onto X , both having
a section (the diagonal ∆X ⊂ X ×S X), hence the corresponding P

m-fibrations are
birational (over S) to X × km. This gives 2m algebraically independent cancellations
over S. �

Corollary 3.2. Assume that X carries a collection of distinct birational structures of
P
mi-bundles, πi : X → Si, with the condition that the tangent spaces of generic fibers of

πi span the tangent space of X at the generic point. Then X is stably b-inf. trans.

Proof. Indeed, after multiplying by the maximum of mi we may assume that all Pmi-
bundles provide with at least 2mi different cancellations (see Lemma 3.1). We can now
apply Theorem 2.2. �

Remark 3.3. It seems plausible that given an inf. trans. variety X and a finite group
G ⊂ Aut(X), variety X/G is stably b-inf. trans. (though the proof of this fact requires
a finer understanding of the group SAut(X)). At this stage, note also that if G is cyclic,
then there exists a G-fixed point on X . Indeed, since X is unirational (cf. Section 1), it

has trivial algebraic fundamental group πalg
1 (X) (see [12]). Then, if the G-action is free

on X , we get G ⊂ πalg
1 (X/G) = {1} for X/G smooth unirational, a contradiction. This

fixed-point-non-freeness property of X relates X to homogeneous spaces, and it would
be interesting to investigate whether this is indeed the fact, i.e., in particular, does X ,
after stabilization and passing to birational model, admit a uniformization which is a
genuine (finite dimensional) algebraic group?1)

3.2. Cubic hypersurfaces. Let X3 ⊂ Pn+1, n ≥ 2, be a smooth cubic. Then

Proposition 3.4. X3 is stably b-inf. trans.

Proof. Smooth cubic X3 contains a two-dimensional family of lines which span P4. Let
L ⊂ X3 be a line and π : X3 99K P

n−1 the linear projection from L. Let us resolve the
indeterminacies of π by blowing up X3 at L. We arrive at a smooth variety XL together
with a morphism πL : XL → Pn−1 whose general fiber is P1 (≃ a conic in P2). Varying
L ⊂ X3, we then apply Lemma 3.1 and Corollary 3.2 to get that X3 is stably b-inf.
trans. �

1)This question was suggested by J.-L.Colliot-Thélène in connection with Conjecture 1.4. However,
there are reasons to doubt the positive answer, since, for example, it would imply that X is (stably)
birationally isomorphic to G/H , where both G,H are (finite dimensional) reductive algebraic groups.
Even more, up to stable birational equivalence we may assume that X = G′/H ′, where H ′ is a finite
group andG′ is the product of a general linear group, Spin groups and exceptional Lie groups. The latter
implies, among other things, that there are only countably many stable birational equivalence classes
of unirational varieties, but we could not develop a rigorous argument to bring this to contradiction.
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3.3. Quartic hypersurfaces. Let X4 ⊂ Pn, n ≥ 4, be a quartic hypersurface with a
line L ⊂ X4 of double singularities. Then

Proposition 3.5. X4 is stably b-inf. trans.

Proof. Consider the cone X4 ⊂ Pn+1 over X4. Then X4 contains a plane Π of double
singularities. Pick up a (generic) line L′ ⊂ Π and consider the linear projection X4 99K

Pn−1 from L′. This induces a conic bundle structure on X4, similarly as in the proof of
Proposition 3.4, and varying L′ in Π as above we obtain that X4 is stably b-inf. trans.
Then, since X4 ≈ X4 × k, Proposition 3.5 follows. �

3.4. Complete intersections. Let X2·2·2 ⊂ P6 be the smooth complete intersection of
three quadrics. Then

Proposition 3.6. X2·2·2 is stably b-inf. trans.

Proof. The threefold X2·2·2 contains at least a one-dimensional family of lines. Let
L ⊂ X2·2·2 be a line and XL → X2·2·2 the blowup of L. Then the threefold XL carries
the structure of a conic bundle (see [7, Ch. 10, Example 10.1.2, (ii)]). Now, varying L
and applying the same arguments as in the proof of Proposition 3.4, we obtain that
X2·2·2 is stably b-inf. trans. �

Remark 3.7. Fix n, r ∈ N, n ≫ r, and a sequence of integers 0 < d1 ≤ . . . ≤ dm,

m ≥ 2. Let us assume that (n − r)(r + 1) ≥
m
∑

i=1

(

di + r

r

)

. Consider the complete

intersection X := H1 ∩ . . . ∩ Hm of hypersurfaces Hi ⊂ Pn of degree di. Then it
follows from the arguments in [14] that X contains a positive dimensional family of
linear subspaces ≃ P

r. Moreover, X is unirational, provided X is generic. It would be
interesting to adopt the arguments from the proofs of Propositions 3.4, 3.5 and 3.6 to
this more general setting in order to prove that X is stably b-inf. trans.

Remark 3.8. Propositions 3.4, 3.5 and 3.6 (cf. Remark 3.7) provide an alternative
method of proving unirationality of complete intersections (see [7, Ch. 10] for recollection
of classical arguments). Note also that (generic) X2·2·2 is non-rational (see for example
[17]), and (non-)rationality of the most of other complete intersections considered above
is not known. At the same time, verifying stable b-inf. trans. property of other (non-
rational) Fano manifolds (cf. [7, Ch. 10, Examples 10.1.3, (ii), (iii), (iv)]) is out of reach
for our techniques at the moment.
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