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Introduction 

The theory of generalized functions has a rather long history. The first generalized functions were 
introduced by Dirac in his classical papers [67, 68], where he employed heuristically his famous delta-function 6 
for the needs of quantum field theory. However, objects of the form 62, 6- 5 ' , . . . ,  which were exploited in this 
theory had no rigorous mathematical meaning. Thus, a very nontrivial problem arose: how one can multiply 
generalized functions. 

An interpretation of generalized functions as distributions, that is, as linear continuous functionals on a 
suitable space of test functions, was laid by Sobolev [184] (see also [185, 186]) in connection with problems 

�9 of linear partial differential equations. The theory of distributions took its final form after Schwartz's mono- 
graph [179], published in 1950-1951 (here we cite a new 1973 edition), where various spaces of distributions 
were introduced and thoroughly studied. The theory of Sobolev spaces and that of Schwartz distributions 
became the main tools in the study of linear and nonlinear problems of mathematical physics; see Adams [2], 
Maz'ya [137], Ziemer [208], Bogolyubov and Parasiuk [22], Gel'fand and Shilov [80], H6rrnander [88, 89], 
Antosik, Mikusi~ski, and Sikorski [5], Vladimirov [201], Bogolyubov, Logunov, Oksak, and Todorov [23]. 

Although the distribution theory give a rigorous sense to the Dirac 6 function and to many other objects, 
the problem of multiplication of such objects remained to be unsolved. The lack of multiplication and other 
deficiencies of the distribution theory were discovered soon after its creation. In 1954, Schwartz [178] proved 
the ~impossibility result, ~ which ai~'nrmed the attitude to the problem of multiplication of distributions as 
unsolwble (for more details, see Sec. 7.2). The linear distribution theory was also found to be not sufficient 
for solution of rather simple linear partial differential equations with smooth coefficients: an example of such an 
equation without solutions was constructed by Lewy [115] (in linear extensions of the space of distributions the 
situation is quite similar: in the space of Sato's hypeffunctions, an example of an equation without solutions 
was found by Schapira [177]). 

The situation changed radically in the late 70s and early 80s, when nonlinear theories of generalized func- 
tions containing distributions were created. Let us mention here the impressive works of Roslnger [167-169, 
171], where a general theory of algebras of generalized functions was developed and, on its basis, nonlinear par- 
tial differential equations of a very general form were studied. In 1982, Colombe~u [34-36, 41, 42] introduced a 
differential algebra Of new generalized functions O(f~) having the following optimal properties: O(f~) contains 
the space of distributions ~(f t )  as a linear subspace, partial deriwtives in ~(ft) extend the corresponding 
usual derivatives in :ZY(fl), the space C~~ of all infinitely diferentiable functions is a subalgebra in ~(fl), 
and the algebra O(f/) is invariant under smooth nonlinear operations of polynomial growth at infinity. This 
is the best situation for a differential algebra of generalized functions containing distributions since, by the 
Schwartz impossibility result mentioned above, no algebra of finite-times continuously diferentiable functions 
can be a subalgebra in such an algebra. On the other hand, Colombeau's theory of generalized functions 
opens broad possibilities for finding solutions of various classes of linear and nonlinear differential equations. 
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The purpose of our paper is to present the basic facts from Colombeau's nonlinear theory of generalized 
functions, which have achieved enormous success in the last decade. For its understanding it suffices to know 
only the classical differential and integral calculus and rudiments from the classical algebra. No knowledge 
in the distribution theory is assumed, since the main facts from this theory are presented in the framework 
of Colombeau's theory. This approach to the distribution theory was initiated by Colombeau [39] (see also 
Aragona and Biagioni [8]), and it is interesting to note that the distribution theory looks not so habitual in 
this approach as it does in classical courses of the distribution theory. 

We adopt the elementary definition of the Colombeau algebra which was developed by Aragona and 
Colombeau [9] and Colombeau [39]. Unlike these works, we define an imbedding of the space O(fl) of continu- 
ous functions, and then also the space of distributions lY(fl), into the algebra ~(f/) somewhat differently: our 
definition is close to that used by Oberguggenberger [156] and is based on the elementary concept of convolu- 
tion of a continuous function and a smooth function with compact support. We should note that Colombean's 
theory of generalized functions is already available in monograph form - -  Biagioni [15], Colombeau [37, 39, 
48], Oberguggenberger [156], and Rosinger [169] - -  and undoubtedly these works have had an influence on 
our presentation, too. 

The present paper is divided into nine sections. The material of Sec. 1 is classical: it is shown that the 
space of smooth functions with compact supports (i.e., test functions) is large enough, and some properties of 
the convolution of functions are recalled. In Sec. 2, we define the Colombean algebra of generalized functions 
on an open set in R" and establish its main properties. In Sec. 3, we introduce an algebra of generalized 
numbers so that Colombean's generalized functions assume values at individual points and can be integrated 
over compact sets. Also, in this section, we study solutions of algebraic equations within the framework of 
Colombean's theory. In Sec. 4, we define nonlinear operations of polynomial growth over generalized functions, 
composition of generalized functions, and restriction of generalized functions to linear subspaces. In Sec. 5, 
we present distributions which are defined as those generalized functions in the sense of Colombeau which 
locally (on every relatively compact open subset) can be represented as partial derivatives of continuous 
functions. Using the integration theory for generalized functions developed in Sec. 3, we obtain the classical 
formulation of distributions in a way that is accepted in Schwartz's distribution theory. Then, in Sec. 6, we 
establish some of the classical properties of distributions which, in particular, allow us to display in Sec. 6.9 
the natural character of the construction of the Colombean algebra. The difficulties related to the problem of 
multiplication of distributions are described in Sec. 7, where, in particular, the Schwartz impossibility result is 
treated in more detail. As we have already mentioned, many classical operations (multiplication, composition, 
restriction, etc.) are necessarily changed in the algebra ~(fl), so, in Sec. 8, all these operations are recovered 
by means of the following two specific concepts: the equality in the sense of generalized distributions and 
the equality in the sense of the association. Finally, in Sec. 9, we present some further properties of the 
association: multiplication by the Dirac 6 function, characterization of the product of distributions in the 
Colombean algebra (due to Jelfnek [95]); also, the Heaviside generalized functions and the Dirac generalized 
functions are defined, and examples of discontinuous solutions to a first-order system in the conservative 
form are considered. In concluding Our paper, we enumerate some recent papers (as known by the author) 
not mentioned in the body of this paper, which contribute to Colombeau's theory and related theories of 
generalized functions. 

Acknowledgments .  I would like to express my gratitude to Yu. V. Egorov, E. M. Landis, Yu. G. Rykov, 
and O. G. Smolyanov for continuous inspiring discussions on problems in generalized functions and their 
applications. I am indebted to H. A. Biagioni (Brazil), J.-F. Colombeau (France), T. Grarnchev (Bulgaria), 
Li Bang-He (People's Republic of China), M. Oberguggenberger (Austria), and W. P. Ziemer (USA) for stim- 
ulating correspondence and exchange of views. I am particularly grateful to my family for their understanding 
and encouragement while I was preparing this work. My special gratitude to S. A. Vakhrameev for suggesting 
that this paper should be included as part of the series in Con~empora~ Mathematics and Its Applications. 
Thematical Surreys (Progress in Science and Technology, VINITI). This work was partially supported by the 
Russian Foundation for Basic Research, grant No. 01-00278. 

43 



N o t a t i o n  

N, No, g, Q, R, and C denote, respectively, the sets of positive integers, nonnegative integers, integers, 
rational numbers, real numbers, and complex numbers. By K we denote either the field ~ or C. If n E 1~1, a point 

z E K '~ is usually written as z = (zl, . . .  ,z,,) with zj E g, j = 1, . . .  ,n; the norm of z is Iz I = (~ :  Izj[2) ~/2, 
j, 1 ' ~  

and the inner product of z and y in ~ is x �9 y = ~ xjyj. 
j=l  

The sum of two nonempty sets X, Y C ~" is the set X + Y  = { z + y  E ]m ~ I z E X a n d y E Y } ;  if 

X = { z } , w e w r i t e X + Y =  z + Y .  Analogously, cX = {cx E R ~ I z E X }  i f c  E ~. A closed iopen) 
ball in R ~ of radius r > 0 centered at a point x E ~ is denoted by B,(z) = {y E R ~ I ]Y - z[ < r } 
(resp. B~(z) = { y E ~ I lY - zl < r )); we set B, = By(0) and B~ = B$(0), so that By(x) = z + By and 

B;(x)  = x + B: .  
Given a set X C R", we denote by X ~ = intX = { z E X ] 3 r > 0 : B:(z)  C X } the interior of X, by 

X c = R ~ \ X the complement of X in ~'~, by X = ((XC)~ c the closure of X in R", and by OX = "X\ X ~ the 

boundary of X. The distance from a point ~- E ~'~ to a set Y C ~ i s  the number distix, Y ) = infyGr I x - Yl, 

and analogously, dist(X, Y) = inf=ex Ix - Yl = inf=ex dist(z, Y) is the distance between two sets X and Y. 
yEY 

The symbol fl denotes usually a nonempty open subset of ~ ;  K CC l'/means that K is a compact (i. e. 
closed and bounded) set contained in n, and S g  ~l means that S is a relatively compact open set such that 
its closure is contained in ft. 

A multi-index a is an element of N o of the form a = (a~, . . . ,  a,,) with a j  E No, j = 1, . . . , n .  We set 

]a] = a~ + . . .  + a n ,  a !  = a~!. . .a~!,  and 0! = 1. For ~, ~ E N o we write a < fl if a j  < & for all j = 1, . . .  ,n. 
If z.-" (zl, . . . ,  x,,), we set z ~ = z~ z . . .  z~ ~, and if 0j = a~ i = 0 /0z  i is the operator of partial differentiation 

with respect to the variable zj, j = 1, . . . ,  n, and 0 = i01, . . . ,  8~) = V is the vector of the gradient, we also 

set 0 ~ = a~' . . .  8~ ~ = al~l/0z~ '~--- 0z~ ~ = 5~ with 0 ~ = id, the identity operator. 

The set of all continuous functions j" : ~/ , K is denoted by C(12; K) = G~ K), which will simply be 
written as C(fl) if it does not matter which of the sets R or C is meant by K. Analogously, the set of all k-times 

(k e N) continuously differentiable functions on l'l is denoted by Ch(~/). We also set C~if / )  = N C*(n). 
k---0 

Given the functions f ,  g : f/ ~ K, their sum f + g, the multiplication c f  by a number c E K, and the product 
fg  are defined pointwise, i.e., ( f  + g)(x) = f (x)  + g(x), (cf)(x) = of  is), and ( fg)(z)  = f(r  for x E f/. 
All the above function spaces are associative a~d commutative linear algebras over the field g. The support, 
supp f ,  of a function f : l'/ , K is the smallest closed subset in ~/outside which f vanishes, so that the 
support of f is the closure of the set { z E f / [  f (x)  ~ 0 } in fl. The set of all continuous functions on fl with 

compact supports is denoted by Ceil/). 
The Banach space of all measurable functions on f / for  which the pth power i 1 ~ p < oo) of their absolute 

value is Lebesgue integrable is denoted by L~(~/), and the usual norm in this space is denoted by I] " IlL,(n) 

or [I ' Ilk,n; L~(fl)  is the Banach space of all Lebesgue-measurable essentially bounded functions on fl with 

usual norm denoted by H" []~**(a) or [1" ]]~,n- We denote by L~oc(f/) the linear space of all measurable locally 

Lebesgue integrable functions f on f / such that the restriction f]K is in L~i K)  for all K CC ~/. 

The Lebesgue integral [ f i  x) dz over the support, supp f ,  of a function f : l'l ~ K is often denoted by 

/ / i x )  ax or by / / .  The last brief no,ation will also be used when the domain of integration is clear 

from the context. 
Finally, to show that an expression A is defined by means of an expression B, we will write A := B or 

B = : A .  
Below; for the reader's convenience, we recall some classical facts from the smooth analysis, namely, 

44 



Leibnitz's rule, Taylor's formula, the theorem on C ~ partitions of the unity, and the Paley-Wiener theorem. 

Leibni tz 's  rule.  Let 12 C R" be an open set, k E N, and let f, g E Ck(f/). Then f g  E Ck(f~), and for all 
~ ~o, I~1 <- k, the following Leibnitz's rule holds: 

() (;) o 
o ~  = ~ ~ (o=-~f ) (o~g) ,  where :-- (~ ~)! ~! 

o_<~_<,~ ~ - " 

r3 

Taylor 's  formula.  Let fl C ~" be an open set, k E 1~, f E. Ck(12), and let the closed line segment 
[ z , x  + h] := { z + th E R '~ I t  E [0, 1]} be contained in l). Then the following Taylor's formula with the 
integral remainder term holds: 

where 

1 r 
fCx 4-h)-f(x)=j~_,_X/o(Ojf)(x_ + t h ) d t . h j  (Hadamard's formula), if k =  1, then, 

k-1 

f ( z  + h) - f (x)  = ~ (O=f)(x) . h ~ + Rk(z,h)  if  k > 2, 
I = 1 = 1  " 

1 1/ 
Rk(z, h ) =  k ~ ~.~ (1 - t)k-l(oO~f)(z 4- th) dr. h ~ 

l=l=k 0 

and for the remainder Rk(x, h), we have the estimate 

IRk(% h)l < ~ 2"7 sup IO=fl �9 Ih=l < 
lal=k ~" [=,=+hi I = 

sup IO~'fl) . Ihl k. m 
[~.=+h] 

T h e o r e m  on C ~ par t i t ions  of the unity. Let f~ C ~" be an open set, and let {fll}ir be a family of open 
sets in R '~ covering fl, i.e., U fll = fL Then there exists a family of functions ~bi E C~176 i E I, such that 

iEl 

(a) 0 < qbi < 1 in fl, and supp r C ~i for all i E I ; 

(b) the family {supp r is locally finite, i.e., for every x E f l ,  there is a neighborhood O(z) of z in which 
only a finite number of functions qbi are not identically equal to zero; 

(c) i~et q~i(z) = 1 for all z E 12. 

The family {r with properties (a), (b), (c) is said to be a partition of  the unity subordinated to the 

c o v e ~ n g  {~'~i}iEl o f  ~'~. I"I 

The  P a l e y - W i e n e r  theorem.  Let ~o E Co~ ") have support in a ball Bn, R > O. Then its Fourier-Laplace 
transform 

[ e-iu'ztp(~-) d;T, z --~ ( Z l , . . .  , zrt) E C n, (*) f(z) 

is an entire analytic function of n complex variables zj = z~ 4" iyj, j = 1, . . .  ,n,  satisfying the condition 

V N E N, 3 CN > 0 such that V z E C" , 

IfCz)l _ CN(1 + Izl ) -Ne a i n ' t  . (**) 

Conversely, if an entire analytic function f on C ~' satisfies condition (**), then there is a function ~o E C~176 ") 
supported in the ball BR such that the representation (*) holds, r~ 
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1. Spaces  of S m o o t h  Funct ions  
0 

Denote by :D(R n) the algebra (over the field K) of all infinitely differentiable functions from R ~ into 
having compact supports, 

~(W') = C:~(~ ") := {~ E C'~(R") [ supp~ CC n"}, 

and for an arbitrary nonempty set X C R '~, we set 

:D(X) = C ~ ( X ) : =  {W e ~(R'~)I supp W C Z }. 

Functions from :D(R ~) and :D(X) are usually called test functions. In this section, we show that the space of 
test functions is sufficiently large and recall some properties of the convolution of functions. 

First, let n = 1. The function ~b : R , R, defined by r = 0 if x < 0 and ~b(x) = exp ( -1 / z )  if x > 0, 
has the following properties: 0 ~ r E Coo(R), 0 < r < 1, r increases on (0,r162 and suppr = [0, oo). If, for 
- o o  < a < b < oo, we set 

r -- x) 
r = r _ a) + r  - ) '  ~ e R, 

then (:,, E C~176 0 < (:,b _< 1, r = 1 on (--oo,a], supp (:,b = ( -oo ,  b], and r decreases on R. Now it is 
easy to construct nontrivial functions from the space :D(R): for - o o  < a < b _< c < d < c~; let 

r = r = (1 - -  ~ , b ( ' ) ) ; o , d ( ~ ) ,  �9 e R; 

then 
(E:D(R),  0 < _ ( < 1 ,  r  and s u p p ( = [ a , d ] .  

If n E N is arbitrary and r = (~,R(IA - x]), where A, x E R ~ and 0 < r < R < oo, then r e :D(R"), 

0 <_ r <_ 1, r = 1 on By(x), and supp r = BR(x). Instead of r one could use the function ~'. A more 

general way to construct smooth functions with compact support on R '~ is to consider the tensor product 
I ' t  

r = ~ ) r  of functions {r C :D(R) which is defined by r = l~I r  for x = (x~, . . . , x , )  E I~ ". 
j : l  . /=1 

Since the support of r is supp r = (supp r x --- x (supp r CC R '~, we have r E ~(R"). 
For a function ~ E :D(R~), e > 0, and for A, x E ~ ,  we set 

1 A ~,,(~) = ~ , ( ~ ) ,  ~ (~) : ~,(-~), (~.~)(~) = ~ ( ~ -  ~), 

p(~) = sup { IAI I A e supp ~p } ; 

here r .  is the translation operator and #(~) is the radius of the smallest closed ball centered at the origin 
confining the support of ~, so that p(~) > 0 if ~ ~ O. The following relations for the functions defined above 
are easy consequences of their definitions: 

P ropos i t i on  1.1. For ~ ~ :D(R"), e > O, A, z E R", and for a ~ N o we have 

Ca) (~=~,)(~) = ~,(~ - =) = ~--~((,~ - =)I~), (~)~ = ~; 

(b)  s u p p  r = ~  = x + ~ supp ~, supp ~ = - s u p p  ~o ; 

(c) 4- supp ~p C B,(~), p(~=) = epOp) , p(~) = p(~), P(O=cP) < POP); 

(d) ao~,= = e-i=s(a=~,),, a ~ :  (_1)~oi(a=~)~; 

11 n R n 

46 



We will need the following variant of the theorem on differentiation with respect to a parameter under 
the sign of the integral: 

P ropos i t ion  1.2. Let X C ~" and Y C ~" be two nonempty open sets, f E C(Y) or L~or and let 
r "- qP(z, y) E C~176 x Y) be such that 

3 K C C Y  V z e X  : supp , I~(z , . )CK.  (1.1) 

[ f(y)O(z, y) dy for z E X, then F:  X ~ ~ satisfies the following properties: If F(z) 
Y 

e coo(x) and O F(x) = ]f(y)O r W e X e F 
Y 

If, moreover, r E 7)(X x Y), or f E Cr and O(.,y) E D(L) for some L CC Z and for all y e supp f ,  
then F E D( X ) . 

Proof .  Due to 0.1), the function r  ) is in Z~(K); therefore, the (Lebesgue) integral F(z) is well defined 
for all z E X. Let z E X, and let a number r > 0 be such that B,(z) C X. Applying Taylor's formula to the 
function ~(z, y) in the variable(s) z, multiplying by f(y), and integrating with respect to y E Y, for h E B* 
we have 

j = l  y 

1 

+ f f (y)(2  ~ ~ f ( 1 -  t)(O:~)(z + th, y) dt" h ' )dy .  (1.2) 
K H=~ " 0 

The last integral is estimated by 

( f  I l l )"  ( ~ sup l(O~)(A,y)[ ) �9 IhI2= const(z). ]hi', 
g Xl~,l__ 2 (X,y)EB,(x)• 

i.e., it is o(Ihl) as h , 0  in Landau's notation. Equality (1.2), together with the last remark, shows that the 
function F is differentiable at the point z E X and 

= [ f(y)Ox~(z,y)dy,  j =  l , . . .  O, iF(z) 
Y 

The repeated application of this result proves the first part of the propos!tion. 
Now, if ~ E :D(X x Y), we set S = supp ~ CC X x Y. Denote by Sx and Sy the projections of the 

compact set .5' onto the sets X and Y, respectively: 

S x = { z E X I 3 y E Y :  (x,y) E S } ,  S r = { y e Y l 3 x E X :  (z,y) E S } ,  

so that Sx CC X, Sy CC Y, and S C Sx x Sv. Since r  �9 ) G ~D(Sv), condition (1.1) is fulfilled, and hence 
F E C~176 Let us show that supp F C Sx. Indeed, if z ~ Sx, then for all y e Y, the point (z, y) is not 
in S, whence ~(z,  y) = 0, and therefore, F(z) = O. 

In the latter case, F �9 ~D(L) since if x ~ L, then ~(z,y) = 0 for all y �9 supp f;  thus f (y)~(z ,y)  = 0 for 

all y E Y, so that F(z) = O. [] 
Before recalling the properties of the convolution of functions, let us introduce some notation. Let ~2 C R" 

be a.n open set, ~ ~ K CC fl, and let d := dist(K,0fl). If fl ~ ~", then 0fl ~ g and 0 < d < c~; in the case 
fl = R '~, we assume that d = oo. For p > 0, define the compact and relatively compact p-neighborhoods of 
the compact set K by 

gp = {z E R '~ [ d i s t (z ,g)  < p} = K + Bp, 
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K~ = intKp = {z E R = [ d is t (z ,K)  < p} = K + B~, 

so that for 0 < p < d, we have 

g CC K ~ K p  CC K~ C ft and dist(gp,0fi)  = dist(K~,0ft) = d - p .  (1.3) 

For ~o E T)(R=), consider the set 

n ( ~ )  = { x e n I ~=~ e ~ ( n )  } = { x e n I x + supp ~ C f/}, 

and note that ft(~) = R= i f f l  = R~, and fl(~) := fl i f ~  _= 0. The set ft(~) is open in R ~ (possibly 
empty) since if ft ~ R" and z 6 ft(~), then setting d = dist(K, On), where K := supp r ,~  CC ft, we have 
B~(x) + supp~ = supprz~ + B~ = K2 C fl, whence B~(z) C fl(~). Moreover, the set ft(~) is, certainly, 
nonempty for small values of p(~): 

if K CC ~l and p(~) < d = gist(K, 0f~), then K C ~t(~) (1.4) 

since K + supp ~o C K s for p(~) _< p < d; this follows from 

supp r=~ = z + s u p p ~  c B~r c K~ c c  ft V x  e g .  (1.5) 

In particular, it follows that K C ft(~,) for 0 < t < r/ = d/p(~) and for every ~ ~ 0 in :D(R"), and 
U ft(9,) = ft- Also, we note that if ftl, ft2 C R" are open sets and fi, C ft2, then ftl(~) C ft2(~). 

z > 0  

The convolution of functions f 6 C(ft) (or f E L~or and ~o E Z)(R") is defined on the open set 

ft(~) ~ e by the formula 

(f,~)(z)=/f(y)~(z-y)dy= f f (y)(r ,~)(y)dy,  z 6 f t ( ~ ) .  (1.6) 
n z -- s u p p  

Because of property (1.5), if K CC ft and p(~) < p < dist(K, Oft), then K C ft(~) and 

(:. _[ dy = / d., E K. (1.7) 
Bd=) Bp 

If 12 = R ~, equality (1.7) holds for all x E R ~. 
The main properties of the convolution are enumerated in the following proposition: 

Propos i t ion  1.3. Let f E C(~) or f e L~or ), and let ~ E D(R~). Then 

f ,  ~o E C~(ft(~)) and O~(f * ~) = f *  (0~ on ft(~) Vc~ E No. 

In addition, we have 

(a) I f f e C ( f t )  a n d K C C f t ,  then(f*.~,)(z)  ,(f~)f(=)~, , +O uniformly in z 6 g ,  and, in 

(b) / f f  E C~(ft), then f , ~  ~ :D(R") andsuppf*~o C supp f+supp~o =: L; also, ifp(~o) < dist(supp f, Oft), 
then L CC It, so that f * ~o E :D(ft); the convergence in (a) /s uniform on R". 

(c) If f ~ c~(~) for some k ~ r~, then atso O~(f �9 ~) = (O~f) * ~ on ft(,~), lal < k. 

(d) If f 6/~or where 1 < p < oo, then f * ~, , ( f  ~ ) f  in Ln(K) as e , +0 for every compact 

K CC ft. 
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(e) I f  f e L~or with 1 < p < cx~, K CC ~ and p(~p) < p < dist(K,0g/), then 

sup I(1 * v)(x)l < II f II~(K,)ll v II:,'(B~.)). 
xEK 

where p' = p / ( p - 1 )  / f l  < p < ~ , p ' = c r  / f p - = l ,  and p' = l i f  p = oo. 

(f) I r a  = ~" then f �9 ~ = ~ �9 f and ~'.(I * ~) = (~ . f )  * ~ = f * 0"~)  V x  e ~". 

Proof .  Consider an exhaustion of the set ~(~) by compact subsets {E,~},~_I such that E,~ CC ~(~) ,  

E,,~ C E,~+I, and LJ E,~ = ~(~). As E,~ one can take, for example, any set of the form 
~ . . = 1  

E,,, = { z e fl(~) ] dist(z,0(fl(~))) > 1 / m  and ]z] < m }, 

and if ft = R '~, one can also take E,,, = B,,. In Proposition 1.2, we set X = E~,  Y = fl, r = ~ ( z  - y) E 

C~(R2"), and g = E~ + supp ~; note that (1.1) is satisfied: 

v o 
s u p p r  ~ c K c c f l ,  x E E ~ ,  

where the inclusion K C fl is a consequence of the inclusion E,~ C fl(~) and the definition of the set g/(~). 

Hence the restriction ( f  * ~)lm~ is in C ~ ( E ~ )  for every m �9 1~1, whence f * ~ E C~(f~(~)). The formula for 

the differentiation of the convolution is obvious if we take into account that flCC0~p) ~) D flC~). 
Let us prove (a) and (d). To this end, fix g CC fl and set d = dis t (g ,  0fl), ,7 = p/p(~v) for some 

0 < p < d. Then (see also (1.4) and (1.5)) we have 

V 
K C f l ( ~ , )  and B , a ( ~ ) ( x ) c K p c c f l  for e �9 (0, ,7) a n d z � 9  

(a) If f �9 C(a) ,  then changing the variable # = (x - y ) / r  in the integral defining the convolution, for a 
fixed x �9 K, we obtain 

(/,~):(.>i = 1 .-. I(:*..,(-, _ 

<- ( / " .u. ,::. + - ::.>1. 
Bp(,) 

The latter expression tends to zero as $ * +0 uniformly in z �9 K because of the uniform continuity of the 
function f on compact subsets of fl (in particular, on Kp). 

(d) If f E L~'or then setting r = epC~P) for brevity, for x �9 K and r �9 (0, r/), we have 

I(:.,~.)(->-(f ~,)f(-ll: I / ("'~'~(y~(:(~')- :(.~)d~, I _< 
S,(=) 

cc~) _<::: (su. ,,~,) / ,:(,I- :(.I,~: : /.:(.- ,I- :(.I,~.. (:.81 
S~) S,(=) S. 

where C(~) = suPs~,  ) I~l. I fp  > 1 and p' := p / (p  - 1), H6lder's inequality implies 

l(f (/,',)'"'(/. '' , - If(x-/~)-f(x)l'd~) 
B,. 

Raising to the pth power, integrating in x �9 K, and applying Fubini's theorem, we find that  

fl(f *~.>('>- (f ~)::')l" <- ~<~I':. (/:,.)'' r /. r _. ,:(. - .~- :c.~,'.. <_ 
K B,. B~ K 
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t/):: "'ess sup [ _< 

B,. 

If p = 1, the latter inequality follows from (1.8) as above, without applying H61der's inequality. Thus, 

il f , qo ~ _ ( f qo) f [iL,(K) _< C(qo) Id#).essues,sup H r#f - f lIL, tr). 

It remains to note that  [ 1 d/~ = r'*/2r"/F(1 + n/2) is the n-dimensional Lebesgue measure of the ball B, 
B,  

O0 

with r = ep(qo), where P(z) = / t~-le -t dt (z > 0) is Euler's gamma function, and that  ess sup~,r [I ru f  
0 

f liP(K} , 0  as e , +0 due to the continuity in the large of the function f e L[or on compact subsets 

of 12 (in particular, on Kp). 
(b) If f fi Cc(12), then noting that for all y 6 supp f ,  

supp r  y) = supp ryqo = y + supp qo C supp f + supp qo = L, 

we have supp f * qo C L due to the second part of Proposition 1.2. If, in addition, p(qo) is less than the value 
in the statement, then L CC fl due to (1.3), so that f * qo E D(12). The uniform convergence of f �9 qo, on R" 
is proved as in (a) if we take into account that f is uniformly continuous on R'*. 

(c) is the formula for integration by parts 

o~ = / y)dy = / fCy)O  Cx-y)ay = 

fCO;f)Cy 2 -  y) = frO~ �9 

If 1 < p < co, the inequality in (e) follows from H61der's inequality and from (1.7); in all other cases, it 
is obvious. The first property in (f) follows from the formula of change of variables in the integral, and the 
second property is obvious if it is written in the integral form. n 

From properties (a) and (d) of Proposition 1.3 it is seen that f �9 ~o, approximates the function f as 
e * +0 if qo belongs to the set 

im t* 

This set plays the most important role in Colombeau's theory of generalized functions. We note that  it is not 
empty since the set .Ao(R) contains the function qo(z) - c((z) ,  z e R, where ( was constructed above and 

( / ) - 1 ;  e N, the tensor product of functions r . . ,  r e ./to(R) belongs to .Ao(R~). Furthermore, c = ( if n 

the set .Ao(R ") contains functions with arbitrary small supports; in fact, if r > 0 and qo E Ao(R~), then by 
setting ~b = qo~, where 0 < e < r/p(qo), we have r E .Ao(R ") and p(r < r. Note that the set .Ao(R ~) is 
neither a linear space nor an algebra, and that it is still nonempty if we replace the unit in its definition by 
any number from K. 

The following construction in Proposition 1.4 gives a large number of examples of test functions in the 
space :D(fl), where 12 C R ~ is an open set. 

P r o p o s i t i o n  1.4. Let K CC 12, d := dist(K, Off), and let qo E .Ao(R") be such that p(qo) < d/3. I f  X2p is 
the characteristic function of the compact set K2, (that is, X2,(z) = 1 if z e K2, and X2,(z) = 0 if x q~ K~,), 
where p(~o) < p < d[3, then the function r = X2, * r .satisfies the following prope~ies: 

E:D(Ka,)'C:D(12) and r =1 on Kp D K; 

if, in addition, ~o >_. O, then 0 < r < 1 on R". 
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Proof. By Proposition 1.3, the function r is in C~176 and also 

supp r C supp X2p + supp ~ C K2p + Bp(w) C K3p C K2 C fl, 

so that r 6 :D(K3,). Further, for x E K,, we have B,(~o)(x) C K, + B,(~,) C K2,; therefore, X~,(Y) = 1 for all 

y ~ B,(~o)(z) and x ~ K,. Consequently, 

BKw)(=) 

if, furthermore, ~o _> 0, then, in addition, we have 

o<_r x ~ " .  [] 

2. T h e  C o l o m b e a u  A l g e b r a  on an O p e n  Set  

2.1. Index sets. For ~ fi 7:)(IR") and a E n o, we define the cdh moment of the function ~ by 

M=(~o) = f 2 ~  CA) dA, 
11 n 

(2.1) 

so that (by the change of variables formula for integration) 

M~(~o.) = el=lM=(~o) Ve > 0 and M~ = (-1)l=lM"(~o). (2.2) 

In the set .Ao(R") = {~o e :D(R") [ M~ = 1}, which was already defined earlier in (1,9), we choose the 
subsets 

~(R") = {~ ~ Ao(~") I M~'(~ ~ = 0 Vex e ~o, 1 < I,:,1 < q}, q e N, 

which will be called the index sets. These sets play the crucial role in Colombeau's generalized analysis, so 
they will be studied first of all. The following lemma determines some of the frequently used properties of 
sets .A~(R") and gives a constructive way of forming their elements. The usefulness of the special structure of 

the sets Aq(R ") will be clarified somewhat later. 

L e m r n a  2.1. The sets .A~(R") are nonempty, nondecreasing, have empty intersection, and if %a q ,Aq(Rn), 

then ~,, 7' e .~(R"). 

1. First,  we consider the case n = 1. Let ~Oo E :D(R) be such that f ~o0(A ) dA # 0. For q 6 N, Proof .  s e t  

q 

~o = ~ ak~o(f ), and let us find conditions on the numbers ao, . . .  ,aq E g under which ~o 6 .A~(R). Note that  

if i, k E No, integrating by parts, we have 

i! / Ai-k~o(A)dA =: C,t(i,~o) if k < i, f2~co~(~) d~ = ( - t )~( i_k)!_  
0 i f k  > i, 

and 

For i E No, i _< q, it follows that 

c,(i.<po) = (-1)'/! f ~o(:,) d~ # 0. 

q i 

M'(~) := f,V~(~)<a = E ~ f ~'A'<~('~) d:` E okc,(i,,m. 
k=O k=O 

(2.3) 

(2.4) 
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Fix ~o E .Ao(R), and let ao = 1. Due to (2.3), we choose recursivety the numbers a~, . . .  ,aq as follows: 

first choose al such that MI(~o) = 0, then choose a2 such that M2(~) = 0, . . . ,  and finally choose aq such 

that Mq(~o)  - 0. Then ~o E A~(R). 

2. For an arbitrary n E N, consider the function r = ( ~  r which is the tensor product of functions 
j = l  

r . . .  ,r E A~(l).  By Fubini's theorem, we find that M~162  = 1~1 M"J(r for a = (al ,  . . .  ,a,~) E No; this 
./--1 

immediately yields r E .A~(I~). 

3. The inclusions A~(I") D Jib+t(1 '~) for every q E ~ are immediate from the definition of the index 

sets. The fact that the functions ~, and ~ belong to the set Jt~(l '~) ensures that r E .A~(I") is a consequence 

of (2.2). 
4. Let us show that f] A~(I") = g. Assume the contrary, i.e., that a function ~ is in .A~(R'`) for all 

q~l~ 

q E N, so that ~o E :D(I"), M~ = 1, and M"(~o) = 0 for all ct E ~o, la[ >_ 1. Consider the Fourier transform 
^ 

~o of ~o given by 

~(~) = (~=~)(~) := [ e-'~'%(~) d~, ~ e 
!! n 

where z .  ~ = ~ zi~ ~ and i = ViE2 " is the imaginary unity. By the Paley-Wiener theorem, ~(~) is an entire 
i = l  

analytic function in the variable ~, so, in particular, it has the Taylor expansion at ~ = 0 of the form 

and, moreover, 

r = ~C0) + ~ (0~ �9 ~~ ~ e ~'`, 
Io l - -1  " 

~(~) , 0  as I~1 ~oo. (2.5) 

Noting that ~(0) = M~ = 1 and (0"~)(0) = (-i)I~176 = 0~ I,~1 _> 1, we come to the equality 

~(~3 = ~(0) = 1 for ~al ~ e 1~; this contradicts (2.5). o 

R e m a r k  2.2. From the proof of [,emma 2.1, one sees that the sets Aq(l") contain (a) real-valued functions 
(take real-valued r (b) functions ~o with arbitrarily small support (since supp~p C supp~oo), (c) even 
functions (choose a function ~o0 E ,4o(1) to be even and set ak = 0 for odd k; then the function r from 
Lemma 2.1 will be even, too, and ~ E .Aq(R) provided as are suitably chosen for even k), and (d) functions 

satisfying the condition ~o(0) = 1 (choose ~o E .Ao(ll~) such that ~o0 = 1 in a neighborhood of zero). 
Note, in addition, that if q > 2, then real-valued dements of Jl~(i'`) cannot assume only nounegative 

values, o 

In the sequel, by a differential algebra we shall mean any algebra A (over the field K) with product 
denoted by -, say, for which there exists at least one linear mapping D : A , A satisfying Leibnitz's rule 
for the differentiation of a product: D(a.  b) = D(a) . b + a.  D(b) Va, b E A. Such a mapping D is called 

a differential operator (or a derivation) in A. If D O := ida is the identity mapping of A and D k := D(D k-l) 
for k E N, then the following general Leibnitz's rule holds in the differential algebra A: 

D~'(a �9 b)= ~., D~-i(a) �9 Di(b), := " . 
,=0 i ! ( ~ -  i)! 

2.2. T h e  def in i t ion  of  t he  Co lombeau  a lgebra .  Now we turn to the definition of the differential algebra 
~(~) of Colombeau's generalized functions on an open set ~ C I ~. As a starting point, consider the infinite 
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product 

E[~] = ( c ~ ( a ) )  ~ ~  , 

consisting of all mappings u : Ao(a ~) , C~176 The value u(~) E C~ of an element u E s on 
a function ~ E .Ao(R") calculated at a point x E 12 will be written as u(~,z) := u(~)(z). In this way, 
the set s can be considered as the set of mappings u : .Ao(R") • 12 , • such that  u(~, �9 ) E C~162 
for all ~ e .Ao(R'~). The set s 12] is a differential algebra under the componentwise operations of addition, 
multiplication by a number, product, and partial differentiation: 

(~" )C~ ,~ )  = ~(~, ~) ' (~ ,  ~), 

( 0 ~ ) ( ~ ,  ~) = a~(~(~,  x)), ~ e No, 

for u, v E s ~ e .Ao(~'~), and x e ~. In particular, the following Leibnitz's rule holds in s 

(;) ( ;)o,  
0~ �9 ~) = ~ ( o ~  �9 (0~ = ( ,~_  #)! #!, ~ e ~o. 

o<_.Z<: 

The algebra G~(12) is contained in s fl] as the subset of those elements of s 12] which do not depend on the 
first variable ~ e Ao(R~). In other words, the map a :  C~ , s defined by a(f)(~,x) = f(x) for 
f e C~(12), ~ �9 .Ao(R ~) and x �9 12, is a homomorphic imbedding of C0r into the algebra s preserving 
partial derivatives (commuting with partial derivatives): 

O~u(f)=a(c3~f) in s a � 9  o. 

In the sequel, for the sake of brevity, we set f (~ ,  z)" := a ( f ) (~ ,  z) if f �9 C~(12). 
Summing up what we have said above, we conclude that 

s is an associative and commutative differential algebra (with the unit element 1 := a(1) �9 
s 12] with respect to the multiplication) containing the algebra C ~ (12) as a differential subalgebra. 

Although the algebra s 12] is almost the desired object for a good nonlinear theory of generalized func- 
tions, it is "too wide" and its elements can grow too fast (in a sense to be made precise in the sequel). So, we 
define a subalgebra s 12] in s (M is not to be dissociated in s fl ]) of moderate (polynomially growing 
in l /e )  elements as follows: 

s {ues  cc12 Va�9  o 3 W E N :  

V~ �9 Alv(~ '~) 3c  > 0, r />  0 : (2.6) 

w �9 (0,~) : sup,~K 10~(~, ,~)1  < ~ - M  }. 

In the definition of s we use the convention that a letter following the quantifier 3 can, in general, 
depend on all the letters encountered in the preceding quantifiers. Equivalently we can write V K  CC 12 
V a  �9 1~o 3Nx , N2 �9 1~ such that  V~ �9 AN,(R ~) 3c  > 0, 7/ �9 (0, 1) such that  Vx �9 K Ve �9 (0,r/) we have the 

inequality 10~u(~.,x)l __. c~-~; then we obtain N as in (2.6) if we set N = max{Nx,N2}.  Using Leibnitz's 
rule in s it is easy to verify that the set s is, indeed, a differential algebra with respect to the 
operations as in s C/], and, moreover, the map a is, in fact, a homomorphic imbedding of the algebra C~(12) 
into s In addition, the algebra s is invaxiant with respect to partial differentiation operators: 

0~163 c s ,~ �9 ~o. 

The next step is to define an ideal A/'[12] in the algebra s Denote by F the set of all increasing 
sequences 7 : y , (0, oo) such that 7(n) , co as n , oo. The set F has the following property: if 
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3 ' 1 ,  �9 . .  , % n  

follows: 
e F, then min{7~, . . . ,7 , ,}  e F as well. We define the set Af[fl] of null elements in s as 

VqEN, q>_N,V~E.Aq(I~") 3 c > 0 ,  r / > 0 :  (2.7) 

v~ e (0,7) : sup=~K la=~@,,x)l < c~,c , ) - -} .  

Equivalently, one can write a bound in (2.7) of the form c~ "r(q) (by properly changing N and "7). From this 
definition it is seen that N'[12] C s and, moreover, by using Leibnitz's rule in s and the property 
of F, one can check that the algebra A/[ 12 ] is, in fact, an ideal in ~:M[ 12 ], i.e., 

]r163 and s 

Furthermore, .h/'[ 12 ] is invariant under partial derivative operators: 

a = ~ [ a ]  c X [ a ] ,  o e N~. 

Let us mention a special property of the ideal Af[ 12] consisting in the fact that the "convergence to zero" 
being constructed in its definition is such that all its elements and their derivatives tend to zero faster than 
any power of e provided that ~0 E AN(R") with N sufficiently large: 

VuEAf[ I I ]  V k E N  V K c c 1 2  V a E N  o 3 N E N  such that 
(2.8) 

V W E AN(~ ") : sup=~g l a= . c r  = o(~ k) as ~ , +0. 

The Golombeau algebra of new generalized functions on a n open set fl C R" is defined as the quotient (= 
factor) algebra 

a(a)  = s a l l ~ [  n ]. 
In other words, on s the equivalence relation --, is introduced as follows: u ~ v if and only if u - v E 
A/'[ 12 ], so that a generalized function U in the sense of Colombeau is the equivalence class 

U =  [u] := {v e s  ~ u} = u + H [ n ]  

of some element u E s which is called a representative of the generalized function U. In what follows, we 
shall use the convention that elements of ~(12) will be denoted (as a rule) by capital letters, their representatives 
(members of s by the corresponding small letters. Algebraic operations and partial differentiation in 
g(12) are defined for generalized functions U = [u], V = [v] e g(12) by means of their representatives in the 
standard way: 

c~U+c2V = [qu+c2v], q,  c2eg,  
g .  V = [u . v ] ,  

a = u  = in=u],  a e N o .  

These operations are well defined (in the sense that their result does not depend on representatives of equiv- 
alence classes) since, as we have mentioned above, A/'[12] is a two-sided ideal in the algebra s and 
both these sets are invafiant under partial derivatives. Taking into account the linearity of operators ~= and 
Leibaitz's rifle in s we are sure that g (a )  is a differential algebra Cover the field x). 

The homomorphic imbedding of the algebra 6'~176 into the algebra ~(12) is effected via the mapping 

,:C'0(12) -~G(12), t(f)-[f]=f(., ')+.Af[12] for fECoo(12), (2.9) 

where f ( ~ , z )  -- f (z )  for (~,z) E .Ao(R") x ft. In particular, the injectivity of this mapping means that the 
equality relation = in ~(fl) generalizes the usual pointwise equality of functions from C~176 the equality 
[ f ] .  [g] = [fg] means that the pointwise product of functions f and g in Coo(f/) is preserved in g (a ) ,  and 
the equality 0=[ f ]  = [0~  shows that the operators 0 = in g(12) restricted to Coo(f/) coincide with the usual 
partial derivatives in 6'**(12). Summing up, we have 
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~(12) is an associative and commutative differential algebra in which the constant function 1 
Coo(fl) is the unit element, t(1) = 1 +.A/'[12] q G(12), which is not equal to zero, t(O) = 24"[12] 
~(12), and the algebra C~176 is a differential subalgebra in Gift) (via (2.9)). 

We show by examples of elements of ~(fl) that the algebra s and its ideal Af[fl] are nontrivial: 

Proposition 2o3. EMIl2] C el121, ,=Z ~ [ n l  i~ ,~ot ~,~ ~d~t i,~ ~ [ a l .  

Proof .  1. Let fl = R" for simplicity. First we consider an interesting object ~ E ~(I~") which, as we will see 
later, represents the Dirac 6 function. Define its representative by 

=s(~, x) = ~ ( - x )  = (.=~)(0), ~ e ~ ( a ~ ) ,  �9 e am. 

Clearly, us E s If K CC R ~ and a E N o, then (O~'us)(~,z) = (-1))~ and setting 

N = n + lal, for ~o e .AN(R"), we find that. 

[(0~=s)(~,~,~)l < (sup 10~,l)~ -"  = ~ - N  
Bp(~) 

for all z E g and e e (0,1). Hence us e s 

2. Now if v(~,x)  = e ~'(-=), then v ~ s since Vq e N, 3~o e .6(~") such that ~o(0) = 1 (see 

Remark 2.2(d)), and hence v(Wt, 0) = e ~/~". (In other words, v is, so to say, a representative of eS; however, 

this composition does not make sense in ~(R"). Nevertheless, we will see below that e is e g ( ~ ) ,  where 

i =  , / = r . )  
3. Consider an element U e g(R") with representative u(~o) = e -~/p(~} which does not depend on x; p(~o) 

was introduced in Sec. 1. Since by Proposition 1.1(c) p(~o,) = ep(~o), u(~o~) decreases as e ) +0 faster than 

any power ~q, u e Af[R"] (or V = 0). On the other hand, if u - ' (~ )  = 1/u(~), then u -1 is in s but 

not in s since u - ' ( ~ )  grows faster than any power (1/~) N as ~ ) +0. Since u .  u - '  = 1 ~ A/'[R" ], 
it follows that Af[R"] is not an ideal in 8[ R ~ ]. (Note that the algebra s ~ ]  of moderate elements, which 

is completely similar to s was introduced by Colombeau in order that the set A/JR"] be an ideal in 

~,,[~"].) o 
The definitions of the algebra g-.M[ 12] and the ideal 3/[ 12] therein are rather complicated, and they were 

given without prior considerations. Their motivation and the natural character of the algebra ~(12) become 
clear when we try to imbed the space of continuous functions C(12) into g(12). To emphasize the main ideas 

we start with the most simple case where 12 R". 
We assign the mapping u! : .Zto(~i") ) Coo(R") defined by 

~(~,) = I *  ~;, ~, e ~o(~") (2.z0) 

to every continuous function f ~ C(R") or locally integrable function f 6 L~or From Proposition 1.3 

it follows that uf  e s If K CC R ~ and a e N o, then setting N = n + lal and taking into account 
�9 ~ t  

Propositions 1.1(d) and 1.3(e), for ~ e . A N ( ) ,  we have 

I (0~) (~ , , ,~ )1  = I ( - ~ ) - ~ ( f *  (0~,);)(~)1 < (2.11) 
< ~-"-I~ - c ~  -N' z ~ K, 

where 0 < e < r /=  g/p(~o), and p e (0, oo) is fixed. Thus, uf e s 
It follows that the mapping ~ : C(R ~) , g(R~) given by 

( f )  - u / : =  [,~i] = ,~i + N[~"  ], I e c(~"),  (2.12) 
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is well defined (and analogously for f E L~or The mapping 3 is linear;, this follows from the linearity 
of the mapping f s., u!  and the definition of operations in ~(R"), and it is injective due to the implication 
u/ E Af[R"] ---;- f - 0, which, in turn, follows from property (2.8) of Af[R"] and Propositions 1.3(a), (d), 

and 1.1(e). Furthermore, 3 commutes with partial derivation operators 0 ~ on the space C~(R"), where k e 1~: 

o~j(f) =.~(oof) in ~(~") for f e C~(~ ~) and l~l <- k; 

this is a consequence of Proposition 1.3(c). 
One of the main properties of the ideal Af[Iz"] (and the reason why it has been chosen in s '~ ]) is 

that both imbeddings (2.9) and (2.12) of C~176 ") into Q(R") coincide: 

P ropos i t ion  2.4. / f  f E COO(R~), then u I - f E Af[R"], so that 3 [v-(n") = z. 

Proof .  Let K CC R ~ and a = 0. Applying Taylor's formula to the function f up to order q E 1~, for x E K, 
> 0, and ~o E Ao(R~), one has 

(f. ~,)Cx) - YCx) =/(fCx + ~,) -/(~))~,(.) dr = 

1 
+eq+~. ~ q+l [ f(1 + t ,)dt. 

I~l=q+l B~(~) 0 

If ~ E .As(R"), the first sum vanishes, and if 0 < ~ < ~1 = P/P(~) with p E (0, co) fixed, then we have the 
following estimate for the second sum: 

eq+'- ~ (s~pl0~f0 / l#'qo(g)Id r --= c~ '§ 
I ~ = q + l  P Ss(~, ) 

Analogous arguments can be applied to any partial derivative of the form 0 ~ ( u / -  f )  if we take into account 
that 0 % !  = us~ r~ 

In (2.9), we have seen that C~176 ") is a subalgebra in g(R"), so that, in particular, z ( fg)  = ,  ( f ) . t  (g) in 
g(IC) if f and g are in Coo(R"). By Proposition 2.4, the mapping 3 is a homomorphism of algebras C~176 ") 
and ~(R") as well, and if f and g are infinitely differentiable functions, then 

3(fg)=z(fg)=z(f)'t(g)--3(f)'3(g) in ~(R"). 

This implies the less obvious inclusion 

,.,!, - , , ! . , . , ,  e ~[R"], f, o e C~176 (2.13) 

However, the inclusion (2.13) does not take place in general if the functions f and g are only in Ck(R ") with 
k < co. This is shown below by examples. 

Examples  2.5. (1) For any (finite) k E No, the algebra Ck(R ") is not a subalgebra in G(R") (relative to 
the inclusion (2.12)), so that the product Q(R"). g(R ~) does not generalize the product Ck(R") �9 C~(R"). 
Proof .  Consider the following two functions of one real variable: 

f ( z ) = ( O  ifz_< O, and g ( z ) =  { zk+l i f z  < O, 
z ~+I ifz_>O, 0 i f z > O .  

Then f g  = 0 in Uk(R), so that .7 ( fg)  = 0 in G(R). On the other hand, 

= J :(x + + (2.14) 
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this implies 
oo 0 

= f f 
0 --o0 

To prove that u f . %  $ .Ai'[ ~ ], by property (2.8), it suffices to show that 

Vq E ~, q >_ k + 1, 3~o E A~(~) such that 

f 7 1 (2.15) 
--OO 0 

To this end, we fix two functions ~oo, r E .Ao(a) such that supp ~Oo C (0, co), supp r C ( -co ,  0), and for 

q aj~J), q q > k + 1 we set ~01 = ~O 0 + ~ ~1 = r + E bjr j). As in Lemma 2.1 (using the same notation), due 
~=1 j=l  

to (2.4) and (2.3), we choose successively numbers aj and bj for j = 1 , . . .  ,q in such a way that Mi(Cpl) : 

Mi(r = 0 if 1 < i < q, i # k + 1, and Mk+~(~l) = --Mk+1(r = 1. Then ~ = (~1 + r E Aq(~) for 
q _> k + 1, and ~p satisfies the equalities in (2.15). 

The case of functions in Ck(R ") of n real variables reduces to the one above if we set f ( z : ,  . . . ,  z , )  = f (z l ) ,  
~(Zl, . . . , z , )  = g(zl), and consider functions ~ E .A~(~") in the tensor product form ~ ( z ~ , . . . , z , )  = 
~ (z , ) - . .  ~(z~), where ~ e Aq(R). 

(2) Here we show that the product in the algebra ~(~) does not generalize the product of the type 
C~(~) �9 ck(~). Consider the functions f (z)  = x k and g(x) = xk[x[, z �9 R. Taking (2.14) into account, we 
have  

( ' / J ' f9--Uf " 'Ug)(~e,0 ) : ~ . 2 k + l ( f . 2 k l . l ~ ( . ) d  . -- f ~k~(.)d. " f ~k]]X[~(.)d.). 

If ~ � 9  Ak(~), then [l~J'~p(g)dg = 0, and it remains to note that due to (2.15), for q >_. 2k + 1, there exists 

function ~ �9 .A~(~) such t h a t / , 2 k [ g [ ~ ( , ) d g  = 1. Hence u f ~ -  u f . %  ~ Ar[al,  and .l ( f  g) a # 3(f)  
in g(~). n 

The discrepancy between the classical pointwise product of continuous functions and their product in 
the algebra g(~") might seem, at first sight, as a deficiency of the product in ~(R"). However, due to the 
Schwartz impossibility result (Sec. 7.2) a certain incoherence between the two products is unavoidable. On 
the other hand, in the Colombean theory, this incoherence will be removed (Theorem 8.10) by means of a 
weaker kind of equality, called the association, between the elements of g(~"), which is not so strict as the 
algebraic equality in ~(~'~). The last property is the characteristic feature of the Colombeau theory, which 
gives this theory an unusual power. The splitting of equality into several types (mainly three) is an inevitable 
cost for the desire to recover the classical products. 

The space C(R") is imbedded into the algebra ~(~") via the mappings in (2.12) and (2.10). Alternatively, 

one might define another imbedding ]:  C(R") ,9(R")  as follows: if f �9 C(R"), let ] (f) be the equivalence 

class of the mapping {f �9 ~}~e&(a-). Clearly, the mapping ] possesses all the properties satisfied by the 

mapping 3, and in particular, ] [v.(~-) = z. Therefore .~ might also be taken as a canonical imbedding 

of C(R") into 9(~"). However, one has to keep in mind that the mappings ~ and ] are not to be used 

simultaneously, since ] #  ~. To see this, let f ( z )  = z2 -llzl, z �9 a, and k �9 1~ be fixed. Since 

( f  * ~o,)(x) - ( f  * qo,)(z) = f f ( z  "4- elt~(qo(#)- ~o (#)) dg, 

we have 

( f ,  - f  �9 = [ 
/~k-1]#ka(# ) dr. 

J 
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/ .  

By (2.15), for q >_ 2k one can find ~ e fl.q(R) such that = 1. Therefore, { f .  ~ - f  �9 

~o}~e~(, } ~ A/'[ ~" ], and 3 ( f ) ~ ]  (f) in ~(R). Nevertheless, functions ] ( f )  and 3 (f) are equal in g(R) in a 
weaker sense of the association (Definition 8.6). 

2.3. I m b e d d i n g  of C(fl) into g(fl). We now consider an imbedding of the space C( t )  into the algebra 
g ( t )  in the case of an arbitrary open set f C R'*. For functions f E Cr with compact support, such an 
imbedding is given via the mapping Jc from Co(t) into g ( t )  defined by the formula 3.( f )  = u! +A/'[ t i, where 

ul(~o) = ( f *  ~)[n, ~o �9 Ao(R"). To extend this imbedding onto the space C ( t ) ,  we proceed as follows. Let 
{tip} be an exhaustion of the set f by compact subsets tip of the form 

f l p = { x � 9  and [ x [ < l / p } ,  p > O .  

(If 12 is bounded, then the condition Ix I < 1/p is redundant, and if f = ~t", the first condition in the definition 
of f ,  is optional.) Let Xo be the characteristic function of the set fp  (Xp = 0 if f .  = g). Given ~o �9 .Ao(R"), 
we set (cf. also Proposition 1.4) 

= * �9 coo( ") �9 (2.16) 

Since p(~o) < 2p(~o) < dist(f2,(r Off), we have t(~o) �9 22(f) (possibly, g(~o) = 0). Moreover, if K CC f and 

�9 Ao(R ~) are such that p(~) _< pK with 

1 min{ dist(K, 0 f ) ,  (1 + sup.e ~ [zl)-: }, 

then suppl(~o) C f,(~), K,(~) = K + B,(~o) C f~,(~o), and l(~o) _= 1 on fs,(~). We define the imbedding 
3: U(fl) , ~ ( f )  in the same way as in (2.12): 

2(f)  -- u / + A / ' [ f ] ,  where uI(~o ) = (l(~o)f), ~, ~o �9 .Ao(a"). (2.17) 

The main observation here is that if K CC f and ~o �9 Ao(R"), then there exists r /=  r/(K, ~0) > 0 (for example, 

rl = ~K/p(~o)) such that g CC f l (~ )  and 

= ( f ,  �9 �9 K ,  �9 (2.1S) 

It is easily seen that the mapping 2 shares the same properties as (2.12), namely, ~ is a linear imbedding 
commuting with partial derivatives on the space Ca(f )  and coinciding with the mapping ~ from (2.9) on the 
algebra C~ 

An imbedding of the space/~oc(t) is defined analogously. 
Note that in (2.17) there is an arbitrariness in the definition of ul: instead of the mapping p(~o) allowing 

us to extract e from ~o., one could use some other mapping, for example, the diameter of the support of ~o, 

d(cp) = sup { [~ - y] [ z, y �9 supp ~o }, or the integral of the form I(~o) = ] ko] ~, with ~o �9 .Ao(R"), so that 

d(~o.) = ed(~o) and I(~o.) = e-"I(~o), e > 0; on the other hand, one could use another exhaustion of the set f .  
However, this arbitrariness disappears in the factor g ( f )  and the imbedding 3, so that this imbedding, in 
general, is not different from the simpler one in the case 12 = R'*. Let us also mention that objects in ~ ( f )  
are completely determined by values of their representatives on elements of the form (~o~, z) for small e and 
x in compact sets. We will see below in this section that ~ is a sheaf of differential algebras and that there 
exists a unique extension y of the mapping 3~ which is a sheaf morphism C * ~ .  

2.4. Shea f  of  a lgebras  of genera l ized  funct ions  ~. We turn now to the study of local properties of 
Colombean's generalized functions from g ( f )  on an open set t C R ~. Let U = u + A/'[~] �9 g(~/) be a 
generalized function with a representative u �9 EM[~] .  We define the restriction of U to an open subset 
G C f (through a representative of U) as follows: g ig  := ulo +Af[G] �9 g(G), where (ulo)(~o) := u(~o)lG for 
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~o ~ .Ao(R"). Clearly, any restriction mapping is a homomorphism of differential algebras. Furthermore, the 
new restriction mapping generalizes the usual classical restriction mapping of continuous functions: ~ (f)1~ = 

(f[~) if f ~ C(f~) since (u/) le - u(fl~ ) E .,V'[ G] by property (2.18) (on compact subsets of G this difference 
vanishes for small enough e > 0). 

The following theorem expresses the fact that ~ is a sheaf (of sections over I~") of differential algebras. 

T h e o r e m  2.6. Let f~ C R" be an open set. We have the following properties: 

(a) if U ~ ~(12), then uIn = u in G(c~); 

(b) if U 6 G(fl) and E C G C fl are open sets, then (Ul )l  = ul~ i~ G(E); 

(c)  /f {f/i}i~z is a family of open subsets of II and U, V ~ ~(12) are such that Uln, 

i E I, then Ulfi = Vlfi in a(fi),  where fi = U f~i; 
i~I  

= win, in yo ,  alZ 

(d) if {II~}~et is a family of open subsets of ll and U~ E ~(12~), i E I, is a compatible family of generalized 
functions (in the sense that U~ln,nn~ = U~ln~nn~ in ~(lli Iq f~s) for all i, j E I such that fli N f~J ~ ~), 

then there is a unique generalized function U E ~(, !'J-f~)ez such that Uln, = U~ in ~(fl~) for all i E I .  

Proof .  The first two properties, (a) and (b), easily follow from the definition of the restriction. It suffices 
to prove (c) for V = 0. Given a compact set K CC U fZi, there are a finite subset J C I and compact 

iEl 

sets K s C ~i for j E d such that K = O Kj. It follows that if u E EM[fZ] is a representative of U and 
SE.I 

u[n, E A/'[f/~] (i E I), then, using the definition of ideal (Z7) and the property of the set F, we find that 

u E A/'[iezLI Ili]. Thus, U = 0 in ~(~t12,). 

(d) The uniqueness of the generalized function U follows from (c). We now prove its existence. Let 

= IJ fl~, and let (r C C~(~;R)  be a partition of the unity subordinated to the covering {f~i}iez 
iEl  

of ~, so that  supp ~ C fl~ Vi E I, the family {supp r is locally finite on ~,  and  ~ ~b,(z) = 1 Vz E ~. 
iEl  

Define a representative u of the desired generalized function U by means of representatives ui of functions U/ 
(i E I)  as follows: u(r  = ~ r for ~p E .Ao(~t"). Each product r162 =: f~ is defined on the whole 

iEl 

f~ ( f~ (z )= r162 z) if z E ~,, and fi(x) = 0 if z E ~ \ lq,), and the sum u(~0)(z) is finite for z in 

compact subsets of ~ due to the local finiteness of the family of supports of ~ .  Since ui E 5M[fl, ], it follows 
that u E /;M[I1]. Set U = u + A/'[fl] e ~7(~). It remains to show that Uln, = Ui or, what is the same, 
u[n~ - ul E A/'[f~/] for all i E I. Let K CC S g ill. By the local finiteness of the family of supports of r 
there is a finite subset J C I such that ~ r = 1 on S,  and 

j e d  

jEJX{i} 

this yields 

= on  S.  
je~(/} 

On the compact set K,  only members with indices j for which K ~ supp q~j ~ ~ give a contribution to 
the sum. But K N supp ~j CC f~i N f~S, and it remains to take into account the compatibility assumption 
(u~ - us)ln,nnj ~ ~ [  ~i n fZS] and the definition of the ideal (2.7). a 
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Let us consider the imbedding of the space of continuous functions into the algebra of generalized functions 
in more detail. To this end we will use a more precise notation showing explicitly the dependence of imbeddings 
on ft: the canonical imbedding of C~(n) into i f ( r )  will be denoted by 3r and by 3a the imbedding of C(ft) 
into G(n); note that  the mapping s defined above depends on n as well. The coherence of restrictions in G(f~) 
and in C(fl) means that imbeddings and restrictions commute; this is written precisely as follows: 

3n(f)la =3a(flc), f 6 C(n) ,  G C n,  G is open. (2.19) 

In other words, the commutativity of imbeddings and restrictions expresses the fact that  the imbeddings 3a de- 
fine a sheaf morphism 3 : C , g (in the category of linear spaces over K). Following Oberguggenberger [156, 
w 9], we will show that such a sheaf morphism is unique: if ~': C , g is another sheaf morphism such that 
Ynlc,(n) = 3c,n for all open sets n C R", then ) ' =  3. Let G~g fl be arbitrary, and ~b E D(fl) be such that  ~ = 1 

on G (Proposition 1.4). By the sheaf morphism property (2.19), we have the equality 3n(f)]a = 3a(r for 
all f E C(n) ,  and an analogous equality holds for ~'. Since 3n(~bf) = 3~,n(~bf) = ~'(~bf), where the second 
equality is satisfied by assumption, wefind that  3"n(f)ia = 3n(f)l~ for all relatively compact open subsets 
G C ft. Thus, ~n = 3o for all open sets fl C Ig"; this yields ~ = 3. 

So, ~ is a sheaf (of sections over R") of differential algebras, and there is only one sheaf morphism 
(of linear spaces over K) .7 : C , ~ which extends the canonical imbedding 3c,n : Co(r) , ~ (n)  
on every space of sections; 3 commutes with derivatives, and the restriction of 3 to C ~ (which is ,) 
is a morphism of differential algebras. 

We say that  a generalized function U E if(n) is null on an open subset G C n if its restriction Uia = 0 
in if(G), and we say that two generalized functions U, V E ff(ft) are equal on G if their difference U - V is 
null on G. 

The support of a generalized function U E ~(n)  is defined as the complement in fl to the largest open 
subset n0(u)  of fl on which U is null: 

supp U -" ~l \ no(U), (2.20) 

where no(U) is theunion of all open subsets G C n such that U = 0 on G. By property (c) of Theorem 2.6, 
we have: U = 0 on no(u) = fl \ supp U. This new concept of the support generalizes the corresponding 
concept for continuous functions: 

suppl (f)  = supp f ,  f 6 C(n);  

this is an immediate consequence of (2.19) (for brevity, we again use the notation in (2.17) instead of 3n). 
The set of all the Colombeau generalized functions on n with compact supports will be  denoted by fie(n): 

gc(fl) -- { U e ~(f/) [ supp V CC ft }. 

P r o p o s i t i o n  2.7. (a) ~c(n) is a subalgebra in ~(fl); 
(b) if U = u + Jt[[ r] E ~c(f~), and a function ~ E D(fl) is such that ~ = 1 in a neighborhood of supp U, 

then ( . u  6 EM[n] is also a representative of U, i.e., we have the equalit~j U = ( .  U in G(ft). 

Proo f .  (a) This part of the proposition follows from the inclusions 

supp (V + V) C (supp U) U (supp V), supp (U. V) C (supp U) n (supp V), 

which are valid for U, V E g(n) .  
(b) Let G C f~ be an open neighborhood of the compact set S : supp U on which ( - 1. Then 1 - ( = 0 

o n G ,  a n d U = 0 o n S  c , s o t h a t  ( 1 - ( ) . U = 0 o n G a n d o n S  c , w h e n c e ( 1 - ~ ) . U = 0 o n G U S  c = n b y  
Theorem 2.6(c). o 
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E x a m p l e s  2.8. (1) Consider the element 6 '~ G ~(~"), where m 6 1~ is fixed, with representative given 
by u(~,z)  = ( ~ ( - z ) ) " ,  ~ E Ao(a"), z E a" (see also the proof of Proposition 2.3). Let us show that 
supp 6 ~ = {0}. In fact, if K CC a ~ \ {0} and ~ E Jto(a~), then u ( ~ ,  x) = 0 for 0 < ~ < dist(K, O)/p(~) and 
z G K since supp~ C R ~ \ { -z /~}  (or s u p p r = ~  C R ~ \ {0}) for such ~ and z. Thus, 6 ~ = 0 on R ~ \ {0}. 
On the other hand, 6 '~ r 0 in G(~) ;  this follows from u ( ~ ,  0) = (e-"~(0)) '~ and Remark 2.2(d). Hence, 

e 
(2) Consider a generalized function U 6 g ( ~ )  with the representative u(~, z) = z " ~ ( - z ) ,  ~ 6 Ao(l~), 

z ~ ~, where m ~ N (this function is the product of the classical function z"~ and the Dirac delta function ~(x) 
in the algebra g(R)). As in Example (1), U = 0 on R \ {0}; U ~ 0 on R since otherwise the ruth derivative of 

its representative u('*) would be in A/'[ R ], but from Leibnitz's rule 

- -  

i---0 

this implies u( '~)(~,0) = m!w(0)/~, and~ as above, it remains to take into account Remark 2.2(d). So, 
U ~ Go(R) and supp U = {0}. o 

2.5. T h e  t r a n s l a t i o n  o p e r a t o r  in ~(R"). We conclude this section by a few remarks on the  translation 
operator in ~(~"). Given a generalized function U e ~(~") with a representative u ~ ~:M[a"] and a point 
a ~ R", we set (r~u)(~,z) := u (~ ,z  - a) for W ~ A0(a"), z ~ a", and note that  r ,u ~ ~:[~t"]; furthermore, 
r,u 6 ~M[R "] (resp. r=u ~ Af[a"]) if u ~ ~M[a"] (resp. u ~ Ar[a~]). The translation r,U is defined by 
r~U = r~u + 2r n~" ]. The new concept of translation r, : ~(a") , ~(a  ") generalizes exactly the translation 
operator for continuous functions: if f ~ C(R"), then r~3 (f) = 1 (r~f) in ~(a"); this follows from the equality 
r~(u/) = u~,l for the representative u f e .~ (f).  As in the classical case, one has 

suppr ,  U = a + s u p p U ,  U 6 ~ ( R " ) ,  a ~ R " .  

3. The Algebra of Generalized Numbers 

In this section, we define an algebra of generalized numbers ~, so that Colombeau's generalized functions 
from ~(f/) have pointwise values (from K--), and one can integrate these generalized functions over compact 
subsets of f/. 

3.1. The definition of the algebra ~. In the infinite product F-0 -- K ~(s~) consisting of all mappings 
u : .~[o(R ~) ~ K, which isan associative and commutative algebra over the field K relative to componentwise 

operations, consider a subalgebra ~O.M of moderate elements 

&,M = {u e :.o[3N e N : 

V~ e .4N(R") 3c  > 0, 7 > 0 : (3.1) 

e (0,7) : lu( ,)l < }. 
Define an ideal .Afo in ~,M of null elements as follows: 

H0= { u e & 1 3 N e N , ~ e r  : 
V q e N ,  q ~  g , v~oe .A~(R" )  q c > 0 , 7 > 0 :  (3.2) 

e ( 0 , 7 ) :  lu( ,)l < }. 

As we have seen in Proposition 2.3 (steps 2 and 3 of the proof), the algebra ~,M is a proper subset of ~o, 
and the set .A/'o is not an ideal in Eo. Analogously to the property (2.8) of the ideal A/'[ f/I, the set A/'o has the 
property 

VuGA/'o Vk6N qNEN such that 
V~ E AN(R~) : [u(~o,)[ = o(e k) as ~ ~ +0. (3.3) 
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The  algebra of generalized numbers K is defined as an associative and commutative quotient algebra (over 
the field K): 

= f-.O.M/A/'o. (3.4) 

The generalized number Z E K, which is the equivalence class of an element u E go.M, usually will be denoted 
by Z = ~ := u +.h/'o, Note that, in general, the algebra ~ depends on the dimension n = dim R", so that  there 
are different algebras of generalized numbers (this, however, is of no significance for what follows). Let us take 
a closer look at the connection between the algebras C and ~; for this we will indicate the dependence of go, 
(3.1), and (3.2) on C and ~. Both these algebras are defined in (3.4) starting respectively with the sets ~ of 

the form go(C) = C ~(m'} and go(R) = ~x0(n"), so that  g0(C) = g0(R)+igo(~) with i = v/~i'; similar equalities 
take place for algebras of moderate elements and ideals of null elements. If Z = u +A/'0(C) E C is a generalized 
complex number with a representative u = ul + iu2 E go,M(C), where ul = Reu, u2 = Imu  E go,M(R), then 
the real and imaginary parts of Z are defined as generalized real numbers by 

R e Z  := Reu +No(R)  E ~ and I m Z  := I m u  +A/'o(~) E ~, 

so that  Z = Re Z + i Im Z for Z E C, or ~ = ~ q- i ~. The conjugate generalized number is denoted by 
Z" - Re Z - i Im Z, and, as usual, the inclusion Z E R is equivalent to Z ~ = Z or Z = Re Z in C. Note 
also that the usage of sets Ao(R"; C) or Ao(R~; R) instead of .A0(l~ ") leads to different algebras of generalized 
numbers g and ~ (if no confusion arises, we will as usual write A0(R ") instead of the two sets mentioned 

above). 
The mapping defined by 

Zo:Ig ,~, zo(Z)-'~=z+JV'o for zEK, (3.5) 

is a homomorphic imbedding of the algebra K into the algebra E. 
C o n v e n t i o n .  Elements Z of the image set 20(K) will be called ordinary numbers from g,, and if Z = to(Z) 
for some z E K, then z is uniquely determined (due to (3.3)), and we write Z = z in ~. r~ 

Property (3.3)of the ideal A/'o suggests an idea of defining the following (very important for the whole 
subsequent theory) equivalence relation on ~, called the association, which is weaker than the equality in ~ :  

Def in i t ion  3.1. We say that a generalized number Z E K / s  associated to zero, and we write Z ~ 0, if for 
some (and, hence, for any) representative u E Z the following holds: 

qNEN: V~oeJt/c(R"): u(~o=) ,0 in g as e ,+0. 

Two generalized numbers ZI, Z~ E g are s~id to be associated (to each other), denoted by Z~ ~. Z:, if 
Z~ - Za ~ 0. The equivalence relation ~ on g is called the association on ~. We say that a generalized 
number Z E K has an associated (ordinary) number z E K if Z w. ~o(Z); this will be written briefly as Z ~ z 
in ~. Clearly, an associated number is uniquely determined (if it exists). The set of all generalized numbers 
having associated ordinary numbers is denoted by 

g-A={ze=13=eK:Z z): o 

E x a m p l e s  3.2. (1) The generalized number 0 E K has 0 E K as an associated number; this follows 

from (3.3). 
(2) Any ordinary number from K is associated to itself (since z is a representative of t0(z) for any z E X). 
(3) Equal generalized numbers are associated but not vice versa: if P is a generalized number with 

the representative {P(~)}r then p(~c) --" ~p(~) for e > 0; hence P ~ 0 and P ~ 0 in ~. Thus the 

generalized number P is not an ordinary number (one can view it as an ~infinitely small ~ positive number). 
(4) Not every generalized number has an associated number: indeed, if Z has the representative u(~o) = 

~o(0) for ~o E .do(R') (Z is the value of the Dirac function 6 E ~(R ~) at the point 0 E R '~, hence is denoted by 
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Z = 6(0)), then u(~,)  = ~(0)/e ~, e.> 0, so that Z = 6(0) ~ ~h in view of Remark 2.2(d). The generalized 
number 6(0) is not an ordinary number (it might be considered as an "infinitely large" positive number). 

The association relation .~. on ~ generalizes the usual equality in ~<: if zl, z~ E K, then zl ~ z2 -~ :- 
zl = z2. The association is compatible with (preserved by) the linear operations, but not with multiplication 
in N (as opposed to the algebraic equality -- in K---): in fact, P ~ 0, but P �9 6(0) ~ 0 = 0 .6(0)  (and even 
P .  6(0) ~ HA) since a representative of the number P .  6(0) is (p. u)(~,) = p(~)~(0)/~ "-1, and it is left to 
note that given c q IK and q E 1~, there is a ~ 6 .Aq(~") such that ~(0) = c and p(~) = 1. 

The set ~A is a subalgebra in ~ (if Z1, Z2 6 ~A and Z1 ~ zl 6 K, Z2 ~ z~ 6 ~<, then ZI + Z2 ~ zl + z2 
and Z1 �9 Zz ~ zlz2), and the mapping zo from (3.5) is, in fact, a homomorphic imbedding of the algebra ]K 
into the algebra HA. On the other hand, a mapping which assigns the associated ordinary number z 6 K to a 
generalized number Z 6 KA is a homomorphism of algebras KA and Ig (this mapping is not injective). 

The algebra of generalized numbers ~ is not a field. To prove this, consider an element Z with the 

f [#[~(#) d#, ~ 6 .Ao(R), and show that  it is not invertible in ~. Since u(~,)  -- eu(~), representative u((p) 
it 

then Z ~ 0; but Z ~ 0 because, in view of (2.15), for a given q 6 1~, there is a ~ 6 .A~(R) such that u(~) = 1. 
Let v 6 E0,M be a representative of a generalized number V 6 K such that  V.  Z = 1 in ~. Then there exists 
N e N such that  for all ~ E Ajv(R) we have v(~)u(~, )  , 1  as e , +0. The latter, however, is impossible, 
for the following implication: if ~ e AN(R) and supp~  C (0, oo), then u(~) = 0. Another example of a 
noninvertible generalized number is the number with representative equal to 1 if supp ~ C (0, oo), and equal 
to 0 otherwise (~ ~ .A0(~)). 

3.2. Po in t  values  of  genera l i zed  func t ions .  Now we define the concept of a "point value" of a generalized 
function U e ~;(fl), where 12 C ~" is an open set. Let u 6 EM[fl] be a representative of g ,  and let z 6 fl 
be a given point. For ~p ~ .Ao(R"), set u=(~) := u(~,x),  and note that  u= 6 E0; furthermore, u= 6 E0.M 
(reap. Af0) if u e ~:M[fl] (reap. A/[fl]). It follows that the following definition is correct: the generalized 
number V(z) :-- ~ = u~ + .Afoe K is called the value of the generalized function U ~ ~(~) at the point 
x fi ft. We note that  the concept introduced is localin the sense that if O~ C fl is an open neighborhood of z, 
then V(x) - (Ulo,)(z) in K. This new concept generalizes exactly the concept of pointwise values for C ~176 
functions: if f e (7~(12), t h e n ,  (f)(z) = f(x)  in ~ (or more explicitly, (f)(x) = ,0(f(x)), see the convention 
in Sec. 3.1). For continuous functions (more precisely, for functions from C(~)  \ G~(fl)) ,  the classical point 
values are recovered only by means of the association: 

P r o p o s i t i o n  3.3. I f  f e G(fl), tAen 3 (f)(x) .~ f (x)  in K for all x 6 ~. 

P r o o L  Let x e 12. In view of (2.18), for ~ 6 .A0(~"), there is an ff > 0 such that for the representative uf of 
the generalized function2 (f)  e gift)  and the representative uf,~ of the generalized number ~ (f)(x) e K, one 

has uf ,~(~ ) = u f ( ~ , x )  = f * ~ ,  (z) for all e e (0,~7). By Proposition 1.3(a), it follows that  u/,~(~,) , f ( z )  
as e , +0, and the latter means that the generalized number ~ (f)(x) has f (x)  �9 g as an associated ordinary 
number, m 

�9 g ( ) ,  m �9 1~, from Example 2.8(1). If x �9 ~" \ {0}, E x a m p l e s  3.4. (1) Consider the element 6"  ~'~ 
then 6"(z) = (6"l~-\(o})(z) - 0 in ~, whereas 6"(0) �9 K \ ~A (as in Example 3.2(4)), so that 6m(0) is not 

an ordinary number. The fact that 6"(0) ~ 0 is "intuitively" consistent with supp 6" = {0}. However, the 
following example shows that  this is not always true. 

(2) Generalized functions from ~(~") are no~ determined by their values at points x �9 ~". The function 
U �9 g(~) with the representative u(~, ~) = z " ~ ( - x )  from Example2.8(2) satisfies unusual properties: U ~ 0 
in g(R), Ul,\{o } = 0 in ~(R \ {0}), U(x) = 0 in K for a/l z �9 R, and supp U = {0}. 

(3) For leas smooth functions, compared to C ~,  generalized values ~t individual points cannot coincide 
any more with their respective classical values in the strong algebraic sense (only in the sense of association, 
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cf. Proposition 3.3). Consider a function f E C~(~) such that f(~) = 0 if x < 0, and f ( z )  = x k+~ if x >__ 0, 
where k E ~o (see Example 2.5(1)). Set Ro = R \ {0}. Since fl ,o e C~176 using (2.19), we have 

2(f)(z) = ( ~ ( f ) l ~ o ) ( X )  = a ( f l , o ) ( Z )  - f ( x )  in ~ Vx E lR0. 

On the other hand, for the representative u / o f  .7 (f)  at the point z = 0, we have 

o o  

= 0) = f d. ,  E e > 0. 
0 

From (2.15) it follows that u/,o ~ .No, that is, the value 3 (f)(0) ~ 0 does not coincide with the classical 

value f(0) = 0. Nevertheless, 3 (f)(0) ~ 0 = f(0). From this example and Example 2.5(I), we see that the 
"phenomena of noncoincidence" with classical values in both cases are very similar. The concept of association 
was introduced by Colombeau in order to recover classical values from the corresponding generalized values. 

(4) Let f : (a, b) , K be a functiofi, continuous on the open interval (a, b) outside a point z E C a, b) at 
which it has distinct finite one-sided limits from the left f ( z -O)  and from the right f(z+O). The representative 
u/.= of its generalized value 3 (f)(z),  in view of (2.18), has the following property: for ~ E .Ao(R), there is 
r />  0 such that  

0 

0 

, f as 

--oo 0 

+0.  

(3.6) 

If we show that 
oo 

Vce  vqeN 3 e Cn ): (3.7) 
o 

then (3.6) implies j ( f ) (z)  E K \ KA, so that  3 (f)(x)  is not. an ordinary number from K. From the point 
of view of the classical analysis, the value 3 (f)(z)  can be considered as undetermined (as long as it" can be 
arbitrary), whereas in the algebra ~ this value is quite well defined but  does not have an associated ordinary 
number. 

To prove (3.7), choose functions r r E .Ao(R) such that suppr C (0, oo) and suppr C (-co,0), 
and in Lemma 2.1, put ~o - c361 + (I - c)~b2. The function ~o E Ao(R), in addition, satisfies the conditions 

OO 

R \ {0} and / ~0(A) dA -- c. Then the function ~o from the proof of Lemma 2.1 satisfies (3.7). o supp CC 
0 

For every open set ft C R ~ there are natural inclusions ~ C s E-O,M C s and .A/'o C A/'[12]. We 

have an imbedding of g into ~(12) defined as follows: to a generalized number Z - {u(~)}~ea,(~") + Afo E K, 

we associate the generalized function U = {u(~) }~,r ~) + A/'[ fl ] E ~(12). 
Using the latter imbedding, we say that  U E ~(12) is a constant generalized function if U = Z in ~(12) 

for some Z E K, or equivalently, if there is a representative of U which does not depend on x E 12. For such 
a generalized function U, we have U(z) = g for all z E 12. However, as we have seen in Example 3.4(2), a 
generalized function which has the same value at all points can not be a constant generalized function. As in 
the classical analysis we have the following characterization of constant generalized functions: 

P r o p o s i t i o n  3.5. If  U E ~(f~) and 12 C R '~ is a connected open set, then U is a constant generalized 

function on 12 iff ajU = 0 in ~(12) for all j = 1, . . . ,  n. 
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Proof .  Fixing Zo e il, let us show that U = U(xo) in G(fl). Let u E s be a representative of U. 1. 
If r > 0 is such that the open ball B~(Zo) is contained in il, by nadamard's  formula, for all x ~ B:(xo) and 

E A o ( ~ ) ,  we have 

1 

i-.1 5 

Since OiV = 0 on B~(xo), the right-hand side of the above equality belongs to A/'[ B*(zo)], whence UIs,(~0) = 

U(zo) in g(B*(x0)), where U(zo) is defined by its representative {u(~o, xo)}r 

2. Since fl is connected, for every x E fl, there is a continuous function h~ : [0,1] , fl such that 
h~(0) = Xo and h~(1) = z. Since the image K~ = h~([0,1]) is compact in il, its covering by open balls of 
radius d~ = dist(K~, 011) > 0 centered at points of K~ admits a finite subcovering. Applying the argument 
of step 1 to the balls from this finite subcovering and noting that on the intersection of two of these balls the 
function U is the same, for every x E fl, w.e shall find an r~ > 0 such that U = U(xo) on B~,(x). Since the 

family {B* (x)}~r covers il, in view of Theorem 2.6(c), we conclude that U = U(xo) on ft. 

K e m a r k .  If U(xo) E Ig for some zo E il, then U is a constant generalized function equal to the classical 

value V(xo). n 

3.3. T h e  in tegral  of  a general ized funct ion  over a com pac t  set .  Now we define an integral of 
a generalized function U E g(il) over a compact set K C ft. If u E s is a representative of U, set 

[u(~o,z) dz for ~o E Ao(R"), and note that In  E s furthermore, Ig  e s (resp. A/o)ifu E s IK(~) 
K 

fl ]). Thus, the following definition is correct: the generalized number [ U := ~ = IK + A/'o E ~ is (resp. Af[ 
K 

called an integral of U E ~(fl) over K. Sometimes it is convenient to show explicitly the integration variable; 

in this case we write [ U(~:)dx = [ U. Note that the introduced concept of an integral is "local" in the 
I 

sense 
d d 
K K 

that if 011: is an open neighborhood of K, then [ U = / ( U l o ~ c )  in ~. For C ~176 functions, the n e w  concept 
K K 

/ / �9 exactly generalizes the classical one: if f E 6'~(il), then z (f)  = f in ~. For continuous functions (and 
K K 

locally integrable as well), the classical integral over a compact set is recovered by means of the association: 

/ / Propos i t ion  3.6. / f f E C ( f l )  o r f E L L ( i l  ), then 3(f) ~ f i n ~ f o r a l I K c c f / .  
K K 

Proof .  In view of property (2.18), given a compact set K and a function ~o E .4o(R'~), there is 77 > 0 such 

that for the representative u f of the generalized function 3 (f) ,  we have u f ( ~ ,  x) = ( f  �9 ~ ) ( x )  for z E K and 

E (0, 7). Then Proposition 1.3(a, d) yields 

/ ? '  /,r 
K K K 

, +0, 

Q.E.D. n 
If U is a generalized function with compact support, i.e., U E Go(f/), we can define the integral of U over 

the whole set il 

f u : = f u ,  where K C C f l  and K*=intKDsuppU. (3.8) 
n K 
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The left-hand side in this definition does not depend on K with the mentioned properties: in fact, if compact 
sets K1 and K2 are contained in fl and are such that K~ D supp U and K~ D supp U, then choosing 

E :D((K~ N/('2)*) such that ( = 1 in a neighborhood of supp U and using Proposition 2.7(b), we find that 

K1 K1 KtnK2 K2 1"(2 

Example s  3.7. Consider the element 5 E g(R") having the representative us(~, z) = ~o(-=) with ~o E Jto(l~") 

and z E R '~. 
b 

(1) In one dimension (n = 1), let us compute the value of the integral f 6(z) dz E K for a, b E ~, a < b. 
g 

A representative of this generalized number is of the form 

b b -a/~ 

i(~,) = f us@,,z)dz = f l x 
a a - b i t  

c > 0 .  

If a < b < 0 or 0 < a < b, then supp~o C R \ [-b/c,-a/r for small c > O, whence I(~,)  = O, so that 
b 

f ~(z) dz = 0 is an ordinary number. If a < 0 < b, then supp ~ C (-b/c,-a/c) for small c > O, whence 
a 

b 

I(~o,) = 1, so that / ~5(z)dz = 1 is also an ordinary number. In particular, i t  follows that / 5(z)d= = 1. 
a R 

o o  0 

I f a  < 0 = b ( o r a  = 0  < b/, thenlC~,) = J~c# ld#  (resp. I(~,1 = / ~ ( # ) d # )  for smallc > 0, hence 
0 - - o o  

o b 

/ &Cz I dz (resp. / 5(z / dz I lies in ~ \  KA, so that these generalized numbers are not ordinary numbers (as in 
a 0 

Example 3.4(4 / they can be viewed as undetermined). Note that the defining conditions in (3.8 / are important 
in view of 

il s u p p 6  {0} 

(2 / In dimension n = 1, we have f:a(z)dz = 0 in K, m E N; this follows from the definition of 
R 

sets Jt~(R). 

(31 Analogously to Example (1), f 6(zldx = 1; however, f 6'(zldz E K\ K^ since a representative of 
R n R n 

the latter number is I(~o,) = 1 / ~02(#/d.. a 
m n 

From the definition of the integral of a generalized function, one sees that the classical formulas of 
integration by parts, change of variables in the integral, change of order of integration, etc. hold for integration 
of generalized functions since these formulas hold for representatives of generalized functions. For example, 
if U E ~c(fl) and V E ~(fl), then for all c~ E N o we have the integration by paxts formula: 

/(a"u). v = (-11 /u. (a"v) in m (3.9) 
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If U �9 ~(~/), r �9 7:)(n), or U �9 ~ ( n ) ,  r �9 C~176 then U. r �9 ~(O) ,  and in view of (3.8), the following 
integral is well defined: 

/ u. = / u. (3.10) 
supp @ 

where the dot �9 denotes the product in G(l'~). For what follows, it is interesting to note that if U is a 
continuous function, then the generalized number (3.10) is, in fact, a classical number; this is shown in the 
following proposition, which refines Proposition 3.6: 

P r o p o s i t i o n  3.8. (a) If f �9 C(O) or f �9 LLr ) and r �9 V(~), then 

/ , ( f ) . r 1 6 2  in ~, 
i1 fl 

where the equality is understood in the sense of the convention in Sec. 3.1. An analogous assertion holds for 
f �9 C,(n) and r �9 C~176 

then [ 3(f) = [ f in ~. The same equality holds for functions f 6 L:(a)  with (b) If f co(n), compact 
f l  f~ 

supports. 

Proof .  (a) Let K CC f / b e  such that supp r C K ~ = intK. Given ~ �9 Ao(~"), there is an 7/> 0 such that 

supp r + eBp(~l CC K ~ K C fl(~,), and uf(~p,, z) = ( f  * ~)(x)  for all x �9 g and e e (0, ~/), where u/is  the 

usual representative of 3 (f).  For the representative I ( ~ )  of the generalized number f 3  (f)" r we have 
fl 

11 s u p p ~  Bp(~) 

f ~(.)d. f f(-+~#l~(x)dx, ~�9 
B d ~.) supp 

where, in the latter equality, we have used the Fubini theorem. Changing variables in the second integral 
y = z + ~p (with/~ �9 supp ~o fixed) and using again the Fubini theorem, we find that  

I(v.)=f f f(y)v(~)r 
K Bd~ ) 

Expanding the function y ,  , r  - e/~) according to the Taylor formula up to order q �9 N, we obtain 

i(~.)- f f(y)r ~ (-~)~~ 
O [,,[=1 K 

1 
q+l 

I~l=q+: K Bp(~,) o 

It follows (as in the proof of Proposition 2.4) that  / - / f r  E Afo; this is what was required. The other 
n 

possibility for functions f and r from (a) is considered similarly. 
(b) Ii suffices to consider K CC fl such that  intK D suppf ,  and r E :D(fl) with r = 1 on K, and 

apply (a). m 
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3.4. A lgebra ic  equa t ions .  Elements of K which are not ordinary numbers axe sometimes called "wild 
constants." They were introduced in order that the usual operations on classical functions could be carried 
over to generalized functions. However, the presence of wild constants can bring to existence new nonclassical 
solutions to classical equations. In this connection, we will consider solutions in g of algebraic equations. 

Consider, for example, the equation P(x) = ( z - a ) ( z - b )  = 0, z E II(, where a and b E IK are given numbers 
such that  a #  b. A generalized number Z E K with representative u(~) = a if (2n + 1) -x < p(~o) _< (2n) -1, 
u(~o) = b if (2n) -1 < p(~o) _< (2n - 1) -1, n E N, and u(~) = (arbitrary number) if p(~) > 1, where ~o E .A0(R), 
is a solution to P(Z)  = 0 in ~ which does not equal to any of the classical solutions z = a and z = b of this 

equation. Sometimes the presence of these new solutions is undesirable; below we will consider a variant g t  
of the algebra ~ in which polynomial equations have only classical solutions. 

P r o p o s i t i o n  3.9. I f  Z E ~, m E Iq, and Z ~ = 0 in ~, then Z = 0 in ~. 

Proof .  By assumption, for a representative u E s of Z, we have that 3 N E N, 7 E r such that  Vq >_ N, 

V~o E ~4q(R) 3c  > 0, ,7 > 0 such that for all r E (0,r/), we have a bound {u(~,)l "~ <_ cr (see the text 

after (2.7)). Then l-(~,)l < cX/ e so that u E .A/'o. n 
Now we consider an algebra of generalized functions ~I(R) and the corresponding algebra of generalized 

number ~1. Denote by s the algebra of mappings u E s with the following property: for all functions 
~0 t, ~o 2 E .Ao(R) the mapping 

is infinitely differentiable in variables ( r , s ,x) .  Define a subalgebra s  in 81[R] and an ideal A/'I[R] in 
~ [ R ]  in just the same way as we have defined 8M[R] and N'[a]  above, but with the additional requirement 
that numbers c and ~/in these definitions can be chosen independently of functions ~o from the closed interval 
[~o 1, ~o 2] in the set AN(R), where [~o 1, ~o 2] = ( (1 - t)~o ~ + t~o ~ [ t ~ [0, 1] } for ~o ~, ~0 ~ E AN(R). Now we 
set ~t(R) = 8~[R]/.A/'~[R]. Excluding the dependence on z E IR in these definitions and denoting the 
corresponding sets in the Colombeau construction by s 80~M, and A/'0 ~, we obtain the algebra of generalized 

numbers ~t  := ~,M[.A/*ot. The specific character of algebras ~ '  and ~t(R) is that  in their definition, the 

continuous dependence of representatives of elements of these algebras is built in not only on x, but also on 
the parameters r and r 

P r o p o s i t i o n  3.10. Let P be a nonzero polynomial in one variable with coefficients in C. A generalized 
number Z E ~t  is a solution to the equation P(Z)  = 0 in ~x if and only i f  Z is a classical root of the 
polynomial P. 

f i t  

Proof .  We prove the necessity. Let P(z)  = i~=(z i =  - a~), where a~ E C (j = 1, .  .. ,m) ,  and let u E S~,M 

be a representative of Z. From the equality P(Z)  -- 0 we find that ~ N ~ 1~, 7 E 1 ~ such that V~ E .~(R) 
with q _> N, there exist numbers c > O, r />  0 such that  

- ay) < cr "(*) V r  E (0,,/). (3.11) 
yffil 

It follows that for every ~ E (0,,/), there is an index j(z) E {i, ..., m} for which }u(~o,) - ay(~){ _< c'/"r "t(~)/''. 
But u(9~) depends continuously on r hence j(r does not depend on r this means that j(r coincides with 

some jo for all (small) r Let us show that jo does not depend on ~o as well. Let ~ = (1 - ~')~o ~ + ~'~o ~ for some 

~o I, ~ E .A~(R). Then inequality (3.11) holds with c and ~/independent of r; it follows that for r E [0, I] 

and r E (0,~/), there exists an index j(r,r E (1,... ,m} such that 

lu((Z - + - asc.,.)l < 
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Taking into account the continuity in (r, e) of the expression u ( . . .  ), we conclude that the index j ( r ,  r does 
not depend on (r, r and in particular, this index is the same for all ~o ~ , ~o 2 �9 .A,(2). Therefore, u - aio �9 A/'0~ ; 
this means that Z is a classical root aio of the polynomial P. 

For generalized functions U �9 G~(2), we have the following analog of Proposition 3.10: 

P ropos i t ion  3.11. Let P be a nonzero polynomial in one variable with coefficients in C. A generalized 
function U �9 G1(2) is a solution to the equation P(U) = 0 in G1(2) i f  and only if U is a constant generalized 
function which is equal to a classical root of the polynomial P.  

Proof .  Let {aj}~= 1 C C be the classical roots of the polynomial P,  aj ~ ak i f j  ~ k, and let u e 6~t[2] be a 

representative of U. From the equality P(U) = 0 we find that for a compact set K C 2, there are N E 1~ and 

7 e r such that V~o e .A~(2) with q _> N, there are c > 0 and r />  0 such that [P(u(~o,,x)) I < ce ~(q) Vz �9 K, 

Ve �9 (0, I/). Taking into account the multiplicity of roots of P,  we obtain 

[u(~o,,x) - dio I _< c,r "y~(q), x �9 K, r �9 (0, rh), (3.12) 

for some (other) C1 > 0, rh > 0, and 71 ~ F ,  where aj, can depend on r ~o, and z. But in view of the 

continuity of u(~o~, x) in r ~o, and x, we conclude that ajo does not depend on r ~o, and z. Now we have to 

obtain the bounds for the representative u(~, ,  x) and its derivatives in x (denoted below by primes). For the 
first derivative, we have 

O~P(u(~ ,  x)) = P ' (u(~ , ,  ~)) . u'(~,, z); 

this implies the necessary bound for ]u'(~o~, z)] when P'(ajo ) r O. If P'(ajo) = 0 and P"(aio ) r O, then from 
the equality 

o~PCu(~,, x)) = P"Cu(~,,-.)). (u'C~, x)) '  + P'(u(~, ,  z) ) .  u"(~,, x) 

we obtain again the necessary bound for ]u'(~o~,z)] (here we use (3.12) in order to get rid of the last term). 

Applying induction on the multiplicity of the root a/0 , finally, we obtain ]u'(~o,,z)[ < c2~ "n(~), x �9 K, 

r �9 (0, t/~), for some c~ > 0, t/~ > 0, and 72 �9 F. Arguing analogously in case of derivatives in x of higher 

order, we obtain bounds o f the  same kind, so that u - ajo �9 Afx[R]. [] 

In each of the algebras g(2) and ~1(2), the following proposition holds. 

P ropos i t ion  3.12. For U e g(R), the equalities z . U = 0 and U = 0 in the algebra g ( 2 ) a r e  equivalent. 

Proof .  We have xy = 0 ~ x y ' +  y = 0 ==r x2y ' = 0 ----v z2(y') ~ = 0. I fu  E gM[li] is a representative of UI 

then, in the abbreviated notation, it follows that [z~(u'(~o,, x)) 3] < cr ~(q). In view of the integrability of the 

function ]x[ -2/~ at the point x = 0, we find that lu(~o,,z)] <_ c1r "n(q) (if x _> 0 one should use the formula 
z 

/ u(~,,  x) = u(~, ,  1) + u'(~,,~)da, and if x _< 0 one should replace 1 b y - I ) .  In order to obtain the same 
1 

bound for the derivative u' (~ . ,x) ,  we start from the equality z2y ' = 0; setting z = y', as in the beginning 

of the proof, we have xS(z') 4 = 0. Using the integrability of the function Ix[ -hI4 at ~ = 0 and arguing as 
above, we obtain the necessary bound for u'(~o~, z). To estimate the second derivative u"(~o~, z), we use the 

implications z2y, = 0 ---v 2xy '+  x~y " = 0 ==*, xay" = 0, and argue starting from the equality x3y" = 0 
instead of z2y ' = 0; setting z = y", we have =3z = 0 ==~ 3z2z  + z3z  t = 0 ~ 3z3z  + z4z  ' = 0 ==~ z4 (z ' )  s = 0, 

and so on. [] 

P ropos i t i on  3.13. The solutions U to the equation U 2 = z 2 in ~1(2) are only two C ~ functions +z  or 
- x  (cont inuo~ functions Ix[ and -[x] are not the solutions to the equation in 91(2)). The equation U 4 = z 2 

has no solutions U in ~1(~). 
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Proof .  From the equation y2 = z2 we have yy' = x ==~ y2y, = yx ~ z2y ' = yx ==~ x(zy'  - y) = 0. By 
Proposition 3.12, it follows that zy' = y. The latter equality, together with ( y ,  z)(y + z) = O, gives us 
z~(y ' - 1)(y' + 1) = 0. Again, by Proposition 3.12, (y' - 1)(y' + 1) = 0. From Proposition 3.11 we find that 
y' = 1 or y~ = - 1  in gl(R). By Proposition 3.5, we obtain y = z + cl or y = - x  + c~ for some generalized 
numbers cl and c2. Finally, the equation y2 = z2 yields cl = c2 = 0. r~ 

A more general result on the regularity of solutions to algebraic equations which includes all the previous 
results is contained in the following assertion. 

T h e o r e m  3.14. Let P(x ,y )  be a nonzero polynomial in two variables z and y. I f  I C R is an open interval 

and U E ~ ( I ) ,  then P(x,  U) = 0 in ~1(I~ if and only if U is a classical C ~ solution of this equation on I. 
t3 

We do not prove this theorem here, and refer the reader to the papers from which most of the material 
of Sec. 3.4 was taken: Biagioni [15, 1.10.8], Colombean [47], Marzouk [130], and Marzouk and Perrot [131]. 

4. N o n l i n e a r  P r o p e r t i e s  of  Genera l i zed  F u n c t i o n s  

The algebraic structure of ~(f~) allows us to perform polynomial nonlinear operations in ~(f~) (as usual 
f] C R ~ is an open set). In this section, we are going to show that in ~(f~), a large class of nonpolynomial 
nonlinear operations much more general than the multiplication have a sense. Such operations are useful 
in connection with the solution in ~(12) of nonlinear partial differential equations. Moreover, we define the 
concept of composition of generalized functions and restrictions of generalized functions to linear subspaces. 

4.1. N o n l i n e a r  o p e r a t i o n s  f rom OM(KP). For p E N, denote by GM(P. p) the algebra of functions from 
Coo(R n) slowly increasing at infinity, 

OM(R p) = { F  ~ COO(RP)IVa ~ .~g 3c  > 0, m ~ N : 

v= e < c(1 + I=1)" }. 

Clearly, OM(R ~) contains all polynomials and is a differential subalgebra in Coo(R p) with respect to the 
pointwise operations which, moreover, is invariartt relative to the partial differential operators: 

a oM(R ") c oMCR'), e I 'o. 

For example, if f (x)  - sin z, g(z) = cos z, h(z) = e if (i = ~ ' ] ' ) ,  z E R, then we have f ,  g E {~M(]~; R), and 

h E OM(R; C). Another example is the "product in C, ~ which is an operation from OM(R4; C). Having in mind 

the latter example, we identify C and R 2 so that  we have OM(K p) = OM(R p) if K = 11, and OM(K') = C)M(R 2') 
i f g - - C .  

Let (as usual) U1, . . . ,  Up E ~(II) be K-valued generalized functions. For the corresponding representatives 
ul, . . .  ,up E s of these generalized functions and F E OM(KP), we set 

(FCu , : =  e - 

define the generalized function F(U1, . . . ,  Up) E g(I1) by the equality 

F(U,, ...,U~,) = F(u,,  . . . , u , )  + Af[f~]. 

The fact that  this equality defines correctly the mapping 

F :  (~7(ft))' = .~(fl) x . . . x  g(12) , g(f~) 

p times 

is verified in the following proposition. 
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Propos i t ion  4.1. Assume that ui, ~ ~ s j = 1, . . . , p .  Then 

(a) F(ul, . . . ,up) ~ ~u[12]; 

(b) /f u1 - ~i �9 A/'[12], j = 1 , . . .  ,p, then F ( u , , . . .  ,up) - F ( ~ , , . . .  ,~p) �9 A/'[f2]. 

Proof .  (a) Obviously, F(Ul, . . . ,up)  E s Since F E OM(KP), there are ct > 0 and m E N such that for 

all z ~ ~C we have 

IF(z)] _< c~(1 + Ix[v) '~, where [zip = Iz[~,. (4.1) 

If K CC 12, then S N  E ~ such that Vqo E AN(R") Sc > 0, 7/ > 0 such that 

lui(qoe,z)[ < ce -N, x E K, ~ E (O, rl), j = 1, . . . , p .  (4.2) 

It follows that for all qo E .AN(I~"), z E K, and ~ E (0,17), in view of (4.1) and (4.2), we have 

x),  . . . ,  x))l  < c :  

where the constant c2 > 0 depends only on c, cl, p, and m. 
For the first-order derivatives of F(u~, . . . ,  up) (which corresponds to a multi-index of length In] = 1) we 

have by the chain rule 

P 

0xkF(ul(~O , z ) , . . . ,  up(qo, x)) = E(OjF)(Ul(qO, x ) , . . . ,  up(qo, x))" (Ox, ui)(qo, x), 
j= l  

where (aiF)(yt , . . . ,yp)  denotes the partial derivative of F with respect to the variable yj. Using bounds 

for 0 iF  from the definition of OM(KP), and bounds for u I and O, ku j from the definition of s for the 

derivative O=~F(u~, . . .  ,up)(qo~,z), we obtain a bound of the form ce -N uniformly in z E K CC 12. 

The general case of arbitrary multi-indices c~ E N o follows from Fan di Bruno's formula, which is read as 

follows. 
Faa di B runo ' s  formula .  Let A C ~P and f~ C R ~ be open sets, F E C~~ g), and let f E C~176 A), so 

that f ( z )  = (f~(z), . . . , hCz) )  E A / o r  all z E 12. Then for all a E Iq o, I~1 >_ t,  and �9 e 12, faa di Bruno's 
formula holds: 

0~[ F(f(x)) ] = 0~[ F(flCx),..., fp(x)) ] = 

I~I c~ ! P P ~i ~N 

= ~ ~ a~ ~ ..ctN,N, ~ ... ~ (O,,...O,,F)(f(z)).(O f , , )(z) . . . (a .~,,)(z), 
N - - I  a l , . . . , a N  " " " " / 1 : 1  i N = I  

where the second sum is taken" over all ordered collections of multi-indices (a~, . . .  ,aN), a i E N o, la~l > 1, 

i = 1, . . . , N ,  such that a 1+ . . . + d  v = a. 
In particular, i f  lal -- 1, this formula is the usual formula for the differentiation of a composition function 

of several variables (the chain rule): 

P 

O,~[F(f(x))] = ~ ( O j F ) ( f ( x ) ) .  (O,:,fj)(x), k = 1, . . . , n .  o 
j = l  

(b) As in (a), the proof is performed by induction on the order [a I of the multi-index a E N o. If [a[ = 0, 
by the mean-value theorem, we have 

IFCux(~, x), . . . ,  up(~,, x)) - F(~I (~,o, z ) , . . . ,  ~p(~,  z))l -< 
P (4.3) 

_< s u p  + - I( J - 
j=1 o<o.t 
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If K CC fl, there are N 6 1~, m E 1~, and 7 6 F such that if ~ E Aq(~") with q > N, then there are c > 0 
and ,7 > 0 such that 

I(0jF)CA)I < c(a + IAtp) ~, A e K', 

luj(~,, =:)1 <- c~-N' (4.4) 

I(,~ - ~J)(~,, x)l < r162 

for a l l z  6 K, ~ E (0,q), a n d j  = 1 , . . . , p .  From here and from (4.3), for a l l ~  6 . A q ( ~ ) ,  z 6 K, and 
6 (0, 7/), we find that 

IFC{uk(~,,, ~ ) }L1 )  - F({~,~(~,,, ~ ) }L , ) I  -< c,~.,.cq~-c,,,+~.,v, 

where the constant ci > 0 depends on c, p, and m. This is the necessary bound in the case I=I = 0. If I=I = i, 
for i = 1, .... ,n,  we have 

O~, (F({ i tk (~ , , z )}~_ , ) -  F({~C~,,z)}~=~)) = (4.5) 

P 

= ~( (OjF) ( {~(~ ,  ~)}L , )  - (ojr)({~(~,,  ~)}L~))" (0~,~j)(~,  ~)+ 
j----I 

P 

+ ~(O~F)({~(~ , ,  ~)}L,)  �9 (a,,C~j - ~ ) (~ , ,  ~)). 
j = l  

From here we obtain the necessary bound for the difference in (4.5). In the general case of a E ~o one should 
use Fan di Bruno's formula, m 

The nonlinear operation F : (g(f~))P , g(lq) defined above exactly generalizes the usuM nonlinear oper- 

ation over G ~ functions: if f 6 OM(K p) and {fi}~=~ C C~176 then F( :  ( s  . . . , z  ( h ) )  = '  (F(f~, . . . ,  h ) )  

in ~;(f~); here we have used the imbedding (2.9). In the case where functions f j  are only continuous, the 
classical function F ( f l ,  . . . ,  fp) is recovered by means of the concept of the association, which is defined below 
for generalized functions from g(f~) (Theorem 8.12). 

For generalized numbers from ~ one can define nonlinear operations more general than the multiplication 
as well. The corresponding construction is, in this case, as for generalized functions if we exclude everywhere 
the dependence of mappings on z E fh if F q OM(K~), and generalized numbers Z1, . . . ,  Zp fi ~ have cor- 

resPonding representatives ul,  . . .  ,ttp 6 Eo,M, we set ( F ( u l , . . .  ,up))(~) = F ( u ~ ( ~ ) , . . .  ,up(~)) ,  ~ 6 Mo(~"), 

and the generalized number F.(Z~, . . . ,  Zp) e K is defined by 

F (  Z , ,  . . . , Z~) = F ( u , ,  . . . , up) +.No. 

Thus, the nonlinear operation F : (K-') ~ , ~ is well defined and generalizes the nonlinear operation over 
ordinary numbers from ~:  if z~, . . . ,  z~ e ~,  then F(,o(ZO, . . . , ,o(Z, ) )  = ,o (F(z~ , . . . ,  z,,)) in ~ (see (3.5)). 

Calculations in ~ are recovered via the association: 

P r o p o s i t i o n  4.2. Let F q r P {Z/}j__, C K, {z~}in-_, C ~, and let Z~ ~ z~ in K for  j = 1, ..,p. 

Then F ( Z , ,  . , . ,  Z,) ~ f ( z ~ ,  . . . ,  z~) in ~.  

Proof .  For j = 1, . . .  ,p and for a representative u s 6 ~ . M  of the generalized number Z1, from the association 
Zi ~ zi we find N e N independent of j such that 

~(~ , )  , ~  as ~ ,+0 ,  ~ t , , ( ~ ) ,  j=~,...,~. 

Hence F(u~(~ , ) ,  . . . , u n ( ~ ) )  , F ( z , ,  . . . , z , , )  as ~ , +0 for ~ as above, c~ 
Note that  nonlinear operations in ~(~)  and ~ are coherent with pointvalues of generalized functions, 

which is explicitly given in the following assertion. 
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P r o p o s i t i o n  4.3. If  F E OM(~') and U1, . . . ,  Up e ~(gt), then 

(F(U~, . . . ,U,))(z)  = F(UI(x), . . . ,Uv(x)) in ~ Vx e f/. 

This follows immediately from the corresponding definitions, o 
Let us consider in more detail real-valued generalized functions. Let 6 E g(R") be the (Dirac) generalized 

function with the representative us(~,x) = ~ ( - x ) ,  ~ e A0(R% x E R~, and let F(x)  = e i*, z E R, so 

that F E OM(R;C). If we want to make sense out of the composed generalized function e i6 having the 

representative v(~, x) = e ~*(-*), then, in the construction of the algebra g(R'~) we should restrict ourselves to 
sets Ao(R'~; R) made only of real-valued functions ~. Note also that if f E C(R~), then f is real valued iff the 
representative u :  E s R n ] of the generalized function 3( f )  E ~(R") from (2.12) satisfies the property 

e e v x  e 

Thus, it is natural to give the following definition. 

Def in i t ion  4.4. We say that a generalized function U E ~(R~) is real valued if it has a representative 
u E EM[R '~ ] with the property u(~,x) E R for all ~ e .A0(R"; R) and x E R" (we assume here that the algebra 
~(R") is constructed starting from the index set .Ao(iR"; R)). r~ 

On the other hand, we can define a real algebra of generalized functions ~(R'~; ~) if we take the algebra 

~ [ ~ ;  R] = C~176 R) A~ and define , in the usual way, its subalgebra d~M[R"; R] and an ideal .h/'[l~'~; R] in 
it, and then set 

a) = 

Now the composition e ~ e g(R") can be well defined as follows: since ~ e ~(R'~;I~), d~ = u~ +A]'[R";R], 

and F(x)  -- e ~x ~ OM(R;C:), we set e ~ = e ~'* +Af[l~ ~ ] e ~(R"). In this way, one can define many nonlinear 
operations over generalized functions: if F ~ (gM(~ ~) and U~, . . . ,  U~ ~ ~(R '~) are real-valued generalized 
functions with corresponding real-valued representatives u~, . . . ,  u~ ~ ~M[ R"; R ], we set 

(F(u,, . . . ,u~))(~,x) = F(u,(~,x) ,  . . . ,u~(~,x)),  ~ e Ao(l~";l~) x E R", 

and define the generalized function F(U~, . . . ,  Up) e G(R '~) by 

F(U1, . . . ,  U~,) = F(u,, . . .  ,u~) + Af[R~]. 

Taking into account the fact that all calculations are, in fact, made in d~[R"] after an arbitrary choice of 
representatives of the generalized functions under consideration, it is easy to see that new nonlinear operations 
over generalized functions satisfy the same rules of calculations as their classical counterparts. For example, 
if U ~ g(R") is a real-valued generalized function, then one has 

a,,(sinU) = (cosU).  (a, ,u) in ~(u~), J = 1 , . . . , n .  

For reM generalized functions and real generalized numbers, one has analogs of Propositions 4.2 and 4.3. 
Also, it is clear that  everything we had said in the case fl = R" could also be said above in the case of an 
Open set fl C ~". 

4.2. C o m p o s i t i o n  of genera l ized  func t ions .  Now we define the composition of generalized functions. 
Given a function r ~ :D(~), we define the n-times tensor product of r with itself (or the n-fold tensor product 
of r by 

r174 ...,x,~) = l~I r (x~, . . . ,x,~) ~ a '~. (4.6) 
I 

j=l 

Consider the set of index functions having the tensor product structure 

, a~ (~ )  = { ~ = r  ~ ~ ( n ~ )  I r e ~(U~) }, q ~ So. (4.7) 
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As we have seen above (step 2 in the proof of Lemma 2.1), these sets are nonempty. 
Let f / C  R" and A C R '~ be open sets. Set 

s a; a "~ ] = (Coo(~; ~"))-'r 

where Coo(~/;R m) is the space of C ~ functions from fl into t~ m. Define an algebra of moderate elements 

similarly to (2.6), i.e., 

SM[f~;R m ] = { u E E [ f ~ ; R ' ~ ] I V K C C K t  V~EN o 3 W E N :  

v ~  e A~c(a") 3c  > 0, ~ > 0 : (4.8) 

v~  e (0,~) : sup=~K 10~ < c~ -~ }, 

where I " Im is the (Euclidean) norm in R'~. Define an ideal A/'[ ~; R'~ ] of null elements of EM[ ~l; R '~ ] similarly 
to (2.7) with same modifications as in (4.8). Define the algebra of generalized functions g(f/; R") on n with 
values in R'~ in the usual way: 

Clearly, an element of g(f/; a 2'~) can be considered as m (complex valued) elements of g(f/; C) (if we identify C 

with R2). 
Finally, denote by ~7,(f~; A) the set of elements U E ~7(f~; a ~) such that there is a representative u 

~M[~;R" ] of U with the property 

VKccfl qNEl~ suchthat V~EA~(a ~) qr/>0, /(i cCA, such 
(4.9) 

that Kz does not depend on ~o and { u(~o,, z) I = e K, �9 e (0, ~/) } C/(1.  

Note that if one representative of the generalized function U satisfies property (4.9), then all representatives of 
this generalized function satisfy this property as well. In general, g.(O; R") # g(f/; R ' )  since for the element 
6 e (~(R"; R), in view of Examples 2.3(1) and 2.8(1), we have 6 ~ G.(R"; R). Nevertheless, the class g.(12; A) 
of generalized functions is sufficiently large. 

P ropos i t i on  4.5. / f  f E C(f/; A), then the generalized function 3 (f) is in g.(i2; A), where the imbedding 
I : C(fl; A) , gift; R ~) is defined similarly to (2.12) and (2.17), and the ind~ sets ,4~(R"; R) consist of 
real-valued functions. 

Proof. Let K CC f/and ~ E A~(R";R). By (2.18), there is an r/o = r/o(K,~) > 0 such that, in view of the 

calculations in the proof of Proposition 1.3(a), we have 

lus(~,,x) - f(~)l,,, _< c(~o) sup If(~' + ,x) - f(y)l,,,, 
I/E/(" 

,XEB, w,e) 

x E K, r E (0,~o), (4.10) 

with c(~) = [ 19(v)ldv. Let 0 < r < d, where d = dist(f(K),OA) (then d > 0 since f (K)  CC A). Due 
B.,(~) 

to (1.3), it follows that f ( K ) +  B, "~ CC A, where B~ is the closed ball in R '~ of radius r centered at the origin. 
Noting that the right-hand side in inequality (4.10) tends to zero as e , +0, we can find r /=  r/(~) > 0 such 
that this right-hand side is less than r for all e E (0, ~/). This means that 

{ u:(~,, x) I = e K, ~ E (0, ~1) } C f (K)  + B'~ 

with the compact set on the right hand side of this inclusion independent of ~. o 
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T h e o r e m  4.6. Let generalized functions V E ~( A ) and U E ~.(12; A) have representatives v E ~M[ A] and 
u E s respectively, and let an element w E/~[12] be defined as.follows: 

VK CC 12 3 N  E N such that V~ = ea,~ E A~(I~") 

with r E AN(R), 3r/ > 0 such that 

=~(r ,u(r176 ,~)), ~ K ,  ~ e ( 0 , ~ ) .  (4.11) 

Then w E s 
The generalized function Vo U = w + A/'[i2] E ~(12) is called the composition of generalized functions V 

and U; it is well defined in the sense that it is independent of the choice of representatives of the generalized 
functions V and U. 

Proof .  1. First we verify the moderate property of w. Let K CC 12, and let N and I/be as in (4.9). Then the 
set {u(r is contained in a compact set K~ C A, which is independent of r Using the moderate 

te(0.,~) 
property of v, we find an integer N~ e N such that if ~ = r E A~a (R'~), then there is an r/~ > 0 such that 

Iw(C~,z)l  < c~ -N~, z e K, ~ e (0, r/,). 

Now, the same kind of bounds can be established for partial derivatives cg~w, a E N o. For derivatives of the 

first order, in view of (4.11), we have 

7Vt 

O,:,(w(f~,",z)) = ~(Oiv)Cr162 �9 (O=kui)(r k = 1 , . . . , n  ; (4.12) 
j=l 

here Ojv denotes the partial derivative of v with respect to the j th  argument, and uj is the j th  component 
of the vector u = (ul, . . . ,u,, ,).  This equality and the moderate property of v and u imply the necessary 
bound for the derivative 0=,(w(r ~'~, x)). The general case of derivatives of arbitrary order follows from Fan 

di Bruno's formula (see Sec. 4.1). 
2. Assume that ~ and ~ are other representatives of V and U respectively, so that v - ~ 6 A/'[ A] and 

u - ~  EAf[ fl; R '~ ]. Define an element ~ similarly to w in (4.11) with v and u replaced by ~ and ~, respectively. 
We have 

= [ ,(r ~(r ~, ~)) - ~(r ~ ' ,  ~(r ~))]+ 
a m  ~ a n  +[.(r ,u(r ,~)) - ~(r162 

The first difference in square brackets has the necessary bound for Af[ 12 ], which follows from the mean-value 
theorem (see the proof of Proposition 4.1(b)) and the following conditions: v e s A ], u -  ~ e Afire; I~ ~ ], 
and (4.9). The second difference also has the necessary bound for A/'[ f~ ] if we take into account that v - ~ e 

A/'[A ] and that ~ e s R"] has the property (4.9). 
The same arguments gives the necessary bound for A/'[ f~ ] for the first-order derivative 0k (w-~) ,  Ok = &~ 

a m  a n  if we note that (for brevity, in the calculations below, we omit the dependence of functions on r , r , and z) 

a~Cw- ~) = a~Cv(u)- ~(~)) = ~ ( [ ( a ~ ) C u ) -  ( a~) (~) ] .  o,u~+ 
i : 1  

+(0~.)(~) �9 [0,u~ - 0 ~  ] + [ (0~)(~)  - (0~)(~)1 �9 o ~ ) .  

In the case of a derivative of arbitrary order 8~(w - ~),  we argue using Faz~ di Bruno's formula. Thus, 
w - ~ ~ Af[gt]; this is what we have to prove, ra 
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R e m a r k .  Note that  if m = n, we must define the composition of generalized functions in Theorem 4.6 in the 
case of the initial index sets Jl ,(~ ~) which do not necessarily have the tensor product structure as A~(R"). 

The necessary condition, however, which must hold for a representative of a generalized function U E ~7.(fl; A) 

is a condition of the  form (4.9), where ~ E A~(Ii ~) is replaced by ~ E A ~ ( ~ ) .  ca 
The concept of the composition of generalized functions generalizes exactly the corresponding concept for 

C ~ functions: if g E C~176 and f E Coo(f/; A), then, in view of Proposition 4.5 (applied to the function f) ,  
we have 

z~(g) o,~.M-(/) = ,~(g o / )  in ~(n), 

where we denote by zA, *o,M =, and zn the canonical imbeddings ta : Coo(A) ' ~(A),  to,M*" : Coo(fl; A) , 

~(f/; • ) ,  and *n : Coo(f/) .~ ~(f/), which are defined similarly to (2.9), The composition g o f of continuous 

functions g E C(A) and f E C(f/; A) is recovered by means of the concept of the associated distribution 
(Theorem 8.14). 

The formula (4.12) can be rewritten in the form 

ok(Vo u) = ~(o jv ) (u) .  aku~ in ~(n), (4.13) 

where cgk = tg=~ (k = 1, . . . ,  n), OjV is the derivative of V with respect to the j t h  argument, and Uj is the j t h  
component of the vector U = (0"1, . . . ,  U,~). Since formula (4.13) for the differentiation of the composition 
of generalized functions holds, it follows that  Fax di Bruno's formula (see Sec. 4.1) holds in g(f/); this is a 
natural generalization of the classical Fax di Bruno's formula. 

Having at hand the concept of the composition of generalized functions, we are able to establish the 
formula of change of  variables in generalized integrals: 

P r o p o s i t i o n  4.7. Let fl, A C R'* be open sets, U E g(A; K), and let h : f~ , A be a Coo diffeomorphism. 

Then for every compact set K CC f/ we have 

f(Uoh)(=).ldetO=h(~)ld== f U(v)dv in ~, (4.14) 
K h(K) 

where Ozh(z) is the Jacobian of the function h at the point z E ~ .  

Proof .  It suffices to note that if u E g u  [ A; K ] is a representative of U, then a representative of the generalized 
number at the left-hand side in formula (4.14) is of the form 

f u(~,,hCz))ldetO, hCz)ldz= f u(~o,,y)dv, ~e~$(#), ,eC0,n); 
K h(K) 

the latter equality is nothing else but the classical formula of change of variables in the Lebesgue integral. 
I3 

4.:1. R e s t r i c t i o n  of  genera l i zed  func t ions  to  l inear  subspaces .  The tensor product structure of the 
sets .A~(R '~) is very convenient in connection with the definition of a restriction of  generalized functions to 

linear subspaces. Here we consider the simplest restriction to the subspace R =, where m E N and m < n 
(in the case m = n - 1 of a hyperplane, such a restriction arises naturally in connection with the solution 
of Cauchy problems for partial differential equations). Let u E EM[R" ] he a representative of a generalized 
function U E ~7(R~). Given a point z El i " ,  it is convenient to use the following notation: z = (z ' , z" )  with 

z ' =  ( z l , . . . , x = )  and z" = (z ,~+ t , . . . , z , ) ;  in particular, 0 ' =  ( 0 , . . . , 0 )  E R =, O" = ( 0 , . . . , 0 )  E R ~-=. The 
restriction UIR = E ~(R =) of the generalized function U to the linear subspace ~= = { z E R ~ I z = (z', 0") } 

is defined by means of a representative u[R" of UIR = as follows: 

(~1~=)(# =, ~ ,  . . . ,  ~=) = ~(r174 ~ . . . . ,  ~ . ,  0, . . . ,  0), ~ e ~o(~),  
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where (xl, . . . ,x ,~)  �9 R '~, r �9 .4~(Igr~), and r �9 .A~(lg"). Clearly, ullg "~ �9 g[R=]; the fact that the 
above definition is well defined follows from the fact that if u �9 EMIR"] (resp. A/JR" ]), then u lg"  �9 gM[~ "~ ] 
(resp. Af[ ~'~ ]). For smooth functions, the new restriction to linear subspaces generalizes exactly the classical 
restriction: if f �9 C~176 t h e n :  (f)]li = = :  ( f i l l" )  in 6(1R=), where at the left-hand side, we denote by z 
the canonical imbedding of C~176 '~) into ~(R"), and at the right-hand side, we denote by : the imbedding of 
C~176 '~) into g(R'~). For continuous functions, the classical restriction to a linear subspace is recovered by 
means of the association relation (Theorem 8.16). 

Note that the restriction map defined above can be considered as the composition as well; in fact, if we 
denote by ~ :  ~= , R ~ a Coo function defined by ~;((xl , . . . ,x ,~))  = ( x , , . . . , z = , 0 , . . . , 0 )  �9 1i ~, then for 
U �9 ~(~'~), we find that  U[II '~ = Uo~r since the composition Uog has, in view of (4.11), a representative of the 
form u(r ~ xl, . . . ,  x=, 0, . . . ,  0). On the other hand, note that  the restriction map from g(R") into g(Ii '~) is 
suvjective: if V E Q(~") and ~r: ~" , R = is a smooth function defined by ~r((xh . . . , z~) )  = (xl, . . .  ,x,~), 
then the generalized function U = V o r �9 g(R ~) has the property U[R = = V in ~(1~") since the composition 
of the above two smooth functions ~r o s = . i d ~  is the identity mapping of R". 

(A more general definition of restrictions of generalized functions to linear subspaces was given by Bia- 
gioni [15, w 1.3.5]; see also Aragona and Biagioni [8, w 2.4] and Oberguggenberger [156, III.w 11].) 

5. T h e  Space  of  Schwar tz  D i s t r i bu t ions  

In this section, L. Schwartz's linear distribution theory is studied as a continuation of 3.-F. Colombeau's 
nonlinear theory of generalized functions. A distribution is defined as a generalized function which locally 
(on every relatively compact open subset) is a partial derivative of a continuous function. It should be noted 
that this concept of distributions is exactly the one used in the classical distribution theory. This approach 
to distributions proposed by Colombeau [39] (see also Aragona and Biagioni [8]) seems to be one of the 
most simple and efficient approaches to the distribution theory: indeed, even for the definition of ~(f~) one 
needs only concepts of open and compact subsets of R~, C ~ functions of several real variables, rudiments of 
integration theory, and quotient structures in commutative algebras of smooth functions, and one does not 
need the theory of locally convex topological vector spaces, which is usually used in the classical approach in 
order to present any nontfivial part of the distribution theory (there is, however, another sequential approach 
to the distr ibutiontheory [5]). It is certainly not our purpose to present the distribution theory in its entirety; 
we develop here a relatively small part of it, which (in our opinion) shows the naturalness and the power of 
the mentioned approach. 

5.1. T h e  def in i t ion  of  Schwar tz  d i s t r ibu t ions .  In (2.9), (2.12), and Proposition 2.4, we have established 
the coherence of inclusions 

C~176 C cCn) c gCn). 

Since the algebra ~(f~) is invariant under partial derivatives and since partial derivatives in ~(fl) exactly 
generalize partial derivatives in Ck(f~), it is natural that the following elements of ~(fl) attract our attention: 

Def in i t ion  5.1. An element T �9 ~(f~) is said to be a distribution on an open set f~ C R" if for every 
compact set K CC f~, there exist a continuous function f e C(f/) and a multi-index a �9 N~ such that we 
have the representation 

rlxc, = (0=aCf))lK. = o~aCflK .) in ~ ( g  ~ (5.1) 

on the interior K ~ = intK of K, where we have used the imbedding (2.17) and the restriction property (2.19). 
m 

R e m a r k  5.2. Note that if K, f ,  and a are as in Definition 5.1, K1 CC f~ is such that K C intK1 = K~', 
and ~ �9 T~(K~') is such that r = 1 on K, and if we set fl  = ~f  (so that ./'1 = 0 on R" \ K~'), then we have 
.#1 �9 Cc(K[) C C,(fl), .t'~lm = f i g '  in C(K~ and TIK. = cg'.7(f~lK.) in G(K~ Thus, the function f in 
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Definition 5.1 is not uniquely determined, and (which is very convenient) it can be chosen to be compactly 
supported on any compact set K~ C F/which contains K in its interior. 

The set of all distributions on 12 is denoted by (see Sec. 2.4) 

/ Y C ~ ) = { T ~ ( ~ )  I V K c c ~  ~ f 6 C ~ ( ~ ) ,  a ~ o :  
T = 0r (f)  on K* }. (5.2) 

F_,xamples 5.3. (1) For z 6 a, set signz = x/Ixl if z ~ 0, sign0 = 0, z+ = max{0,z} = (z + Ixl)/2, and 
H(x) =_ sign + x := (sign x)+. The function H is called the Heaviside function on R (the value H(0) can be 
considered to be undetermined). In view of imbedding (2.I2) and (2.10), for representatives of these functions 
in the algebra ~(R), we have 

"H(~, X) = (H* ~)(~) = f ~  CA - ~) dA, 
0 

~§ = (~+, ~1(~1 = f ~ ( ~  x l d ~ ,  
0 

~ e &(~) ,  ~ e ~ .  

Integrating by parts, we find that 

O 0 

d d 
and hence 3 (H) = 3 (x+) in ~(R), or, in short, H = ~xxx+ in ~(R), so that H e 2YCR). Differentiating the 

representative of H, we obtain 
i:Q 

~ u.§ ~u.I~, x)= - f ~'la - .)d~ = ~(-.)= u,I~,.) 
0 

Thus, 5 = d H  = d2 dz ~z2z+ E TCCR). The generalized function 6 e gil l)  with representative us is called the 

Dirac 5 function (or the Dirac 5 distribution) on R (see Proposition 2.3(1) and Example 2.8(1)). 
(2) Now we extend example (1) to the case of R". For (x,, ..., x.) e R n, we set z+ = (zl)+ "-(x.)+ and 

H,~(z) = H| = H(zx ) . . .  H(z,,). If u=+ and uu, are representatives of x+ and H~ in the algebra ~(R"), 

then by integration by parts, it follows from (2.10) that if ~ E Ao(R~), z = (zl, . . . ,  z~), and A = (A1, . . . ,  A,,), 
then 

a,, . . .  O,.u,§ = a,, . . .  o , .  ] ~+~(~ ~ ~ d~ 

0 0 

O0 0O 

= (-~)-/.../~,... ~ , ( o ~  � 9  o ~ . ~ o ) ( , ~  - x ~ ,  . . .  , ~ ,  - : , , ) d ~ , . . . d ~ ,  = 

0 0 

0 0 I t  n 

Thus, H~ = 0=, -.- O,,,,z+ in g(~"), so that H,, E 7Y(~"). Differentiating the representative of H~, we obtain 

2 ~1 ...  0:, ,+(~, x) = 0~, ... 0~ .~ . (~ ,  x) = ~ ( -~)  = ~,(~,, z); 
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]t~ ?'& from this we conclude that the Dime 6 function 6 E ~( ), which has the representative us(~o, x) = ~ (z) with 

@, z) e .Ao(a") x a", is a distribution on ~". o 

T h e o r e m  5.4. (a) 7:)'(g/) is a linear space (over the field ~, ), but not an algebra. 
(b) 0STY(f/) C 7Y(T/) V/9 e ~o' 

Proof .  First we prove (b). If T e 7)'(fl), and K, f ,  and a axe such that equality (5.1) holds, then 

(0~T)[K. = 0~(T[Ko) = O~(O~3 (f[K*)) "0~+~3 (f[K~ and it follows that O~T E ZY(fl). Before we prove (a), 
in the first two steps below we will obtain some auxiliary facts (which will be useful for what follows). 

1. If fl C R is open and f E C~(f~), then supp f C [a, co) for some a E I~. Set jo  id, (Jf)(x)  = 

/ f(~) d~, x E R, and J "  = J o J'~-~, m E S. If O '~ = d ' / d x ' ,  then for m E ~, we have J " f  E C'~(R), 
(& 

O"(J" f )  = f on R, and, moreover, by induction on m, from the integration by parts formula we find that 

1 fCx_~),~-xf(~)d~=(E~.f)(x), xER, meN, (J~f)(x) = (m- i)!_ 

where 
I H(x) = the Heaviside function if m = 1, 

E.~(z) . ( x + ) ~ - l / ( m - l ) ! i f  2 < m e N .  

2. In the same way, let us show that if T/C IR '~ is open and f E C,(f~), then 

(5.3) 

Va e N 0 3f~ E C~ ~) such that O~f~ = f on R , (5.4) 

where C'~(R '~) = { f  6 C(R '~) [ B 0 ~ f E C ( R " )  V/961~ o , 0 < / 9 < ~ } ,  and as usual, we write /9 < a if 

/91 < c,x, . . . , / 9 .  < c , , .  
n Fix a = ((~, . . . ,  a , )  E 1%. Since f 6 C~(fl), there is a E R such that supp f C L ~ = L x ..- x L with 

L = [ a, co) C R. For j = 1, . . . ,  n, define an operator Ji by 

(Jj)(=)= f f(=~,...,=~_~,5,=j+l,...,=~)d~, ==(=~,...,=,)ER ~, J~ 

It follows that  8~:j(Jjf)(x) = f(x)  for x E R" and supp (Jjf)  C L", so, in view of the arguments in the first 

step, we have 
zj 

(s/f)(=) = f - (~j-  1)! i(~,...,=j-~,~,=i+~, .,=,)d~, 

a i a i a j  Ln"  with a~ (J~ f )  = f on ~", ~ d  supp(J} I )  c I f g = ( J 1 , . . . , J . ) w e s e t J " = J ~ o ' " o J : " ( t h i s i s  
correct since, by Fubini's theorem, the operators Jj commute). It follows that if all aj  ~ O, then 

/ ~ 
" ' "  (a I - i ) [  

( X n  - -  ~ n ) " n - - 1  f ( ~ l ,  , ~n) d~l . .  d~n; 
( a . -  1)! . . . .  

otherwise, if (without loss of generality) al  ~ 0, . . . ,  ap ~ 0, an+l = .. .  = a,, = 0, then 

(J'~f)(z) = .. f (xx - ~1)~,a-x. (~ - 1)! (e 9 - 1)! 
f(6,..., 6, x,+1,..., x.) a6...d6. 
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In other words, (J~f)(z) = (E~ �9 f)(x) for all x 6 1~", where 

= ~ l'Ij~=l E,j(zj) ,  if a j  _> 1, j = 1 , . . . , n ,  
E~(z) P - x .  , ( 5 . 5 )  1 I"[/=1 E o j ( j ) ,  if a l  > 1, .. c~p > 1, ap+x = . . .  = c~,~ = 0, 

with the function E~j defined in (5.3). Noting that J~ f  6 C~ ~) and O~ = f on IR", it will suffice to 

put fo = J~ f  in (5.4). 
3. To prove (a), let T, S E Tr(~'l), c 6 K, and let K CC f~. By (5.2), there axe f ,  g E Cc(f~) and c~, 

6 1~ o such that T = 0~3 (f) and S = c~3 (g) on g ~ Since cT = 0~3 (c f )  on g ~ with cf  6 Cc(~), it is clear 

that cT 6 gY(fl). Let f~ 6 C~(l~"), and let g.. 6 C~(R ") be as in step 2, that is, O~f~ = f and O~g~ = g 
on R '~. Then, using the lineaxity of the imbedding .7 and the commutativity of .7 with partial derivatives, we 
have on K* 

T + S = O"j(f) + OZ2(g) = O~2(O~f~) + O~3(O~ = O~+~2(f~ + go), 

with f~ + g~ 6 C(l~ ") C C(gt). Thus, T + S 6 2:Y(ft). 
4. It will be shown later (Example 8.8(4)) that/~2 r 2:Y(~"), where, as usual, 5 is the Dirac 6 function 

on ~a. D 

It is clear that if f 6 C(ft) or f 6 L~or ), then 1 (f) 6 :/:y(n). 
Denote by $'(ft) the space of distributions with compact supports, 

E'(fl) = { T 6 7)'(12) I supp T CC fl ). 

From the proof of Proposition 2.7(a) it is clear that E'(n) is a linear subspace of gY(ft), and we have the 
natural inclusion maps: 

Z>(a) C Co(n) C E'(n) C goCn). 

Examples 5.3 and 2.8(1) imply/ /6  S'(~"~. Note also that the space E'(f~) is invaxiant with respect to partial 
derivatives: 

0~E'(~) C ~'(~), a e ~o. 

The basic result for the sequel is the following theorem, which extends Proposition 3.8(@ 

T h e o r e m  5.5. Let T 6 ~Y(ft) and r e T~(fl) or T e g'(fl) and r e C~ Then there is a number in K 
denoted by T(r  = (T,4/) such that 

/ ( T . r  = (T , r  in ~, (5.6) 
f~ 

where the equality is understood in the sense of the convention in Sec. 3.1, and the dot �9 denotes the product 
in ~(fl). In particular, in view of Proposition 3.8(a), we have 

(1,r = / 1(=)r d=, / C(n) or L  Cn), r 9(n). (5.T) 
fl 

R e m a r k .  In this theorem, we distinguish the generalized number at the left-hand side in (5.6) from the 
classical number ( T, r Equality (5.6) means that ( T, r  is a representative in ~ of the generalized number 
on the left-hand side, so, for brevity, we shall assume that this equality is the definition of the number ( T, r 
this convention will not cause any trouble in the sequel, o 

Proof .  1. First we prove an auxiliary statement, namely, we show that 

if U1, U2 E G(fl), V 6 ~c(fl), and G C fl is an open set such that 

supp V C G, then the equality U, la - U2la in ~(G) implies (5.8) 

/ (UI"  v)Cz)dz = / (U2"  v)Cz)dz in ~'. 
f l  f l  
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In fact, let K CC G be such that supp V C K ~ - intK. By Proposition 2.7(a), supp (U1 �9 V) C K ~ and 
supp (U2 �9 V) C K ~ so that, in view of (3.8) and the local property of the integral (see Sec. 3.3), in K, we 
have the following chain of equalities: 

 /Jo 
12 K K K 

K K K 12 

2. Assume that T E/Y(fl)  and r 6 :D(fl). By (3.10), the integral in (5.6) is a well-defined generalized 
number from ~. Fix a compact set K C fl such that  supp r C K ~ From the definition of the distribution 
T E /Y(12), for the compact set K, there are a function f E Co(f/) and a multi-index a E 1~ o such that 
TIK, = 0~3 (f)[Ko in ~(K~ Using (5.8) and the integration by parts formula (3.9), we have 

--[(T " r  dx = _[(c9~'3(f) �9 r  dx = ( -1)  I ~ 1 J o ( f ) "  (0=r dz = 
12 12 f l  

(note that 0=r E :D(fl) and use Proposition 3.8(a)) 

= (-1)J~176162 =: (T,r �9 in (5.9) 
12 

this completes the proof in our case. 
3. Let now T 6 s and let r �9 Cr162 If r � 9  is such that r = 1 in a neighborhood of supp T, 

then since T �9 G,(fl), from Proposition 2.7(b), we have T = r  T = T - r  in G(~); hence we have 

12 12 12 12 

in the last equality we have used (2.9) and the equality ( .  r = ~'r in ~(fl), where ~'r is the classical product of 

C ~ functions ~" and r Since ( r  � 9  and T �9  due to step 2 and (5.10), the i n t e g r a l / ( T .  r dx 
fl  

is am ordinary classical number (in the sense of the convention in Sec. 3.1). The proof is completed, r~ 

R e m a r k .  The formulas (5.6) and (5.10) imply that if T �9 s  r �9 coo(n),  and if ( �9 Z)(fl) is such that 
~" = 1 in a neighborhood of supp T, then the following equality holds: 

(T , r  = (T , r162  in K, (5.11) 

which in the classical distribution theory is taken as the definition of the number ( T, r  D 
Let us show by examples the applications of Theorem 5.5 and Proposition 3.8(a). 

E x a m p l e s  5.6. (1) If 6 �9 is the Dirac 6 function (see Example 5.3(2)), then 

f(o~s. r = (-1)vo~(0or Vr �9 V ( ~ ) ,  (5.12) (0%r 

and in particular, 

(6,r = f ( 6 .  r = r r e v ( ~ ) .  (5.13) 
R n 

In fact, from Example 5.3(2) we know that 6 = 01. . .  O,~H,, in g(R~), so in view of the integration by parts 
formula and Proposition 3.8(a), we find that 

f(oo6. 
R" R n 
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= ( -1 )  I~1+~ f (3  (H,,). (O~-.. O,,O"r = ( -1 )  I~1+~ f H,,(x)01... O,,(O:r = 
R n ]R ~ 

= "J "~z~-:-Oz(, dx, dz, = (-1)1~162 
o o 

(2) From (5.13) we have 6 ~ .7 (n~or that is, the Dirac 6 function is not "generated" by a locally 
1 n integrable function. In fact, if ~ = 3 (f) for some function f �9 L1or ), then 

ff(x)r162162162 Vr �9 ~(R'~); (5.14) 
II  n R n i l  n 

in particular, this implies 

= dx = I~1~r = o. 
R n B n 

Since r is arbitrary, the latter equality yields Ixl2f(z) = 0 for almost all z �9 R~, so that f = 0 almost 
everywhere on R =. However, the latter property is noncompatible with (5.14). r~ 

5.2. T h e  classical p resen ta t ion  of d i s t r ibu t ions .  Now we can establish the equivalence of Definition 5.1 
and the classical definition from the distribution theory, To this end, let us recall the concept of bounded sets 
in ~(fl): 

Def in i t ion  5.7. A set of functions B C 9(12) is said to be bounded if there are a compact set K C fl and 
a sequence {M=},,~176 C (0, oo) such that 

(a) Vr  E B, suppr  C K; 

(b) V r  e ~ V ~  �9 s~ ,  sup I(0~r < MIo I. 
x E R  n 

0 

T h e o r e m  5.8. Let T E Tr(fO (be riced). Then the linear mapping LT : 2~(12) , K defined by LT(r = 
(T, ,~,) for all ~b 6 T)(fl) is bounded in the sense that if B is a bounded set in Z)(~2), then its image LT(B) is 
a bounded set in K ,  

Proof .  The linearity of LT follows from (5.6) and the linearity of the integral. Let B be a bounded set 
in :D(12), let g CC 12, and let {M,,}~**= 1 be as in (a) and (b) of Definition 5.7. If g t  CC 12 and g C g~, there 
are f E C,(12) and a E N o such that T = 8"3 (f) on g~'. In view of the equality (5.9), for all r E B, we have 

)<. '~ / M,.,/ff(.)l,. 
K K 

and the theorem follows, o 
The next result shows that every distribution T is completely characterized by the bounded linear map- 

ping Dr: 

T h e o r e m  5.9. I f  T E 2~'(12), then the mapping UT : .Ao(~t") x 12 ~ K defined by 

UT(~,x) = f ( T . t ( ~ ) ,  rf~)(A)dA = (T,s (~,z)  E .Ao(R") x 12, (5.15) 
f l  

is in SM[12] and is a representative of the distribution T in g(12); here the dot �9 denotes the: product in ~(fl), 
and the function e(cp) E V(12) is defined in (2.16). 
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In particular, if fl = R '~, then T �9 D'(I~ '~) also has the mapping 

= (5.16) 

as its representative. 

Proof.  By Theorem 5.5, the mapping UT is well defined since, given qa �9 .Ao(R ~) and x E f/, we have 

[ ( T .  l (~ ) .  r :~)(~)d2 = / ( T .  ( / (~) r~) ) (~)d~  = (T, iC~)r=~) �9 ~.  
12 f~ 

Let Kx CC ~ be such that supp t(~p) C K~'. Since T �9 2Y(fl), there are f �9 C~(~) and a �9 t~ o such that 
T = 0~3 (f) on g~', and in view of (5.9), it follows that 

uTCtP, x) = (T,s = ( -1)  I~1 [ fCA)O~Ce(~o)r,:cp)CA)dA, z �9 fL (5.17) 
t2 

From here and from Proposition 1.2 we readily have that UT(tp,. ) �9 C=(f~). 
Let us show now that UT �9 s Fix a compact set K CC I2 and choose K1 CC f~ such that K C K~' 

and T = 0"3 i f )  on K~' for some f �9 Cr and a �9 l~I~. Given V �9 .Ao(]~"), by properties of l(~) (cf. 

Sec. 2.3), there is a number r /=  r/(K, K~, ~o) > 0 such that K,p(~,) := K + B,p(~,) C K{' C fl(5~) and s = 1 
on K~p(~,) for all e �9 (0,17). From (5.17), for all z �9 K and ~ �9 (0,r/), we have 

ur(~, ,z)  = (-1)  1~1 f f(A)0;(r:~,)(A)dA = 
K,~(,) K,~(,) (5.18) 

= f = O (f, = 

Since u! �9 s in view of (2.18) and (2.11), we obtain u r  �9 s 
On the other hand, if we fix/('1 CC fl, then the above arguments also show that if UT �9 G(fi) is a 

generalized function with the representative ur ,  ~hen 

UTI~I=TIK~ in G(K[) for all K1 CCf / ,  (5.19) 

since the equality UT(~,,z) = O~ z �9 K, e �9 (0,~/), which was proved above for all K CC K~', 
means that uT - O~u! �9 Af[ K~ ], where 8~ is a representative of T on K~'. From Theorem 2.6(c) and (521_9) 
it follows that Ur = T in g(12). Q.E.D. r~ 

Note that we have simultaneously proved the following property of the representative UT of a distribution 
T �9 2Y(~/) which is analogous to (2.18): 

VK CC g/, Y~ �9 Jt0(~ ~) ~ f  �9 C~(~), a �9 l~o, r /> 0, such that 

g C ~2(~,) and UT(~,z)  = O~ul(~,x)  = ~=(f* ~ ) ,  z �9 K, e �9 (0,r/). 

Corol lary  5.10. Let T, 7"1, T~ E D'Cf~). Then 

Ca) T = o in UT 

(b) 7"1 = T2 in ~(~) ~ (T1,r = (T2,r in K Vr �9 7)(f/). 

Proof .  Both statements follow immediately from Theorem 5.9. 
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We note that if a distribution T is a continuous function, then its representative from (5.15) coincides 
with the representative of a continuous function from (2.17); in fact, if f E C(it) (or .f E L~oc(f~)) and 
T = 3 (f) E IV(it), then by Proposition 3.8(a), we have 

f o ( f ) "  s r=~)(A) dA = f 3( f )"  (s d,~ = / f(A)Cs = 
i~ f l  l ]  

/(/s dX = ((s �9 ~)(x) = u)(~, x). 

Hence, the imbedding 3 from (2.17) can be extended from the space C(~'l) of continuous functions to the 
space of distributions IV(it). Thus, for functions f E L~or we can and will write f E g(fl) instead of 
3 (f) E gift). Moreover, by the integration by parts formula, we have the equality 

O~ur(~, x) = Uaor(~, x), T E IV(it), a E 1~o, ~ E .A0(~"), z E It. 

We say that two distributions T1, Tn E IV(it) are equal in IV(it), and write T1 = Tn in IV(fl), if 
(T1,0) = (T2,r in K for all r E 7)(it). In view of this fact, Corollary 5.10(b) claims that (T~ = T2in g(it)) 
-'. ~- (T1 = T2 in IV(~)). 

Denote by L(D(It)) = L(D(n); g) the linear space (with natural operations) of bounded (in the sense 
of Theorem 5.8) linear mappings from 7)(f~) into g. Then in view of Theorem 5.8, we have the following 
inclusion mapping: 

J :  IV(f/) , L(l)(it)), J(T) = Lr = (T , . )  for T E IV(It). 

The mapping J is linear (due to the linearity of the integral, see (5.6)) and injective (by Corollary 5.10(b)). In 
the classical presentation; a distribution is defined as an element of the space L(T~(fl)), and then one proves 
that any distribution locally is a partial derivative of a continuous function in the sense (5.2) [179, w III.6; 
178, Thin. 6.28]. This result shows that a mapping J is also surjective. In the proof of this result, one uses 
the Hahn-Banach theorem in the context of infinite-dimensional topological vector spaces (TVS). We note 
that in the presentation of distributions starting from the Colombeau's algebra of generalized functions G(it), 
no TVS are used at all. 

So, we have shown that distributions defined within the framework of ~(f~) exactly coincide with classical 
distributions. In the next section, we will consider some classical properties of distributions which supplement 
the material of the present section. 

6. Classical P r o p e r t i e s  of Dis t r ibu t ions  

In this section, we present the classical properties of the Schwartz distributions, many of which are 
definitions in'the distribution theory. Here we touch upon a rather small part of the distribution theory as a 
continuation of the study of generalized functions from ~(fl). The properties we consider allow us to exhibit 
some features in the construction of the Colombeau algebra. 

6.1. Dis t r ibu t ions  as cont inuous  l inear  funct ionals  on :D(it). If T E IV(I'/), then 

{T,qr + c2r = qIT,r  + c2(T,~2), q ,  c2 E K, r r E :D(~) ; 

vgcca  30>0, keN0: I(T,r supla r r (6.1) 
I~l<k K 

The first property (the linearity of T) follows from the linearity of integral (5.6)i the second property (the 
continuity of T) is an immediate consequence of representation (5.9). The continuity property guarantees 
that a distribution behaves well when applied to functions smoothly depending on parameters, that is, the 
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following analog of Proposition 1.2 holds: under the hypotheses of this proposition, if T E 27(Y) and F(z)  = 

( T , r  f ( T ( y ) . ' ~ ( x , y ) ) d y ,  z E a ,  t h e n F : Z  ,~c, F E O ~ c ( X ) , a n d O ~ F ( x ) = ( T , O ~ r  
Y 

all x E ~ and a E no. 
The convolution of a distribution T E Z)'(~ '~) and a function ~ e :D(I~ ~) (or T E E'(R ") and ~ E C~176 

is defined by 

(T*v~)(z) := ( T , r , ~ )  = / ( T .  r=~)(A)dA, z e R", (6.2) 

so that (see and 

T �9 ~ E C~*(~ ") and (T'(T * ~p) = T * (8"V~) = (O'~T) * ~ for all a e S 0. (6.3) 

Analogously to (1.6) and (1.7), one can define the convolution of a distribution T E 27((2) and a function 

E :D(n~ ") on the open set f/(~) C I2. 
The continuity property of a distribution can be. reformulated as a sequenti l  continuity. We say that a 

sequence of functions { ~ }  = {V~}~=, C :D(f/) converges in :D(II) to a function ~ E :D(fl) if there is a compact 

set K CC f~ such that supp 7~ C K for all v E I~1 and supn 1(9~(~ - ~ ) l  - -*  0 as v , oo for all a E 1~1 o (this 
is written as ia~ , ~ in :D(12)). Taking into account the continuity property (6.1) and the definition of the 
convergence in :D(II), we obtain at once that if ta~ , @ in :D(f~), then { T, ~ )  , ( T, ~) as u . .  , oo. Let us 
give another example of a convergence in :D(~"). If ~ E T)(R~), x e a n, and e I = (0, . . . ,  0, 1, 0, . . . ,  0) E R~, 
where the unit is on the j th  place, then 

as , 0 .  in 

6.2. Dif ferent ia t ion  of d is t r ibut ions .  If T E 27(f/), r E :D(~), and a E N o, then we have the formula 

( OaT, r = (-1)l:l(  T, 0~r (,6.5) 

which follows from the integration by parts (3.9) for generalized functions 

( O'~T, r  = f(O~'T) �9 r : (-1)1"1 / T - ( 8 : r  = (-1)1~t( T, 0~r 
fl fl 

Note that formula (5.12) is a consequence of (5.13) and the above rule for the differentiation of distributions: 

(a"6,r = (-1)k'l(6,a"r = (-1)I~'I(o"r 

It is clear that partial derivatives of distributions generalize the corresponding derivatives in the space Ck(I2) 
for k EN. 

6.3. Res t r i c t ion  of d is t r ibut ions  to open  subsets .  Let T E 27(f~), and let G C n be an open subset. 
By definition (5.2), it is clear that Tic G 27(G), and, moreover, we have 

<Tia,r  = (T , r  Vr  6:D(G), 

since, using the l o c l  property of the integral (see Sec. 3.3), which is marked in the equalities below by "loc," 
for r E :D(G), we have 

G supp  ~b l u p p  ~ 

The above formula for the restriction of distributions is taken as the definition in the distribution theory. We 
say that two distributions 7"1, T2 E 2Y(f~) are equal on G (and write T1 = T2 on G) if (Tile, C) = (T~IG,r 
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Vr 6 D(G). We have shown just now that T, = T2 on G iff ( T 1 , r  (T2,r for all ~b e 79(G). From 
Corollary 5.10(b) we conclude that T1 = T2 on G iff T1]o = T21e in G(G). In the classical distribution theory, 
the support supp T of a distribution T is defined by 

suppT=12\12~(T) ,  where ~ ' l ~ ( T ) = U { G c I 2 [ G  is open, a n d T = 0  on G}. 

From the above and (2.20), it follows that the definition of the support of a distribution in the sense of ~(12) 
coincides with the classical definition from the distribution theory (see also Sec. 6.5 below). For instance, if 
6 is the Dirac 6 function on R", then from the formula (5.t3) and the definition of the support of a distribution 
it follows immediately that supp 6 = {0}. 

6.4. Mul t ip l i ca t ion  of a d i s t r ibu t ion  by a s m o o t h  funct ion.  Let a 6 C~(12) and T 6 7Y(g/). In the 
distribution theory [179, w V,1], Schwartz proposed the following definition of the product a T = T a 6 29'(12) 

(here there is no dot between a and T !): 

(/z T, r = (T, ar r 6 "D(fl). (6.6) 

In other words, if a representative of the generalized function a T 6 ~(fl) is defined according to (5.15) by 
the formula 

then actually a T E 2Y(•), and the equality (6.6) holds. In view of the analog of Proposition 1.2 (see Sec.6.1), 
it is clear that u , z  E ~:[f~]. To prove that u~r i.4 a moderate element, let K,  K1 CC f lbe  such that K C K~', 
and let f E C,(N) and ct E l~  be such that T = 8"3 (f) on K~'. It follows that  if ~ E .Ao(~"), then there 
exists I /=  r/(K, K1, ~) > 0 such that, analogous to (5.17) and (5.18) with regard to Leibnitz's rule, we obtain 

z e K ,  (6.T) 
o<~<,, o<a<a 

where f# = (_l)l~l-I~l(~) f 0O-~a E C,(f/). Hence t~aT E eM[~'~], and simultaneously (see step 3 in the proof 

of Theorem 5.4(a)), a T  E 2Y(fl). Now let ~b E :D(~) be such that suppr C K~ then using the fact that 
T = O~j (f)  on K~', and also (6.7) and (5.9), we have 

(aT,  e)  = / ( a T ) . 0 =  E = 

. o_<a_<~ . (6:8) 

As an example, consider the product of the Dirac 5 function 5 E D'(R) and a function a E C~ Due 
to (5.16) and (5.13), a representative of a* q :D'(R") is of the form 

z)  = ( s ,  a = (a = C - z )  = 

for all ~ E .Ao(R) and z E R, so that we have a 6 = a(0)S in T~'(~). In particular, if a(z)  = z =, z E R, m E 1% 

then 
z " 6 = 0  in D'(~), whereas z " . S : ~ 0  in g(~) (6.9) 

(see Example 2.8(2)). Nevertheless,. the products z'N~ and z = .  g are related by means of a weaker equality 
(in the sense of generalized distributions, see Theorem 8,3, and (8.1)). 

It is interesting to compare Proposition 3.12 with the following result: 

P ropos i t i on  6.1. Let T E 7Y(R), then the equality z T  = 0 in D'(R) is equivalent to T = c5 with some 

constant c E g .  
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Proof .  Since z T  = 0, we have (T, xv~) = (xT, cp) = 0 V~ E T)(~). Fix ~ E :D(a) such that ~ (0 )=  1. Any 
function r E 2:)(I~) is represented in the form r = 0(0)r + X, where X = r - r so that X(0) = 0. It 
follows that 

(T , r  = r  + (T ,x  X[z))" = (T,C')r = (c6 , r  
m 

with c = (T,C'). (This proposition can be generalized, cf. [179, w V.4; 89, Thm. 3.1.16].) 

Consider a continuous function f(x) = x(log I x l -  1), x E ~, where iogx = / __dr for z > 0, and at x = 0 
1 

the function f has, by definition, the value 0 (l'Hospital's rule). In the classical sense, f"(x) = (log ]xI)' = 1/z 
if x ~ 0. On the other hand, one readily verifies that if ~ E Ao(~) and x E ~, then 

= o (f. = ( l o g  I=1 * = =). 

The second derivative 023 (f)  of the generalized function 3 (f) E ~(I~) is a distribution on ~ which is denoted 
1 

by vp - and which is such that 
x 

= v, / (vp z x �9 
. B --(X~ C 

1 
It is seen that x vp - = 1 in 27(~). In the theory of distributions, one concludes that a "good" multiplication 

z 
of distributions which is associative and commutative is impossible since one has the following contradictory 
chain of equalities (here for the sake of clarity the Schwartz product in 27(~) is denoted by the point): 

= 6.1 = 6.(x.vp I_) = (~.x).vp_=l (x.6).vp-=1 0.vp-=l 0. (6.10) 6 
~T X X . 

In the algebra of generalized functions, this result is interpreted differently, namely, the above chain of 
equalities imposes a restriction to an imbedding of the space 27(~) into an associative algebra, more precisely, 

1 
all three formulas x. 6 = 0, x. vp - = 1, and 6.1 = 6 cannot hold simultaneously in such an algebra, and the 

x 

product C ~. 27 is necessarily changed (cf. (6.9) and Example 9.4). 

R e m a r k  6.2. Using product (6.6) and definition (6.2), the formula (5.15) for the representative of a 
distribution T E 27(fl) in the algebra (~(fl) can be written as follows: 

ur(V~, x) = ( T, l(~)~'=~) = (l(~)T, r,~) = ((l(~)T) * ~)(x), (6.11) 

where I(v~)T e ~'(n) is the product of l(~) e :D(fl) and T in the sense of (6.6). Taking into consideration the 
properties of l(~), the definition of the convolution of a distribution T and a function ~ E T)(~") on the open 

set ~'l(~) (which was mentioned in Sec. 6.1), and the property (5.20), for the representative UT, we obtain a 
property analogous to (2.18): 

VK CC fl V~ E .Ao(~ ~) 3~/= ~/(K,v~) > 0 such that 

g C f i ( ~ )  and UT(~,,=) = (T* ~,)(x), = e K, e e (0,~/). o 

R e m a r k  6.8. In view of Theorem 5.5 and property (6.6), for T E 27(~) and r e Z)(~), or T E ~:'(~) and 
r E O~(fi),  we have an equality refining Proposition 3.8(a): 

f(T.C)(=)d==f(CT)(=)dx in g, 
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where T.  ~b is the product in ~(fl) and CT is the product in :D'(fl) in the sense of Schwartz. In fact, 

fCT.r = { T , r  (r = fC(CT) l)(=) d= = f(CTl( ld . 
f l  f l  f l  

In particular, if T E ,~'(12), then 

/ T ( z )  d x = { T ,  1) in ~. 
fl 

product (T. r can be naturally written as T(z).  ~b(z), the integral f(T. r g= can Since the be 

written as / T(=). r da. The latter notation, used, as a rule, heuristically by physicists, was replaced by 

the dual notation { T, r in the Schwartz distribution theory. In Colombeau's theory of generalized functions, 
the role of duality between ZY and ~D is not so noticeable as in the distribution theory, so again this leads to 

notation of the kind f T(z) .  r dz, ~bhich has a natural meaning. 

6.5. Localizat ion principle for distr ibutions.  Just as for Colombeau's generalized functions, for 
Schwartz's distributions Theorem 2.6 holds in which the symbol G is replaced everywhere by Zr. This means 
that Z>' is a sheaf. The proof in this case is similar to the above, cf. [179, w 1.3; 70, 5.6.2]. A recent study of 
the space 29'(12) from the point of view of the sheaf theory is due to Damyanov [66], where he has shown that 
/Y is a sheaf of Hausdorff topological C-vector spaces. 

6.6. Dis t r ibut ions  with  compact supports .  In the following proposition, we describe the structure of 
distributions from s having compact supports in fl: 

Proposi t ion 6.4, Let T E S'(fl). Then for every K CC 12 such that supp T C K ~ there are k E N and 
f= e Co(K ~ e < k, such that 

T =  E 0~3(5) in g(a).  
I=I<k 

(This theorem is analogous to Rudin [176, Thin. 6.27], and Colombean [39, 2.4.9].) 

Proof. If K is as in the proposition, then T = 0=j (f) on K ~ for some f E C'=(12) and a E 1~ o. On the other 
hand, if a E :D(K*) and a = 1 in a neighborhood of supp T, then, in view of Proposition 2.7(b), T = a .  T 
in ~(12). Taking into account Proposition 3.8(a) for an arbitrary r E :D(f~), we have 

{T,r Cs~l)(T,ar ~ (-1)ltYl//~COar = 
o_<.8<,., fl 

= z ]( z 
o:,~<_.= fl ~ o<_#<= 

----( E ~3(f#),r 
o<~_<= 

with the same functions f~ E C=(K ~ as those following (6.7). Now it suffices to take into consideration 

Corollary 5.10(b). tn 

6.7 .  Distr ibut ions  supported at  a p o i n t .  

Theorem 6.5. Let T E s and suppT = {0} with 0 E ft. Then there are k E N and a unique collection 

of numbers {c...}l=l<_k C ~ such tha~ 

T "- E c=O=~ in 2Y(I~"). (6.14) 
I=l<k 
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Conversely, any distribution T of the form (6.14) has the point 0 as its support (ezcept for the case where all 
c~ are equal to zero.) 

(See, for instance, Rudin [176, Thm. 6.25] or Schwartz [179, w III.i0]; the idea of the proof was taken 
from Folland [79, p. 265].) 

Proof .  The converse is clear; so we prove the main part of the theorem. First, assume that 12 = ~'~. 

1. 3 k 6 N, C > 0 : Vr  6 Cr176 : I(T, r -< C ~ supB , 10~r This bound follows from Proposition 6.4 
I~l<k 

applied to the unit ball K = B1 and from calculations (6.13), so that the constant C = maxlal<k [[ fz [[L,(sl) > 0 

is independent of r 
2. Let r 6 Coo(R ~) be such that (0~r = 0 for a 6 ~ ,  la[ _< k. If we set r  = r - ((ux)), 

z 6 R '~, v 6 I~, where ( 6 Z)(R") is such that ((z)  = 1 if [z[ < 1, and r = 0 if [z[ > 2, then 

0"r , 0 " r  as v , c~ uniformly on any K CC R '~ for all lal < k. (6.15) 

(If, in addition, r E :D(R~), then the above convergence is uniform on R~.) First, we note that if 181 _< k and 

K CC R ~, then there is c ( r  > 0 such that 

I(o~r < c ( r  k+x-ial, x ~ K, (6.t6) 

since, from Taylor's formula applied to the function One at the point z = 0 and conditions on r it follows 
that 

1 

(0he)(=) = ~ k + 1 - 181 f ( 1  - t)~-Ial(0~+aC)(t=) at .  =,,  = e K.  
I-d=~+l-lZl 7 ! o 

Using Leibnitz's rule, in view of (6.16) and the properties of ~, we have 

1 0 % r 1 6 2 1 6 2 1 6 2  ~ (:lul~162 �9 I(oo-~<)(~=)1 <_ 

o<o<~ 

_< 
~ 0  ~ 1~1_<2 

this implies (6.15). 
3. I f r  is such as in step 2, then (T , r  = 0. In fact, since supp (T.  0) C {0} and r  = 0 for Izl _< l / v ,  

due to (3.8), we have 

(T,C.)= fCT.C,)(~)d== f ( T . r  VuEI~ ,  
~" I~l_<l/- 

so that the estimate of step 1 and (6.15) imply 

I(T,C)l=l(T,C,-C)l<CF_,suPlO"r162 I ,0,  u, ,oo. 
I~1<_~ B1 

4. Assume now that r E C~176 ") is arbitrary. From Taylor's formula it follows that 

1 
r = ~ ~ ( 0 ~ 1 6 2  ~ + R~(~), = e ~ ,  

]~1_<~ " 

89 



where Rk 6 C~(~  ~) is Taylor's remainder, so that (O~ = 0 for all -< k. Then, by step 3, ( T, Rk) = 0, 
so that using (5.12), we find that 

(T , r  = ~ ~-q(0=r ~ = ( ~ c~0~162 
I=l_<k " Ic, l_<k 

where c= = (-1)l~'l(T,z~')/a!, <- k. Xn view of Corollary 5.10(b), we come to (6.14). 
,5. In the general case of 11 C ~", we note that 6'~176 C (-7~176 so that we can consider T E E'(~) as an 

element of E'(l~"). Let r 6 C~ and let r 6 2)(11) be such that ( = 1 in a neighborhood of {0} = supp T. 
Since ~r e 2)(11), by virtue of (5.11), we have 

( T, r = ( T, r162 = ( E c=O:6, r162 = ( E c:0:6, r  
I~1<~ I"1<~ 

6. To prove the uniqueness, assume that T = )='] co0~ = 0 in 2Y(fl). Then for multi-indices of length 
I=1<~ 

JBI -< k, we find that 

0 = 1 7 ;   o0~ = 
I=l_<k 

co( 8:6, z #) = ~ c:,(-l)1:l(o~:x~)(O) = c#( - l ) l# l# ] ,  
V,l<k I:l_<k 

whence c~ = 0. (Simultaneously, it was proved that derivatives of the Dirac 6 function are linearly indepen- 
dent.) m 

6.8. Convo lu t ion  of d is t r ibut ions .  In Sec. 6.1, the convolution (6.2) of a distribution and a smooth 
function was defined which generalizes the convolution of functions (1.6). At the end of Sec. 2, the translation 
operator for generalized functions from ~(~") was defined. Let T 6 ~Y(R"), and let y E ~". It is clear that 
the translation ruT (in the sense of generalized functions) is in ~ ( ~ " ) ,  and we have the equality 

(ruT, C) = (T , r -ur  r e D(R~), (6.17) 

since, in view of the formula of change of variables in integral (4.14), we have 

/ ( ( ruT)  �9 r dA = / T(A - y ) .  r dA = ( r ,T , r  
i n lm" 

_/T(/~). r + y)d/~ = / ( T .  (r-ur d/~ = (T, r_ur ). 
1~" B" 

In the distribution theory, the formula (6.17) is taken as the definition of the translation of a distribution T. 
For r = r=~o, this implies that the representatives UT and u,~r of distributions T and ruT are related as 
follows: 

u~.,r(~o, z) = ( ruT, r,~o) = ( T, r=_u~o) = ur(~O, z - y) = (ruur)(~o , z), 

where, as usual, ~0 6 J[o(~ '~) and x 6 ~.~. We have the following simple correlation between the convolution 
and the translation: 

u V V (r.T,~) = <T,r_z~) = (r,r_=(~)) = (T. ~)C-z), (6.18) 

(r.~)(z)=(T,r.~)=(r_.r,~), zER ~, ~62)(~"). (6.19) 

The distribution ~,: := r~5 is called the Dirac 6 function concentrated at the point x s ~'~ (note that 
supp 6= = {x}); it applies to test functions according to the rule 

= r e 2)(a"), 

90 



so that 
6~,~=~=~, ~z)(a~), z~ ~. 

In general, besides (6.3), the convolution of T E 2Y(~t '~) and ~ E D(IR '~) has the properties 

�9 ~(T, ~) = (~=T) �9 ~ -- T, (~), x e a~, 

T . ( ~ , r 1 6 2  r e :D(IR~). 

The following (well known in distribution theory [176, 6.29-6.37]) theorem asserts that the convolution �9 is 
the only continuous bilinear operation which commutes with translations and differentiations: 

T h e o r e m  6.6. Le~ L : T)(R ~) , C~176 ~) be a continuous linear mapping. I f  at least one of the two 
conditions below holds 

(a) T.L = Lr~ Vz  ~ ~", or 

(b) O~L = LO" V a  E 1~ o, 

then there is a unique distribution T E T)'(R ~) such that 

L(~o) = T * ~o V~ e :D(I~). (6.20) 

In the theory of distributions, it is shown that Theorem 6.6 holds for more general operators L satisfy- 
ing (a) or (b) (see for instance [179, w VI.3 and VI.7]). In this connection, it is interesting to note that any 
mapping of :D(R) into itself commuting with translations is automatically continuous (Meisters [138]), and 
hence, according to Theorem 6.6, it is represented by means of the convolution. 
Proof .  (a) Let L commute with translations. If a distribution T as in (6.20) exists, then, due to (6.18), we 
must have 

(T,~o) = ( T .  ~)(0) = (L ~)(0) V~ e :D(R~). (6.21) 

So, for any test function ~o e :D(R ") we set (T, ~o) := (n ~)(0). Since L is linear and continuous, ~ ,  , ~ is a 
linear continuous mapping from :D(R ") into itself, and since "the value at the point 0" is a linear continuous 
functional on Cr176 we see that T is the composition of linear continuous mappings 

~ ( a  ~) , ~ ( a  ~) , c ~ ( a  ~) ; K 

, , r , , L r , �9 (L r  

so that  T e :D'(R"). Furthermore, for all z e R" and ~ e :D(R~), we have 

(L~o)(z) = r_=(L~)(0) = (~'_=L~)(0) = (Lr_,~o)(0) = 

= 7: " = " (T*  ~)(z). L(r_=~)(0) = ( T , ( _ = ~ )  ) (T,v=~) = 

The uniqueness of the distribution T follows if we note that  if T * %o = 0 for all %o 6 ~)(R~), then ( T, r  = 

(T* r = 0 Vr  6 :D(R~), so that T = 0 in :D~(R~): 
(b) The case where L commutes with differentiations reduces to the above case as follows. Let 0j be the 

partial differential operator with respect to xi,  j = 1, . . . ,  n. Consider an auxiliary function b(x ) = (Lr=~o)(x), 
x E R ~, and note that  due to (6.4) one has 

(Ojb)(z) = ( O j L r ~ ) ( z )  - (LrxOj~o)(z) = O, j = 1, . . . , n ,  

where the latter equality is fulfilled due to conditions 8jL = LOj. Hence b(x) = b(0) for all x E R n. But since 
b(z) = (r_~Lr=~o)(0), we obtain r_~Lr~ = L or Lr= = r~L. r~ 

Now let us define the  convolution of two distributions T and S such that 

either (1) T e 7Y(R ") and S E ~Y(R~), or (2) T �9 ~'(R ~) a n d  S ~ :D'(R"). 
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To this end, we define a mapping L : D(R") , C~176 ") by 

L(~o) = T �9 (S �9 ~), ~o E T)(R"). 

This is correct since S * ~o E T)(lz'*) in case (1) and S * ~o E C~176 ") in case (2). Moreover, wxL = Lrx for 
all z E R", so, by Theorem 6.6, there is a unique distribution R e :D'(R ") such that  L(~o) = R * ~o for all 

The distribution R is called the convolution of distributions T and S and is denoted by T * S. Thus, the 
convolution T * S is completely characterized by the formula 

(T �9 S) * ~o = T * (S * ~o), ~o E 7:)(~). (6.22) 

Now, using (6.18), (6.22), and (6.19), let us calculate the value of the distribution T * S on a test function 

( T *  S , r  ( (T* S)* r = ( T * ( S *  r  

v v 

= (T, ro(S* r = (T=,(S* r 

here the subscript x in T= shows the variable in the test function to which the distribution T applies. Noting 
that  

y v v 

( s ,  r = ( s ,  r  = (s ,  ~ _ . ( r  = ( s, ~_.r  = 

= (s, ,  ( ,_,r = (s, ,  r + z)), 

we obtain 
( T * S , r  = ( T = , ( S ~ , r  r E 7:)(~"). (6.23) 

(The right-hand side in the latter equality is equal to ( T= | S~, r  + y)), where the distribution T= | Sv E 

7Y(R 2") is the tensor product of T and S ,  so that  the convolution of two distributions is commutative when 
it exists.) 

From (6.23) we easily have 

T * 6: = 6= * T = r=T, 

T * (OaS) = (a"6) * T - O"T, 

z E R '~, 

In particular, T*5 = E*T = T, that is, 6 is the unit element in D'(R") with respect to the convolution. Thus, 
convolutions are characterized by the fact that they commute with translations and differentiations, and that 
differentiations can be considered as convolutions with derivatives of the Dirac 5 function. 

6.9. Approximation of distributions. The space ~2:Y(ft) is endowed with the weak topology (also called 
weak-, topology), which is defined by a family of semlnorms {p~ }~ev(n) such that p~,(T) = [( T, ~)], T E 2~(fl). 

For example, the convergence of a sequence T. : T in ~D~(Tt) as u , oo means that  (T  v, r  " ,  (T,  r as 
, oo for all r E D(fl) .  

T h e o r e m  6 . 7 .  Let T E ~(R") ,  and let ~ E ~)(R"). Then T * ~,, T * ~ E  C~176 e > O, and 

and r ,  in as , +0.  (6.24) 

Proof .  1. First, let us show that 

v ( / , )  
r  , r in ~ (~" )  as ~ ~+0. (6.25) 
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To this end, one has to verify the following two conditions: 

3 K C C R  '~, r / > 0 ,  V e E ( 0 ,  r/) : s u p p ( r  and 

- (/) ~'a61~ 0 : l i m s u p [ 0 ~ 1 6 2  %a 0~ r  
~-.-*+0 K 

The first of the above conditions follows from the inclusions 

supp (r * 5,) C supp %/, + supp ~ ,C  supp 'r + B1 =: K 

if ~p(%0) = p(%0,) < 1. Since we have the equality (9=(0. ~r = (0~r  ~ , ,  it suffices to verify the second 
condition only in the case a = 0, but this follows at once from Propositions 1.3(a) and 1.1(e). 

2. Applying (6.21) and using the associativity of the convolution, we have 

( T �9 %0,, r = ((T �9 %0,) �9 r = (T �9 (%0~ �9 r = ( T, (%0, �9 r 

Since for x 6 R , we have 

(%0,, r  = (%0,, r  = ~.(%0., r  = ((~%0.) �9 0) = 

= (~%0,,r = ( r  ~x%0,) = ( r  r  

where in the next to last equality we have taken int~o account (5.7), using the continuity of T and (6.25), we 
find that 

(/) ( T , % 0 , , r 1 6 2 1 6 2  , ( T ,  %0 ) = (  %0T,r ~ ,+0 .  

Finally, in view of Proposition 1.1(e), we have 

%0~---, T =  %0 T in :D'(R") as e ..., +0. o 

Corollary 6.8. / f  T 6 7Y(R") and %0 6 .Ao(R"), then 

(a) ,limo f ( r  * %0,)(x)r = ,-,+01im f ( T, r=%0,)r dz = ( T, r V r 6 ~D(R~). 
R" R" 

V V V 

(b) r=%0, and r=%0, ,5= in lY(R") as e ---, +0/or all x e R ~ (since r=%0, = 6= * %o,, r=%0,= 6=*%0,). 

(c) ~,, . h a  ~ , - - - ,  6 in zyCR ~) a s ,  , +0.  o 

Note that items (b) and (c) of this corollary, which follow from item (a), are a/ready contained in 
Proposition 1.3(a)! From (6.24) it follows that the space 7V(R ~) could be defined as the completion of 
C**(R") in the weak topology of the space :D'(R") (the sequential approach, eL [5]). 

The result of Theorem 6.7 can be sharpened, which we are going to do by proving an asymptotic for- 
mula for the convolution of a distribution and a smooth function (cf. also Todorov [192], Christov and 
Damyanov [32]). 

Let f / C  R '~ be an open set, T 6 :IV(f/), r 6 D(f/), and let %0 6 :D(R~). Let K, K1 CC f / b e  such that 
suppr  C K* and K C K~'. Then there is ~/= r/(K, Kl,%0) > 0 such that 

supp v=%0, = z + e supp qo C K + B,p(w) CC K~, ~ 6 (0, r7) , x 6 K. 

Hence, for all z 6 K and e 6 (0,rl), the following number is well defined: 

( T, 1"x%0~) = (T * ~,)(x). 
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Bearing in mind that the convolution of a distribution and a smooth function is a smooth function and using 
equality (6.21) as well as the associativity and commutativity of the convolution, for e E (0, ~/), we have 

f( = f( ~,)(~)r dz = ( T ,  " T, r=~,)r dx T �9 " ~,, r  = 
12 fl 

v 

=((T,~ , ) , r  *(~, *r162 , ~ , ) ) ( 0 ) =  

, , /( " = ( (T ,  �9 ~,)(0) = ( T �9 r ~,) = T �9 r d~ = 

/(  v 

where in the last equality we have used the formula of change of variables in the integral. In view of (6.19), 
we find that 

u u  

(T * r = ( T, r.~,(r ~) = ( T, r.~r = ( T=, (r~.r = ( T=, r  - e#)); 

therefore, 

/ (  T, r=~.)r dx = / (  T=, r  - e~))~(#)dr .  
fl 

Expanding the function r at the point x according to Taylor's formula up to order q E 1~ and applying the 
distribution T to this expansion in the variable z, we obtain 

q el~l 
(T=,r - e/~)) = (T=,r + ~ ~.~ (-1) '" l(T. ,CO~162 

I~1=1 " 

1 

+C-4 '+' Z: q + 1 f a!  (1 - e ) ' ( T . ,  ( a ' r  - e e l ) )  de.  r = 
l a l = q +  1 0 

q el~'l a 
= ( T , r  ~ ~ - . ( 8  T , r  

l . . l = l  �9 

Consequently, 

1 
+eq+l ~ q + 1 

o ! f ( 1  - t) ' (  (a~T), ,C(z - eel)) d r . . * .  
l a l = q + l  o 

f (  f (  v,)C4r = T, r=~,)r  dz = T �9 " 
fl fl 

( /  ) ' , ' - ' , ,  , 

l a l = l  

1 
+eq+ 1 ~ q +  1 oe' f (/(l-t)q((OaT)='r "~'~(IJ) d/~" 

[al----q+l Bd,~) 0 

This implies the following asymptotic formula, in which we use the notation (2.1): 

f (T,r=~,)r = fiT* ~,)(~)r dx = 
f~ f l  

M~ (O"T, r  e I~l, e --, +0 ;  =M~162 ~ " a! 
lal=l 

( 6 . 2 6 )  
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this is understood in the sense that for any q E l~, we have 

l a l = l  

Note that if T = f E C~ then it follows from the proof of Proposition 2.4 that 

v ~ M~ 
( f *  ~r = M~ + a! (O~f)(x)sl~l' z E fl, e ~ +0. 

141=1 

In particular, if q E N0 and ~ E Aq(R~), then (6.27) implies 

f (  T, r ~ , ) r  dx = (T, r + o (e'), e ~ +0; (6.28) 
f~ 

this again gives the results of Theorem 6.7 and Corollary 6.8. D 

R e m a r k  6.9. As was shown above, a distribution T E Z~(R ~) has in g(R ~) a representative of the form 

uw(~e) = T * ~, ,  which converges in 2Y(R ~) to the distribution T itself. In particular, the Dirac 6 function 

has a representative us(~e) = ~ ,  which according to Corollary 6.8(c) is a delta net of smooth functions. All 
the information about the distribution T is already contained in its representative, including its nonlinear 
properties. The deep distinction between the theories of ~(R ") and TY(R ~) is that  in the distribution theory 

V 

one passes to a limit of the kind T . ~ ,  , T in TY(~ ~) as e , +0 for ~ E Ao(R~), and as a result, which 
is quite natural, the important information about the "object" T contained in its representative is lost. In 

Cotombeau's theory, no limit procedure of the above kind is used, so that  the representative T * ~ contains 
much more information about the "limit" object T than this object itself considered in 2Y(R~). Moreover, there 

are elements of ~(R ~) which leave no information in 2:Y(~ '~) at all: for example, a representative u(~) = (~)2 
of o~; later it will be shown that  $2 is not a distribution and it has no associated distribution (Example 8.8(4)). 
n 

The above formulas for the asymptotic expansions in r of expressions ( T * ~,,  r with T E TY(f~), and 

. ( f*  ~ ) ( x )  with f e C~(fl) ,  show the natural character of Colombeau's construction of ~(f~). The convolution 
with smooth functions naturally enters the construction: on the one hand, it allows us to form nets of 
regularizations for distributions, while on the other hand, it commutes with differentiations (cf. Theorem 6.6). 
The latter property means that  the distributional derivatives (formula (6.5))can be extended to the set of nets 
of regularizations. At the same time, bounds defining the ideal A/'[ f~] emerge at once from the requirement 

that U~176 be a subalgebra in ~(g/), for which one makes use of Taylor's formula in order to identify f * ~ 

and f in the case where f E G~176 
We note that  originally Colombeau had found the ideal Af[~] from somewhat different considerations, 

namely, starting from the algebra ECD(n)) = C~CD(f/)) of all infinitely Silva-differentiable mappings on 
:D(f~) with values in s (a detailed description of this construction is contained in the original papers of 
Colombean [33-37]). Later [39] the original definition was replaced by an elementary one; this new elementary 
definition was taken as the basis in the present work. 

We also note that the comparison of nets of smooth functions modulo nets which decrease faster than 
any power of e as e , + 0  (as in the ideal A/'[ fl ]) naturally arises in the theory of asymptotic expansions. A 
factorization of the above kind has been used by Maslov and Tsupin [135, 136]; in the framework of the theory 
of asymptotic expansions, Maslov and Omel'yanov [132-134], as well as Todorov [190, 191], have considered 
asymptotic nets of smooth functions, identified as above, as generalized functions of a new type. 

6.10. T h e  M a l g r a n g e - E h r e n p r e i s  t h e o r e m .  We will complete this section with a remark on fundamen- 

tal solutions of a linear partial differential operator P(O) = ~ a~O ~ with constant complex coefficients as 
Io1<,~ 
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(Ehrenpreis [73], Malgrange [129]): every n o n z e r o  operator P(O) has a fundamental solution o n  R '~, that is, 
there exists a distribution E E gY(I~ ~) such that 

P(O)E =/~ in ~Y(~'~). 

A very elementary proof of this result in which neither the Fourier transform nor even distribution theory are 
used was given by R.osay [166]. 

Note that  the function E,, in (5.3) and the function E~ from (5.5) are fundamental solutions of the 
differential operators d~/dz '' on R and O~ on l~ ~, respectively. In fact, if r 6 T)(R"), then 

(O~Eo,r = ((O"Eo)* r = (O~ * r = r  (0) = r = (6,r  

7. Diff icult ies  in M u l t i p l i c a t i o n  of D i s t r i b u t i o n s  

7.1. E x a m p l e s  of  difficult ies and  amb igu i t i e s .  Simple arguments below show the difficulties that  arise 
when one tries to define a multiplication in the space of distributions D' as well as when one tries to embed the 
space 2:)' into an algebra A (d. a~so Colombeau [37, Chap. 1, 2], Oberguggenberger [156, Chap. 1]), Rosinger 
[169, Part 1, Chap. 2]. 

If an associative multiplication with the unit 1 E C~(R) is defined in D'(~), then, as we have seen earlier, 
one has a contradictory chain of equalities (6.10). Furthermore, if H is the Heaviside function on R, and 

sign (z) = 2H(z) - 1, z 6 ~, then we have sign2(z) = 1 for z E R \ {0}. If we assume that  the derivative D 

in/2 ' (~)  satisfies Leibnitz's rule (see Sec. 2.1), then we obtain 0 = D(sign2(x)) = 2s .  sign (x) + 2sign (z) .  6, 
that is, 

sign (z)./~ = - 6.  sign (z). 

This means that an associative product in ~/Y(R) must be noncommutative, since otherwise we have 

s i g n ( z ) . 6 =  6 . s ign (z )  = 0 in ZY(R). (7.1) 

Let us consider one more example (Colombeau [45]). For the Heaviside function H,  we have H 2 = H and 
H 3 = H in L~(R) ;  if a product in D'(R) is commutative, then differentiating these equalities in D'(R) with 
regard to Leibnitz's rule, we find that (by setting H'  = D(H)):  

D(H 2) = H'- H+ H" H' = 2H.H', 

O(H 3) = H'. H + H. ' = �9 H', 

whence 2H. H' = H' and 3H 2 �9 H' = H'. Multiplying the first equality by 2H and noting that 4H 2 �9 H' = 

2H- H' = H', we get 
1 , 1 , 
5g= g in ( 7 . 2 )  

which is an absurdity, since H'  = 6 # 0 in D'(R). 
From these examples it can seem that the imbedding 

~Y(P.) C A (7.3) 

is impossible, where k is a "good enough algebra." In fact, if A is associative, then 6 = 0 in A (by (6.10)), 
while if A is commutative then one has (7.1) and (7.2) with H'  = 6: But since 6 # 0 in 2Y(~) and (7.3) is an 
imbedding, we have 6 # 0 in A. 

However, the above difficulties disappear and the imbedding (7.3) becomes "possible," if the multiplica- 
tion in A is such that  

1 
z . v p - ~ l  6A or x.6~O in A, (7.4) 

z 
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and it even does not matter if the algebra A is associative or not. Analogously if 

sign2(x) r 1 in .% (7.5) 

then the imbedding (7.3) into a commutative algebra ~, becomes possible, where (7.1) is replaced by 

s i g n ( x ) . 6 = 6 - s i g n ( x ) r  in /~. 

We have precisely this situation concerning multiplication in the Colombeau algebra A = ~(~), which is an 
associative and commutative differential algebra. The most important point in the above difficulties is that 
for a given imbedding (7.3), the product in the algebra A cannot coincide with the usual product of functions 
(or distributions, as in (6.6)) unless both multipliers are smooth enough. 

One might suspect that  algebras .~ containing distributions (7.3), in which (7.4) and (7.5) take place, can 
have such strange multiplications that the corresponding imbeddings (7.3) turn out to be useless. Fortunately, 
this is not the case, as can be seen from Colombean's theory. The multiplication in the algebra A = ~(~) can 
again be successfully linked up with the usual products of functions and distributions because of the specific 
concept of an associated distribution (See. 8.2 below). In particular, in Colombeau's theory, relations of the 

1 
kind x.  vp - = 1, z .  6 = 0, and sign2(z) = 1 can be successfully interpreted (see Theorem 8.3 and the remark 

following Theorem 8.12). 

7.2. $ehwar t z ' s  imposs ib i l i t y  resul t .  The result of L. Schwartz [178] which we consider below indicates 
further difficulties that  come into view when one tries to find nonlinear extensions of the space of distributions. 

T h e o r e m  7.1. (Schwartz's impossibility result). Let A be an associative algebra over the field ~ with a 

product denoted by | and let D : A ~ A be a derivation in A (that is, D is a linear mapping satisfying 

Leibnitz's rule, Sec. 2.1). Assume that the following conditions hold: 

(a) continuous functions 1, z, z(log I z l -  1), and z2(log I z l -  1) belong to A (the last two functions are defined 

to be equal to 0 at the point z = O) ; 

(b) the constant function 1 is the unit element of the algebra A ; 

Co) (xClog Ixl - 1)) | z = x2(log Ixl - 1) in A; 

(d) the derivative D of continuously differentiable functions 1, x, and x2(log Iz l -  1) coincides with the usual 

derivative, that is, D(1) = 0, D(z)  = 1, D(x2(log Ix l -  1)) = 2x(log Ixl - 1) + x. 

Then the linear mapping L : A , A, defined by L(a) = x|  for all a E ,% is injective. (In other words, 

there is no element 0 ~ 6 E A such that x | 6 = 0 in A, where 6 corresponds to the Dirac 6 function.) 
If, in addition to the above conditions, we have 

(e) continuous functions Ix[, zlzl belong to A; 

(f) z| =zlxl inA; 

(g) the derivative D of xlzl coincides with the usual one: D(zlxl) -- 21xl, 

then x| = 0 in A (so that D~Izl = o in A, and there is an element in A whose derivative is zero and 
which is not a constant function). 

Proof .  1. The idea of the proof is simple: due to (c) we find an element z -x E A such that x -1 | z = 1 
in A (~-x is a "left inverse" to x E A), and then, by the associativity of the product | and (b), we obtain the 
injectivity of L: i f6  E A and x| = 0 in A, then (of. (6.10)!) 

6 = 1 |  - x | 1 7 4  - l | 1 7 4  - 1 |  in A. (7.6) 
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As a left inverse for the element z one could take z -1 = 1, but in this case one should also assume that 
z 

the singular function 1 is in A, which would be a weakening of the theorem. However, the presence in A of 
x 

such singular functions is possible due to the differentiation D : A , A and conditions (a)-(d); note that if 

f z(log I z l -  1) the second classical derivative a_.~." f 
1 

= = - ,  z 6 R\  {0}, and for the distributional derivative D 
d:~ 2 z 

in ZY(R) one has 
1 

Df = log Izl, O~I = vp - .  
x 

2. Let us prove the first part of the theorem. First, let us show that the element D2f E A, where 
f := z(log Izl - 1) E A, is a left inverse in A to the function z E A, that is, 

( D 2 f ) |  in A. (7.W) 

Using Leibnitz's rule, the linearity of DI and conditions (d) and (b), we have 

D(f o z) = (Dr) o z + f o(Dz), 

D2(f| -- (D2f)| + 2(D f)| -I- f| = 

--- (D2/) | :~ + 2(D/). 

On the other hand, in view of (c) and (d) and the linearity of D, we find that 

D2C/oz) = D2Cz2(log Izl- i)) = D(2f + z) = 2(D f) + i. 

Comparing the last two expressions, we come to (7.7). Now setting z -I := D2f E A and using the associativity 
of | we prove the injectivity of L as in (7.6). 

3. Let us prove the second part of the theorem. In view of Leibnitz's rule, the linearity of D, and (b), 

(d), (e), we have in A 
h ~ ( x o  I'1) = 2(Olzl)  + x o(O~lx[). (7.8) 

On the other hand, by virtue of (f) and (g), we have 

O~(x o lxl) = O*(xl~l) = D(2Ixl) = 2(Olx[). 

Consequently, zo(D2lxl) - 0 ink, so that by the first part of the theorem, D2Izl = 0, where Ixl = 
(I/2)D(zlz[) E A. (Note that Izl is not a polynomial of degree < 1. The equality D2lz[ = 0 is surely 

in contrast to D21~I = 26 # 0 in ZY(R).) o 

Remark 7.2. In ZY(R), we have the equality z 8 = 0 (cf. (6.9)), which gives an upper bound of the 

singularity of 6 at z = 0. However, Theorem 7.1 by no means states that differential algebras A from (7.3) 

cannot contain the Dirac distribution 6. This theorem asserts only that in A an element 6 (representing the 

Dirac 8 function) no longer satisfies the condition z o 6 = 0, that is, 8 will have at the point z = 0 a singularity 

of order not less than the function 1/z. The Dirac function 8 also has many other important properties, for 

example, connected with its definition w (6,~b) = ~b(0), ~b E D(R), and D2(z+) = D(H) - 6 in ZY(~) -- and 
these very properties are preserved in differential algebras A containing the space of distributions ZY(R), and 

in particular, this is true for the algebra ~(R). o 

Under stronger additional hypotheses, we have the following important corollary of Theorem 7.1: 

Coro l l a ry  7.3. Let A be an associative differential algebra over R with a product | and a differentiation 
D : A ~  .,A. I f  
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(a) C(~) is a subalgebra in A; 

(b) the constant function 1 is the unit element in A; 

(c) Dlc,(~,) coincides with the usual differentiation in C1(~), 

then there is no element 6 E A, 6 ~ O, such that x o 6  = 0 in A, and the equality x| = 0 implies 

D21x[ = 0 in ~,. ra 

This corollary shows that if we want an associative differential algebra containing the space C(R) to have 
an element 0 ~ 6 E A corresponding to the Dirac 6 function, then at least one of conditions (a) or (c) will be 
violated. Therefore, in the algebra A the following three conditions are incompatible: 

(1) the product in A exactly generalizes the product in C(R), 

(2) the differentiation in A exactly generalizes the differentiation in Cl(a) ,  

(3) there is an element 0 ~ 6 E A with the property x | 6 = 0 in .~. 

Thus, the difficulties have not so much to do with the multiplication of distributions as with the multiplication 
of continuous functions and the usual differentiation. However, Schwartz's result (1954) has given rise to the 
saying that  "multiplication of distributions is impossible." A closer look at this result makes it clear that 
the multiplication and the differentiation cannot simultaneously be extended onto associative algebras of 
generalized functions with the preservation of all their classical properties. 

The following theorem concerns imbeddings of TV(R) into differential algebras A (Colombeau [37, 1.2.4]): 

T h e o r e m  7.4. Let A be an associative differential algebra over R with a product | and a differentiation 
D : A  ,A. I f  

(a) ~ (~ )  is a linear subspace in A; 

(b) the constant function 1 is the unit element in A ; 

(c) Dlv'ia) coincides with the differentiation in 2Y(R), 

then the product | in A restricted to C(R) does not coincide with the usual product of continuous functions 

from C(R). 

Proof .  ~ote that in ~ ( R )  we have the equaliti~ D(~) = 1, O(1) = 0, Z~(I~I) = 26, and D(~'(log I~1- 1)) = 
2x(log Ix[ - 1) + x; hence, in view of (c), these equalities hold in A as well. From (a) .it follows that x, 
Ixl e A; therefore, as in (7.8), we get Dffxo l~ l )  = 2D(I~I) § 2~o6.  On the other hand, ~1~1 �9 A, so that 
Dffxlxl) = 2J9(1~1). Now if we assume that the product in A of continuous functions coincides with their 
usual product in C(R) then, in particular, 

molxl-- zlzl and ( z ( l og l z [ -  1))| = ~2(loglxl- 1) in A. 

Consequently, 

2/)(Izl) + 2 z o 6  = D2(xe  Ixl) -- D2(zlxl) -- 2D(Ixl), 

whence z |  = 0 inA,  a n d 6  = 0 i n A b y T h e o r e m T . 1 .  However, 6 # 0in:D'(R);  hence6  # 0 i n  A, a 
contradiction, n 

Now it is seen that  Colombeau's achievement is in that he has explicitly constructed an associative and 
commutative differential algebra of generalized functions A = g(R) which possesses the following optimal 
properties: properties (a), (b), (c) of Theorem 7.4 and 

C~176 is a subalgebra in/~. 
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Recall that for any k e N0, the algebra Ck(R) is not a subalgebra in A = G(R) (Example 2.5(1)). As 
for nonassociative algebras, in 1953-1955 Khnig [107, 108] produced an algebra A satisfying simultaneously 
conditions (a), (b), (c) of Theorem 7.4 and condition (a) of Corollary 7.3 such that the product in A generalizes 
Schwartz's product (6.6) as well. 

Let us summarize the above. In the linear space C(R), the multiplication is always possible, but dif- 
ferentiation is not always possible and there is no element 6 ~ 0 with the property z �9 6 = 0. In the linear 
space 27(R) differentiation is always possible and there is an element 6 ~ 0 with the property z �9 6 = 0, 
but multiplication is not always possible. In the linear space ~(R), the multiplication and differentiation are 
always possible, but there is no element 6 ~ 0 with the property z �9 6 = 0 (Proposition 3.12). Finally, one 
cannot simultaneously have the multiplication as in C(R), the differentiation as in Cx(R), and an element 
6 ~ 0 (corresponding to the Dirac 6 function) with the property z ,  6 = 0. 

7.3. D e g e n e r a c y  resul ts  when  i m b e d d i n g  27 into an algebra.  When one embeds 27(R), or some 
subspace therein, into a differential algebra A, certain products containing the Dirac 6 distribution or its 
derivatives may vanish. We are going to give examples of such products (Rosinger [167, I. w 11; 168, I. w 11; 
169, 1.2.4]), although products of this kind are not always desirable in applications. 

T h e o r e m  7.5. Let A be an associative and commutative differential algebra with a product | and a differ- 
entiation D : A , A such that 

(a) real-valued polynomials on R belong to A; 

(b) distributions from 6'(R) supported at a finite number of points belong to A; 

(c) multiplication | in A induces on polynomials from C a) the usual multiplication of polynomials; 

(d) the polynomial 1 is the unit element in A ; 

(e) the derivative D of polynomials from (a) and of distributions from (b) coincides with the derivative 

in 27( ) ; 

(f) r 1 7 4  

Then the following formulas hold in the algebra A: 

p, qENo,  p > q  ==# zP| 

pENo ==~ (p+I)DP6+x| 

p, q E No, q ~_ 2 ==# x p | q = 0, 

~/2 = 6 |  = 0. 

Proof .  1. Using (f), (e), and (d), by Leibnitz's rule, we get 

0 - D(m | &) -(Dm) | 6 + m | = 6 + m | DL 

Multiplying (7.13) by z with regard for (f) and (c), we find that 

0 = z| z| = z| x|174 = z2oD6. 

Apply the operator D to the last equality and multiply the result by m: 

0 = D(z2| = D(z2)|174 ~ 2x| "x2| ==> 

0 = z | | D6 + z 2 | D26) ~ 2z 2 | D6 + z s | D26 (~4) z3 | D26. 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 
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Continuing this process of application of D and multiplication of the result by x and taking into account (f), 
(7.14), (7.15), we get (7.9). 

2. Since (7.13) is (7.10) with p = 0, we have, applying D to (7.13) and using (e) and (d), 

0 = D(6 + z o D 6 )  = 2D6 + z Q D ~ L  

Applying successively the operator D starting with the last equality, we come to (7.10). 
3. Multiplying (7.10) by z p, in view of (c), we have 

(p+l)zPGDP6+zP+l| in .~. 

Multiplying the last equality by (DP6) q-~ = (DP6)| q-2, q _> 2, and taking into consideration (7.9), we 
find that  

0 = (p + l)z p | q + (x p+' | DP6) | q-2 | DP+*6 = (p + l)z p | q. 

4. Finally, from (7.11) with p = 0 and q = 2 we have the equality 

6 2 = 0  in ,~, 

to which we apply the derivative: 

O= D(6| D6(~6+6| [] 

The degeneracy result (7.12) is not consistent with other results encountered in the literature, especially 
in those theories connected with multiplication of distributions in which differential algebras contain distri- 
butions: - -  in such theories one has 62 ~ :D'(R), so that 62 r 0 (see, for example, Antosik, Mikusifiski, and 
Sikorski [5], Colombeau [37], Kosinger [167, 168, 171], Mikusiriski [141], Egorov [72], Ivanov [94]). 

8. T h e  Assoc ia t ion  Re la t ion  in ~(it) 

In order to recover classical values (of products, nonlinear operations, compositions, restrictions to linear 
subspaces) two special equivalence relations _~ and ~ are defined in the algebra ~(it),  which are called 
respectively the equality in the sense of generalized distributions (or the semiweak equdlity) and the association 
(or the weak equality). These new equivalence relations and the usual equality (between equivalence classes) 
in ~(it),  together with unrestricted multiplication and unrestricted differentiation in ~(fl), are the essence of 
Colombeau 's associated analysis. 

To motivate somehow the definitions below, we mention one of the most important  features of the 
linear Schwartz distribution theory, namely, that  any distribution T E 2Y(it) is completdy characterized by 

its "mean" values (T, r  = / T .  r on test functions r E :/9(It). In the distribution theory, to a l l  arbitrary 
i 

distribution T no value T(z) at a point z E It is assigned in general, so the above characteristics play a special 

role, meaning, in particular, that T = 0 in :D'(it) e--'> fT. r = 0 in ~ v r  6 D(it). It is convenient to 

extend this prop.erty from :D'(it) onto #(it)  if one takes into account that T = 0 in ~(1%) -: :. T = 0 in :D'(It). 
This is the idea for introducing the equality in the sense of generalized distributions, with which we start this 
section. Note that  at present Colombeau's associated calculus is one of the simplest and most efficient ways 
of overcoming those restrictions and difficulties that  any nonlinear theory of generalized functions is likely to 
encounter. 

8.1. T h e  e q u a l i t y  in t he  sense of genera l i zed  d i s t r ibu t ions .  

Def in i t ion  8.1. We say that  a generalized function U 6 ~(It) is equal to zero in the sense of generalized 
distributions and write U "~ 0 in ~(f~) if (cf. (3.10)) 

/ v . r  in Vr 6 D(it), 
, J  
fl 
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Two generalized functions [/1, U2 E g(f/)  are said to be equal in the sense of generalized distributions, which 
is written as U: "" (-]2 in g(12), if U~ - (./2 "" 0 in O(fl). 

In terms of representatives, the equality U~ ~- [/2 means that for some (and then for any) respective 
representatives u~ and u2 of these generalized functions, we have 

In view of the properties of the integral it is clear that ~_ is an equivalence relation on ~(~).  Obviously, 
if U, = (]2 in g(12), then (]1 ~ 0"2 in Q(12). But on Tr(~) both equalities = and " coincide: 

P r o p o s i t i o n  8.2. If  7"1, T2 6 D'(n) ,  then 

( 7"1 _~ T2 in g(f~) ) ~ ( T, = T2 in ~ ' (~)  ) ~ ( 7"1 = T2 in ~(~) ). 

Proof .  This follows at once from Definition 8.11 and Corollary 5.10b). r~ 
The main motivation for introducing the equality "" is that by means of it one can recover the classical 

Schwartz product (6.6): 

Theorem 8.3. If a E Cr and T e Tr(12), then a. T ~- a T in g(fl). 

Proof .  Let r 6 T)(12). Since C~(f~) is a subalgebra in Q(~/), we have (a .T) . r  = (T.a)-r  = T . (a . r  = T . (a r  
in ~/(12), so that,  in view of (6.6), we obtain 

/(a. T). V, = /T .  (T, aV,> = in . 

Taking into account (6.9), we have 

x"~.6#O-=mg, x " . g ~ _ O - z ' 6  in (;(R). (8.1) 

This shows that  the relation ~ is weaker than the equality = in g(12). On the other hand, (8.1) and 
Proposition 8.2 mean that  z "~. 5 ~ ~ ( ~ )  (recall that  z ' 6  E ~ ( R )  due to Sec. 6.4). 

A generalization of the Schwartz product is the product of distributions with disjoint singular supports. 
If T E Zr(12) and G C 12 is open, we say that  T[a E C=(G) if T = 3 (f)  on G for some f E C=(12). Denote 
by N=(T) the largest open subset of 12 such that  Tla| E C=(f~=(T)). The set singsupp T := ft \ f~| 

is called the singular support of T. For example, sing supp 6== {z}. 
Let T~, T2 q 2)'(12) and s ingsuppT1N singsuppT2 = z. Then 12 = 12=(T~) U 12=(T2), so that  by the 

theorem on C = partitions of unity, there are a, ,  a2 E C=(12) such that  supp a~ C 12=(T~), supp a2 C ~2=(T2), 
and a, + a2 = 1 on 12. The product T1T2 = T2T1 E T~(12) is defined by 

r, r2 = (aiT,)n + Yl(aTr2) in ~(n), 

where alT1, a2T2 E 6 '~(n) .  As a corollary of Theorem 8.3, we have 7"1" T2 ~ T1T2 in ~;(ft). 
The equality in the sense of generalized distributions is preserved by linear operations, multiplication by 

a smooth function, and differentiation: 

P r o p o s i t i o n  8.4.  
Then 

Let U, V, U,, ~ Z 9(n), u _~ v, u, _ v, in g(n), and ta / e C-(n) ann a E No. 

U + Ua " V + V,, f . U ~- I . V, cg"U ~_ OaV in ~;(12). 

Proof .  These properties follow from the linearity of the integral, the fact that C~(f~) is a subalgebra in 6(a), 
and the formula of integration by parts, a 
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E x a m p l e  8.5. Generally speaking, the equality ~ is not compatible with multiplication. Set U = x �9 
in G(~). Then U ~ 0. A representative of U ~ = z ~. 62 is the mapping u(~,,z)  = z2(1/e~)~(-z /e)  with 

E .Ao(~), z E ~, and e > 0; hence if r ~ :D(~), then a representative of the generalized number 

. e 
R 

is the mapping 

!1 R 

(sa) 

Since 

lim I(~o~) = r f y~o~(y) dy, 
t.-.-*+O g 

R 

from (3.3) it follows at once that I ~ Afo, that  is, U 2 = x 2. 62 ~ 0 in !~(~). o 

So, with the help of the equality ~- in the sense of generalized distributions, we have recovered the classical 
Schwartz product; however, it is not always possible to use this equality to recover the pointwise product of 
continuous functions. Hence we are going to introduce a more general (and weaker than = and =) equality 
in the sense of the association: as a hint, let us recall that  in the algebra of generalized numbers there is a 
weaker kind of equivalence relation, which is called the association (Definition 3.1). 

8.2. T h e  equa l i ty  in the  sense of  t h e  assoc ia t ion .  

Def in i t ion  8.6. We say that a generalized function U E ~(fl) is equal to zero in the sense of the association, 
and we write U ~ 0 in ~(fl) if (Definition 3.1) 

V r  : /U.r in ~. 
fl  

Two generalized functions 0"1, 0"2 E g(l~) are said to be equal in the sense of the association (or, in short, axe 
.associated to each other), which is written as U1 ~. Us in ~(1~), if U1 - U2 .-~ 0 in ~(1~). The relation ~ on ~(1~) 
will be called the association. We say that a generalized function U E ~(fl) has an associated distribution 

T E ~ ( n )  if U .~ T in ~(Ft) (in other words, if for every ~b E ~D(f~) the generalized number ] U .  r has 
12 

T, ~) = / T .  r as an associated ordinary number in the sense of Definition 3.1). ( 

fl  

In terms of representatives, the last definition appears as follows: U ~ T in ~(~) if for some (and then 
for any) representative u E EM[~] of the generalized function U, one has 

u 1 6 2  E ~D(fl) 3 N E 1~ such that u E AN(~ ") : 

12 

An associated distribution T does not depend on a representative of U and is unique (if it exists), o 

In view of the properties of the association ~ on g ,  it is clear that  .~ is an equivalence relation on 9(~).  
Obviously, in ~(fl) we have implications: 

UI=U2 ~ UI~-U2 ~ UI~U~. 

But on 2Y(fl) all the three equalities in ~(fi) coincide (see Proposition 8.2): 
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Propos i t i on  8.7. If  T1, T2 E 7)'(f~), then 

( 7"1 ~ 7'2 in ~(fl) ) -: :- ( 7'1 = T2 in 7YCf/) ) ,', .~ ( T~ = T: in g(fl) ). 

In particular, every distribution has itself as an associated distribution, o 

Examples  8.8. (1) If U E ~(fl) and U ~ T E D'(fl), then, in general, U ~ T in ~(fl). This is the case, 
for example, for the function x ,  6 E ~(I~): z .  6 ~ 0 E T~'(/~), but z .  6 ~ 0 in ~(I~). This shows that the 
association ~ is weaker than the equality = in ~(fX). 

(2) The association is also weaker than the equality in the sense of generalized distributions: if P E G(R~) 
is a constant generalized function from Example 3.2(3), then in ~(R') ,  we have P ~ 0, P ~ 0, and P ~ 0. 
The function z 2. 5 2 E ~(R) from Example 8.5 has the same properties: z 2. 6 2 ;~ 0, z 2- 6 2 ~ 0 in ~(R), where 
the last property follows from (8.2). Calculations as in Example 8.5, however, show that x.  5 2 ~ 0 in ~(R). 

(3) Let F E {~M(~) be a bounded function and let 5 E ~(R'~; ]~), where the algebra ~(R'~; R) is constructed 

starting from the sets g[R~; R] = C~ R) ~(~;a) .  Then 

f (6)  ~ f (0)  in G(I~), 

since by Lebesgue's dominated convergence theorem, one has 

111 a III n 

In particular, cos5 .~ 1, sin5 .~ O, and e is  ~ ,  1. 
(4) Not all generalized functions have associated distributions: consider 6 2 E #(R") and r E D(R") such 

that r = 1 in a neighborhood of 0 E R~; then for all sufficiently small e > 0, we have 

/ e_~ ~ 1 ( - ~ )  dx 1 

the last integral does not converge for ~ E .Ao(Rn; R). According to Proposition 8.7, this also means that 

The equality in the sense of the association is compatible with linear operations, multiplication by a 
smooth function, and differentiation: 

P ropos i t ion  8.9. I f  U, V, U~, V~ E #(I1), U ~ V, U~ ~ V~ in ~(lq), and f E C**(fl) and a E 1~, then 

U + U~ .~, V + V~, f . U ~ f . V, O~ .~ O~ in ~(fl). m 

In general, the equality ~ is not preserved by multiplication since, for example, in g(R) we have z .  5 .~ 0, 

but x .  ~ ~ 0 (Example 8.8(2)). 
The set of all generalized functions from O(fl) having associated distributions will be denoted by 

g A ( f ~ ) = { U E ~ ( I 1 ) I ~ T E 2 : ~ ( f l )  : U ~ , T  in !7(fl)}. 

Clearly, ~A(f~) is a linear subspace in ~(f~), and one has the following natural imbeddings of linear spaces: 

c c  Ca). 

Onthe  other hand, a mapping from ~A(~) into /~(F/) which to a generalized function relates its associated 
distribution is linear and surjective, but not injective. The square of this mapping coincides with itself, thus 
can be considered as.a kind of a projection of the set ~x(I1) onto 2Y(f/). 

Now we are able to recover the pointwise product of continuous functions: 
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T h e o r e m  8.10. I f  f ,  g 6 C(f~), then 3 ( f )  "3 (g) ~" 3 (fg) in ~(fl).  

Proof .  Let r 6 2)(f~), K CC I2, and let supp r C K ~ First, note that in view of Proposition 3.8(a), one has 

Given ~ E A0(R"), by the property (2.18), for all e > 0 small enough, one finds that 

I(qo,) := f [  u/(qo,, z)u,(qo,,z) - f(:r,)g(x) lr  dx = 

= ffft f ( z  -4- ~ ) g ( x  -4- ~#) - f(x)g(x)]~(A)qa(/~)r dA d ,  dx. (8.4) 

Since I(~,)  * 0 as e ~ +0, our proposition follows. 

R e m a r k .  This theorem is also valid in the case where f 6 L~r and g 6 C(f~): in fact, changing variables 
in the integral (8.4), one obtains 

K Bp(~,)Bp(~) 

now it suffices to note that I(~,)  ---* 0 as ~ ; +0 by Lebesgue's dominated convergence theorem, n 

Thus, although the new product in ~(f~) does not coincide algebraically with the classical product of 
continuous functions, it can be "projected" onto :D'(f~) to obtain the classical product. Therefore, the use of the 
new product and the classical product lead to the same results as far as "natural" calculations are concerned. 
Hence the new product can be considered as a generalization of classical products in a somewhat weaker, but 
quite acceptable, sense than the "strong algebraic equality," which leads to the Schwartz impossibility result. 

E x a m p l e  8.11. In Theorem 8.10, it is essential even for functions f ,  g 6 C~(f~) that we have used 

the association ~ instead of __. Consider an example (see also Rosinger [169, 2.1.6]). Let f ,  g 6 Ck(R) be 

the functions from Example 2.5(1). As we have seen, 3 ( f ) ' 3  (g) # 0 = 3 ( fg)  in ~(R), but at the same 
time 3 ( f ) "  3 (g) "~ 0 in view of Theorem 8.10. So let us show that 3 ( f ) "  3(g) ~ 0. Let ~ E .Zt~(R), where 

q > 2k + 3, and let supp ~ C  In, hi, where b < 0 (the role of these conditions will be clear in what follows). 
For representatives of our functions and x 6 ~ and e > 0, we have 

00 --X/{$ 

Given r E T)(R) such that r = 1, we prove that the generalized number with the representative 

11 

is not zero. Noting that uS(~,. , :2:) = 0 if - z / ~  > b, and ug(~,, z) = 0 if - z / e  < a, we find that 

-ca b -=/e 

-cb -=1r 

b b y 

a y a, 
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whence 

where 

r ~(~')  Io . r  I0, lm = ---- 
e--'* -I-0 ~2k+3 

b b 

,o 
a, y a 

Y 

If we show that Io ~ O, then I ~ No by virtue of (3.3), and we are through. Setting O(y) = J(y-.)k+x~o (.) d/~, 
tl 

b 

that qo E ~4~+I(~), we obtain tha t  [ ( y  - I~)k+lqo (#) d# = y~+l _ 0(y), so that  Y sad noting 
Y 

b b 

1o = / :+'0(y) dy - f 0'(y) ey. 
a ii 

Computing the first integral (changing the order of integration in the double integral, using the binomial 

theorem sad  the condition ~o E ~t2k+s(li)), we see that  it is equal to b2~+q/(2k + 3). Since b < 0, -To < 0. o 

Theorem 8.10 is generalized to the case of arbitrary nonlinear operations: 

T h e o r e m  8.12. Let F e O~f(gP), and let f~, . . . , h  E C(fl). Then 

f ( : ( f~ ) ,  . . . , J ( h ) )  ~ j ( f ( f ~ ,  . . .  , h ) )  in G(fl). 

Proof .  Let r e :D(fl), and let K CC fl be such that  supp r C K ~ By Proposition 3.8(a), we have 

f :cf(/,, ...,hl)'r = f f(ft(z), . . . , h C z ) ) r  

Given q0 e Mo(R'*), by the property (2.18), for representatives of generalized functions .7 (fi) and small enough 

e > 0, we find that  

I(~o,) := qo,)(z)}i=l) - f ({ / j (z)}~=~)]r  (8.5) l[F({(fj , " p 
J 

Since r has a compact support, by Lebesgue's dominated convergence theorem, l(qo,) > 0 as e ~ +0, 

which is what required, n 

R e m a r k  8.13.  A function g : R ~ C is said to be pieeeurise continuous if, on every finite segment 
[a, b] C R, it has only a finite number of points of discontinuities such that  at each such point the function 
has one-sided finite limits from the left and from the right. The set of all such functions is denoted by Cf(R). 
Theorem 8.12 is valid for functions f l ,  . . .  ,fp E Cr(R) as well [38, 30]. In fact, let zl, . . .  ,x~ be points of 
discontinuities of f~ on the segment K = [ - p ( r 1 6 2  In view of Example 3.4(4), for points z in K we 
have as ~ , +0 

( / j .  ~,)(z) , / j ( z ) ,  x e K \  {x,, . . . , zk} ,  
0 0 0  

( f j .~o, ) (z , )  , f j ( x , - O )  f ~(~)d~ + f~(=,+o) f ~(.)d., i =  l , . . . , k ,  
- -oo  0 

and from Proposition 1.3(e), for 0 < e < t, we have the estimate 

sup I(/~ * ff,)(~)l < II f~ II~| ~ Ilk, c,) --= cCf~, ~, r  < ~ ,  
~ K  

where K#(~,} = [ -p (w)  - p(r p(W) + p(r Hence, the net of functions F({(f~ * ~,)(z)}) is uniformly 

bounded on K for small ~ > 0 sad converges pointwise to F({f~(z)}) almost everywhere on K. It follows 
that  the integral (8.5) tends to zero as e ~ +0 by Lebesgue's bounded convergence theorem, o 
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The generalized composition (Theorem 4.6) of continuous functions coincides with the usual composition 
of continuous functions in the sense of the association: 

T h e o r e m  8.14. Let f~ C R", and let A C ~'~ be open sets. If  g E C(A) and f 6 C(fl; A), then 

where we denote by It,, 3~, Jn,a" the imbeddings 3A : C(A) ~ #(A),  2~ : C(12) , #(f~), and 3~.~m : 

C(12; A) , #(f~; R") defined in (2.17). 

P roof .  Since V = 3a(g) 6 #(A), and U = ln.R-~(f)6 # . ( f / ;A)  by Proposition 4.5, the composition 
W = V o U 6 #(12) is well defined by Theorem 4.6. Let r 6 Z)(f~), K CC f~, and supp r C K*. First, note 
that 

/JoCg o/). = / gCiCx)) ( ) dx 
fl f2 

(Proposition 3.8(a)). Given ~ = r174 6 .A~(R"; ~), in view of the property (2.18), a representative u of U is 
of the form 

u(r ~ ' ,  x) = f * (r174 = j f ( x  + e/i)r174 d#, x 6 K, e e (0", r}), 

for some r />  0. From Proposition 4.5 and property (4.9) it follows that there are K1 CC A and r/1 E (0, r/) 
such that u(r e K1 for all z e K  and ~ �9 (0,~1) (and the compact set /(1 is independent of r Again, 
by property (2.18), for a representative v of V, we have 

.(r174 = a *  (r174 = f a ( y  +~)r174 y �9 K~, ~ � 9  (0,,~). 

Hence a representative w of W is, by definition, of the form 

It follows that the expression 

tends to zero as r ~ +0 by Lebesgue's dominated convergence theorem (note that supp r CC fl). The 
proof is complete, n 

E x a m p l e  8.15. For T �9 i f (A)  and f �9 C(12; A), the composition T o f �9 #(12) is well defined (for brevity, 
we set T o f  = T o ln,~.~(f)), but in general it is not a distribution on 12 and even can have no associated 

distribution. For example, let T = 6 �9 2Y(R"), and let f �9 C~176 R"), f = 0. Then a representative w of 
the composition 6 o f is of the form 

= ~z~ (o). 

It follows that the composition ~ o f = 6 o 0 has no associated distribution (hence it is not a distribution 
itself), and 6 o 0 is a constant generalized function equal to the generalized number 6(0). r~ 

The next result shows that restrictions of a continuous function to linear subspaces in the generalized 
sense and in the classical sense coincide in the sense of the association (cf. also [156, Chap. III, w 11; 15, 
1.6.ul): 

T h e o r e m  8.16. Let f �9 C(~") and let m < n. Then 3 (f)[~"* ~ ~ ( f [~")  in ~ ( ~ ' ) ,  where at the left and 
at the right we have used the same symbol 3 to denote, respectively, the imbeddings C(R") , # ( ~ )  and 

C(R") , ~(R'~'), defined in (2.12) and (2.10). 
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Proof .  We use the notation from the end of Sec. 4. Let r E T~(~).  Then by Proposition 3.8(a), we get 

_ [ ~ ( s l ~ )  �9 r = ] s(=', o-)r 

Let r E .Ao(R). By definition, a representative U ~ ' ] ~ ,  m of the generalized function ./(f)l R~ is of the form 

(~zl~)(r  ~ ,  =9 = f / ( (= ' ,  0") + ~)r174 d~, 
il  ~ 

and it suffices to note that the expression 

tends to zero as ~ , 

E x a m p l e  8.17. 

X ~ ] R  '~, r  

z(r ~-) := . [J[ / (  (=', o") + ,+,) - .f(=', o") ]r162 d# ,~=' 

, + 0 .  o 

If T E :D'(R"), then TI~" e G(~'), but in general this restriction cannot be a dis- 

tribution and even cannot have an associated distribution. Consider the Dirac 8 function 5 E 7Y(~2). A 
representative u~[~ of its restriction 61R is of the form 

r = (~sl~)(r = r174 =-,0~ = - ;  

For a representative I of the generalized n u m b e r / ( 6 ] ~ ) .  r  we then have 

I(r  := j e 2  x c 

The last expression tends to +cr as e , +0, if, for example, r = 1 and r = 1. Hence, 5[~ has no 

associated distribution, and SIR ~ 7Y(R). o 

In order to better understand how the information contained in elements of g(l'l) is transmitted by means 
of the association into the space of distributions 2:Y(~I), consider the following representation of 2:Y((1) as a 
quotient linear space (Rosinger [169], Oberguggenberger [156]). Denote by S(s the linear subspace in EM[ f~] 
defined as follows: 

S(~) = { u e  ~ M [ n l l 3 T  e ~ ( n ) :  

v r  e ~(a) 3 jv e ~ : 

v~ e ~(~" ) :  r,_,-,2o/,,(~,,=),~(=),i== (T,r 
f~ 

In S(~),  consider the following linear subspace: 

g(n)  = {u ~ ~M[n]IVr e Z)(n) 3 N  E 1~: 

~ ( ~ " )  : r,_.~o.[,,(~,,=)r = 0  }. V~  E 
n 

The spaces TY(gt) and S(12)/V(~2) are linearly isomorphic; the isomorphism is defined by 

J :  T/(fl) ) S(~) /Y( f l ) ,  J(T)  = u r  + V(fl) for T E 7Y(f~), 

where the representative UT 6 EM[n] is defined in (6.11) as 

UT(V) = (/(~)T) * ~, ~o E Ao(~,"). 
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(The linearity and the surjectivity of J are obvious, the injectivity of J follows from (6.12) and (6.28).) Thus, 
the objects of D'(fi) are determined up to elements of V(~/), whereas the objects of g (~)  are determined up 

to elements of a much smaller set .N'[~ ]. Two elements of ~/(~) are associated to each other iff the difference 
of their representatives belongs to V(~), that is, the information contained in the nets weakly (in 2:)'(I"l)) 
convergent to zero is neglected. One may say that the equality in ~(fi) expresses the "microscopic" behavior 
of elements of ~(~/), whereas the association expresses the "macroscopic" behavior of these elements. 

The following proposition is interesting as compared to Proposition 3.5 (see also Biagioni [15, 1.10.2] and 
Aragona and Biagioni [8, 6.3]): 

R n  n Propos i t i on  8.18. Let U E ~( ), and let a E 1~ o. The following two conditions are equivalent: 

(a) o o u  ~ o in g(a") ; 

(b) there is a V E g(a") such that a"V = 0 and U .~ V in g(a"). 

In particular, i f  n = 1 and a = 1, then the equality U' ,~ 0 in ~ (a )  is equivalent to the ezistence ~f a 

generalized number Z E K such that U ,~ Z in ~(~) .  

Proof .  (b)-->(a). This follows from Proposition 8.9. 
(a)::=o(b). 1. First, let n = 1, and let a = 1, that is, U' ~ 0 in ~(~). Let r E 7)(~). Fix r E Ao(~) and 

set ~, = r - ( f  r 1 6 2  T)(R). Since f ~x = 0, there is a function r  T)(R)such that r = ~1 on R. For a 
B il 

representative u of U, (p E .Ao(R), and ~ > 0, we have 

By the assumption, there is N = N(r E N such that for all ~ E ~4N(]~), the last integral tends to zero as 
e ~ +0, so that from the above equality we conclude that 

+ 

whence U ~ / U- r =: Z in (~(~). 

If U" ,~. O, then U ~ ~. Z in view of the above, where Z E K. But as ( U - Z x )  ~ ~ 0 we have U - Z z  ~ Z1 E g. 

Hence, (b) is valid with V := Z z  + Z1. The case of an arbitrary (~ E I~l follows by induction. 
l% . ~ 4 2. Let n E N, e -- (1,0, . . . ,0 )  E 1~ o, and let O~U = OIU ~ 0 m ~(~ ). The proof in this case is as above; 

so we will indicate only the main points. Fix a r E .Ao(R) and set 

= v ( ~ , ~ )  -- f u ( t p ,  t , ~ ) r  ~p "I.J(~,X i E .Ao(~"), 
II 

where �9 = (z~ ,~)  E a",  ~ = (x~, . . .  ,x , ) ,  and u is a representative of U. It is clear that v E ~ [ a " ] ,  and if 

V = v +Af[a" ] ,  then O~V = 0 in ~(a'~). Let us show that U .~. V. Let r E 7:)(a"). Set 

: < = ) -  ( f = 
(:,,~) e ~'~. 

Since ~i E ~)(~") and f ~i(x)dx -- O, there is a function ~bl E T)(~") such that Oi~bl -- ~o1 on ~'~. Conse- 
]I" 

quently, 

I +<,,.,) +o(=,) + I 
111 
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The general case follows by induction, n 

9. Fu r the r  P rope r t i e s  of the  Associa t ion 

9.1. Mul t ip l i ca t ion  by the  Dirac 6 funct ion .  Let f : ~ , C be a piecewise continuously differentiable 
function, i.e., outside a finite set of points A = { za < . . .  < Xk }, the function f is continuous, has continuous 
derivative f ' ,  and at the points of A, functions f and ft have finite one-sided limits from the left and from 
the right. By the integration by parts formula, for a representative of f ,  one has 

o:w(~o, ,) = - + + f(~)~'(:~ - ,) d~ = 
- - 0 0  " = ~ i - - I  -~k 

k oo 

= ~[f]: ,~(=,-=)+ + + /'(~)~o(~-=)d=, (9.1) 
i=1 - o o  = 

where [ f  ]=, = f (x i  + O) - f (x ,  - 0) is the jump of the function f at the point x,. From here we obtain the 
well-known formula from the distribution theory (for example, Vladimirov [201, 1.2.3]) 

k 

3 ( f ) ' =  {f'}+~_,[f]=,6=, in G(R), 
i=1  

where a representative of the generalized function {f'} is defined by the second summand in (9.1). Dif- 
ferentiating both sides of the formula 3 (f)"~ ~ .7 (f"~), m E N, which is valid due to Remark 8.13, we find 
that 

k k 

rn3 (f) "~-1 �9 ({f'} -F E[f ]= ,6=, )  ~ {(fro),} + E [  f,a]=,6=,. 
i=1 i=1 

In particular, if H := j (H) e g(R) is the Heaviside function (Example 5.3), then for any m, k e 1~, m ~ k, 
we have the following relations in ~(R) : 

H" ~ H ,,~ H k, H"  ~ H k, H"  ~ H k, (9:2) 

1 
H '~-1 �9 H '  = H "~-* �9 ~ - -  6. (9 .3)  

r n  

Note also that 
g'l(_oo.o)=0 in (/(-oo, 0), //'~l(o,~)=1 in (/(0, oo), 

H~l~\~o} = g~l.\~o} in ~(R \ {0}). 

We are going to verify only the last two relations in (9.2) since all the others have already been ascertained. 

Assume that H '~ = H k for some m # k; then H m+1 =/./k+1, and by Leibnitz's rule in ~(R), we have 

k!S, //~,+k-1. H' = H k- (H ~-I �9 H') = _k H~k_ I . H' ~ -- 
m m 2k 

k + l  1 / _ /~+k-~ . / _ / ,  = / . / k - ~ .  ( / . / ~ .  H ' )  = k +._.L1/_pk-~./_/, ~ _ _  6 ,  
m+l m+1 2k 

k k+1 
which imply -- -'- 1" or m = k. 

m m+ 
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Now let us show that H "  7~ H k if m # k. To this end, it suffices to prove that m H  '~-I �9 6 7~ kH  ~-' �9 6. 
Let r E :D(IR). A representative of the generalized number 

f ( ( m H  ' ' -1 .  6 - kH k-' . 6).  r  dz 
II 

is the mapping 

x(~,) = f[m( 7 ~'(~)d~) "-1 k( 7 ~(')d~)~-~] i; 
a -::le -xle 

= f [ r . O ( v )  "-1 

where 

c ~(~), 

Since O(a) = 1 and O(b) = O, 

and therefore, 

- ko(v) ~-' ]~ (v)r dr,  

supp~o'C [a,b], and 
b 

o(v) =f~(,)d~, 
y 

y E ~. (9.4) 

f [mO(v F-' - ko(v) ~-' ]v  (v) dv = o, 

b 

lim I(~o,) = - r  [[moCy)  ''-1 - kO(y) k- '  ]~o (y)y dy = 
e---.+O d 

.a 

b b 

O(y)~]dy. 
�9 ~t Y a 

Taking into account (3.3), we conclude at once that I ~ No. o 
The formula (9.3) is generalized as follows [30]: 

Propos i t ion  9.1. Let f : ~ \ {Zo} ~ K be a continuous function, and at the point Zo, there ezist finite 

one-sided limits from the left f ( z o 7 )  and from the right f(xo+), and let F e OM(K). Then 

(a) i f  f ( z o - )  = f (xo+)  =: f(zo), and in particular, if f is continuous at Zo, then 

F O ( f ) ) "  6=o ,,~ F(f(zo))6= o in a(R); (9.5) 

(b) if f(xo-) # f(xo+), then 

1(=0+) 

F(3 ( f )  ) " 6"~ ~" ( f ( x o + ) 1  f(xo-)/(~of_)F(z)dz)6= 0 in ~(R). (9.6) 

(Clearly, this proposition is of local character.) 

Proof.  Given r E 77(R), a representative of the corresponding generalized number is the mapping (we assume 
that (9.4) holds) 

b 
1 

'(E/' 
a a 
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In view of Lebesgue's bounded convergence theorem and conditions O(a) = 1 and O(b)= 0 (note that 
~o E .A,o(l~)), we have 

b 

,~m ~ I(~p~) = -@(xo) f F(f ( zo- )+ O(v)( f (zo+)-  f (zo-)))d~O(v)dv " "  

a 

1 

- ~ b ( z o ) / F ( f ( x o - )  + t ( f ( x o + ) -  f ( zo - ) ) )  dL 
0 

The assertion (a) follows at once from the last formula. If f ( z 0 - )  # f(zo+), then using Hadamard's formula, 
we come to (b). D 

In particular, if f is as in Proposition 9.1 and F(z) = x, then 

/(Xo+) + fCzo-) &ffio in (9.7) 
S(/) 2 

Formulas of this kind are encountered in Raju [164], where they are calculated from the point of view of 
nonstandard analysis (Stroyan and Luxemburg [187]), and the symbol w. in (9.7) is understood in the sense 
that the difference of the left- and right-hand sides of this equality is an infinitely small distribution; also they 
were established by Fisher [78], where they were found by the method of regularization and passage to the 
limit, which was defined in his earlier paper [75]. In connection with (9.6), note that in view of (9.7), we have 

3 ( F o  f).//~o ~ r(f(xo+)) + F(f(zo-)) 6~0 
2 

Formulas (9.2) and (9.3) are also generalized to the case of R". 

Example  9.2. (1) Let H,  E ~(~") be the n-dimensional Heaviside function (Example 5.3). Then 

(H.)  = ~ H.  in ~(R") Vm E ~ .  (9.8) 

In fact, a representative of Ha in ~(R") is the mapping u = un,, given by 

o o  oo  

x = . . . ,  x . )  e R 

from which we get the uniform boundedness of and [(u '~ - u ) ( ~ , ,  x)]: 

]u(~o, ,~)l<M, [ (u ' -u ) (~ , , , x ) J<M'+M,  x ~  ~, e > 0 ,  M : = / l q o [ .  

In order to apply Lebesgue's bounded convergence theorem, let us find the pointwise limit lim~-.+o u(~o~, z). 
If~:x > 0, . . . ,x , ,  > 0, then this limit is equal to 1, and if at least one ~:~ < 0, then it equals 0. In the other 
cases (i.e, if some of the xi are greater than zero and the others are zero, so that the set of such points 
is of Lebesgue's n-dimensional measure zero) this limit exists, is finite, and depends on ~o. Hence, a(~o~, x) 
converges almost everywhere on ~" to the classical n-dimensional I-Ieaviside function H,,(x), and the same 
is valid for the function u"(~o~,z), which is a representative of (/-L,)". Thus, u"(~o~,x) - u(r162 ~ 0 as 
e ., +0 for almost all x E R"; this implies (9.8). 

(2) If the algebra ~(R") is constructed starting from the index set .A~(R"), then 

I 
(H,) =-1 .  6, m. m---g. 6~ in ~(l~),  m E N, (9.9) 
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where 6,, denotes the n-dimensional Dirac 6 function from ~(~') .  Representatives of the Heaviside and the 
Dirac functions are related as follows: 

[I x,), e e  
i=1 i=1 

where UH and u6 are respective representatives of the Heaviside and the Dirac functions from G(R). These 

relations can be rewritten in the form UH. = (u~) | and us. = (u6) | and in this sense, in the algebra ~(R'),  
w e  h a v e  

H ~ = H  | and 6 , = 6 ~ ' .  

Clearly, the equality (9.8) holds in the algebra ~(R')  as well, so that differentiating, we find that 

O~. . .o . (n~)  ~ On. &H~ = 6~. 

Writing the operator O, . . .  0r in the form a | where 0 is the derivative in ~(R), it remains to note that 

O|174 '~ = O| | = (0(H"))  | = ( m H  "~-' . 6)| ~ = 

= m " ( g ' ~ - l )  | 6 | = m ' ( g |  " - 1 .  6 | = m " ( g , )  " - ' .  6,. [] 

0.2. Mul t ip l i ca t ion  of  d is t r ibut ions .  
the product of two distributions in the algebra G(R') has an associated distribution: 

T h e o r e m  9.3. Let T,  S, R 6 ~ ( ~ ) .  Then the association relation 

T.  3" ~ R in (7(I~') (9.10) 

is equivalent to the condition 

V r e V ( ~ ' )  3 N E N V ~ e AN(~ ' )  : 

(R,f)=2,,+xli_r~o(T,@Su, r ~, (~-~) + ~,(~-~) ]) ; (9.11) 

here the tensor product T.@S v e 2Y(R 2") of distributions T and S acts on a test function X = X(z, y) e 1)(R 2") 
according to the rule 

( T= | S,, X(Z, y)) = (T=, ( S,, X(X, y))) = ( S,, ( T=, X(x, y))). 

Proof .  In fact, we do not prove this theorem here; we only reformulate the main result of [95] in the convenient 
form (9.11), recalling some relevant definitions along the way. A distribution T 6 27(R') is said to have value 

c E C in the sense of Lojasiewicz [126] at a poin t z 6 R" if 

lim (T , r :~ , )  = Li~ao(T* ~ , ) ( x ) =  c V~ 6 .Ao(R') ; 
~--.+0 

this is written as T ( z )  = c. For example, the Heaviside function H and the Dirac 6 function do not have 
values at x = 0, and any continuous function on R" has a value in the sense of Lojasiewicz at every point, 
which coincides with the classical value. Not only continuous functions have values at points; for example, 

distribution on R of the form T, = f i  l ( r _ ~  6), r > 0, which acts on a test function as the 
m.=l 

The following theorem (Jelfnek [95]) characterizes the case where 

- i r  II, 
m,=l 

113 



has the following property: T,(O) = 0 ..' '.. r > 2 (for details, see the book by Oberguggenberger [156, 
7.10-7.n1). 

A distribution T = T,,~ 6 TV(IR" x R =) is said to have section TI{y = 0} 6 ~Y(I~") in the sense o/ 
Lojasiewicz [127] at y = 0 6 R" if for every function r 6 D(R~), the distribution Tr := (T=,u, r  6 
77(1R '~) has a value in the sense of Lojasiewicz at the point y = 0; in other words, the section T]{y = 0} is 
defined by its action on a test function r 6 29(R") as follows: 

( TI{y = 0},r = Tr = limo( T=,, r V ~o 6 Ao(~"). (9.12) 

The main result of {95, Thm. 1] asserts that the association relation (9.10) is equivalent to the equality 

Rr = I[T=_y| =0}  in 7Y(~"). (9.13) 

The first tensor product T=_v | S=+~ 6 T~'(R 2'*) from (9.13) acts on a test function X = X(x,Y) 6 T~(R 2") 
according to the rule (in the second equality below we change variables (z - y, a: + y ) ,  , (z, y) with the 
Jacobian equal to (I /2)"):  

[ [  T(x - v) . S(~ + v ) .  x(~, v) d~ dv ( T,_, | s~+,, X(z, v)) 
@ , d  

(9.14) 
1 / / T ( z ) . S ( y ) . x (  x + y  Y - z )  1 ( +y y - z ) ) .  =2-~ 2 '  ~ d~dY=~(T~|  ' 2 

Computing analogously the second tensor product from (9.13) but changing variables (z + y, z - y ) ,  , (x, y), 
we find that 

1 "T= + y  x -  (T=+y@S~_,,X(z,y))=~'~( |  , ~Y) ) .  (9.15) 

Setting X(z,y) = r in (9.14) and (9.15), where r 6 T)(I~") and ~o 6 .Ao(lf'), and using (9.13) 
and (9.12), we come to (9.11). m 

Examples  9.4. Using Theorem 9.3, let us show that 

1 1 , 
vp- .z  5 ~ , - ~ 5  in G(R). (9.16) 

(In a different way this equality was obtained by Kami~ski [100], Cotombeau [37, 2.1.4], and Oberguggen: 
berger [156, 7.7 and 10.5(b)]. The historically first equality of this kind is due to Gonzalez Domingues and 
Scarfiello [81].) Given r e 79(R) and ~ 6 .AoCa), we set 

then 

this yields (9.16). 
1 1 

x.  vp -'x 5 ~ ~6; this implies 

l'v 1 l(vpl, x,(z,O) ) i( P;,(5(Y),X'(x,Y))) = = 

= i.~ol. / r r176 + ~,(-v)] @ = 
ivl_>, 

! 

= -  r ~,(v)+~," (v)l@ , ( 0 ) = ( -  6',r 4 ,--.+o 
R 0 

Since x �9 6 ~ 0 ~ z �9 6' + 6 ~ O, from (9.16), in view of Proposition 8.9, we have 
1 

z . v p - # l a n d z . 6 # 0 i n ~ ( R ) .  
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One easily verifies that Theorem 9.3 implies (9.3), (9.7), and Theorem 8.10. Consider a more interesting 
example of relations for the Heisenberg distributions 

~+ = g ( ~ +  -:vp~ ~1' 6_ = ( 6 -  -~i vp ), 

which are often used in quantum mechanics. The relations are of the form (in a different way they were 
obtained by Mikusifiski [141]) 

1._1_ 6, - 1 1 
(g+)2 "" ~: 47ri ~ Pf - -  X2 

1 
where the distribution P f ~  E Z)'(~) is defined by 

(pf__l,r  = v p f  r162 dz, e E Z)(R). a 
B 

In general, most of the particular products of distributions that were defined earlier in the framework of 
the distribution theory are recovered by means of the association relation from their product in the Colombeau 
algebra. Here is a list of papers (which is far from compIete) in this direction (see also references in the 
cited papers): Ambrose [31, Berg [12, 13], Cerutti [26], Cheng and Fisher [27, 76, 77], Itano [90, 91, 92], 
Kamifiski [98-103], Li Bang-He [116], Lodder [124, 125], Mikusifiski [139, 140], Oberguggenberger [145, 150, 
156], Panzone [159], Shiralshi [181, 182], Tysk [1971, Wagner [202], Wawak [203-206]. 

In the definition of an associated distribution (8.3), it is required that the limit equality hold for all 
~o E AN(R"). But as we have already mentioned (Remark 2.2), if N _> 2, then elements of the set .AN(R") 
cannot be nonnegative only or nonpositive only. The following lemma, which is a very particular case of the 
results in Oberguggenberger [144], shows that if the limit equality in definition (8.3) in the case of the product 
of distributions holds for all r E .A0(R") with ~ >__ 0, then it holds also for all ~ E .Ao(~"): 

L e m m a  9.5. Let T1, T2, S E :D'(fl). Assume that for all ~ E .Ao(R"), ~ >_ O, we have 

h2r~0 f (Tx* ~,)(z)CT2* ~,)(z)r = (S , r  Vr e :D(fl). (9.17) 
f~ 

Then equality (9.17) holds for all ~o e .Ao(~"), so that 

T I ' T 2 ~ S  in g(fl). 

Proof .  First of all, note that for small e > 0, the convolution Ti *~t, i = 1, 2, is a well-defined C ~176 function 
on a neighborhood of the compact set supp r Let ~, e .Ao(R"). Choose X e Z)(R ~) such that X - 0 and 

0, and let c = f X(z) dz. Then ~ + 2X _> 0. In the equality + X > 

ala~ = 2blb~ + 2(a, + b,)(a2 + ~ )  - (al + 2b,)Ca~ + 2b~), 

set ai = (Ti * ~,)(z) and bi = (Ti * ~,)(z), i = 1, 2. Then by assumption (9.17), the integral 

T, * ~,)(T2 * ~ , ) r  = 2 T1 �9 X,)(T2 * X,)r  

" T  +2fiT, , ( ~ +  x),][ ~*(~+ fIT, , ( ~ +  2X);][T2, (~0 + 2X):]r X ) ~ ] r  

tends to 

a s ~  

[2c ~ + 2( i  + c) ~ - (I § 2c) ~ ] ( s ,  r (s, r 
) § this is what is required, o 

Let us consider an example of the product of functions with infinite discontinuities. 
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E x a m p l e  9.6. Let x+ be the function defined in Example 5.3, and let z_ = C-z)+. If 0 < a < 1, the 
functions x+" and z2-~ are locally integrable on ~ and their classical product is 0 (outside the point z = 0). 

Let us compute the product of these functions in Q('R) up to association, namely, let us show that 

x - ~  ~  - -  6 in g ( ~ ) .  
+ - ~ 2 s in  ~ra 

Given cp E .z[o(R), e > O, and r e :D(I~), we have 

X(~,) = ((z: ,  ~ �9 ~ , ) (~_- '  �9 ~,) . r  = 

= / / / ( ~ -  ~):,o ~ ~ (~-  ~ d~ = 

OO 

- ]  
, - 7 o r  / ~ ,  ~ ( , ) ~  (~)( ,  - ~ ) -~ ( ,  - , ) ~  = r �9 Io. 

Z - -OO 

Changing the order of integrations in Io and then changing variables, we obtain 

1 = / ~(p)d# / ~ o ( A ) d A . / t - ~ ( 1 -  t)a-ldf, = ~ B ( 1 -  a , a ) ,  
- o o  0 

where B is Euler's beta function. It remains to note that  

7r 

B(I - a, a) = r(1 - ~)r(o) = sin ~' 

mad replace ~o by ~ in the above. Note that  from different considerations the obtained formula was also proved 
by Fisher [78]. o 

9.3. Heav i s ide  a n d  Dirac  genera l i zed  func t ions .  

Def in i t ion  9.7. A generalized function Y E Q(R) is said to be a tIeattiaide generalized function (in short 
H.g.f.) if it has a representative uv E fM[R] with the property 

V~ E ,4o(R) 3 a :  (0,oo) ,,,, (0, oo), l~r~oa(S) = O, and 3,'I > 0 such that 

(a) ay(~o~, z) = 0 if ~ > 0 and z < -a(~)  ; 

(b) u v ( ~ , , z )  = 1 i fe  > 0 and z > a(e); 

(c) sup sup l~Y(~,,~)l < oo. 
cr =e[-~(d,.(~)] 

(Note that the definition of a H.g.f. which imitates the behavior of the classical Heaviside function is not 
completely fixed, and it depends on the context. For other definitions and examples, see Aragona and 
Biagioni [8], Biagioni [15, 1.9], Colombeau [43, II w 5], Colombeau and Le Roux [60], Egorov [72, w 6.4], 
and [31].) o 
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Clearly, the Heaviside function H E ~(R) is a H.g.f. Another example is the function Y E G(R) with 
representative u y ( ~ )  = H * @,(~), ~ E .Ao(~), where r E .Ao(R) is a fixed function and the mapping p is 
defined in See. 1. 

In order to give one more example of a H.g.f., note that 

if ~, r E :D(~'~), then ~ * r E :D(R") and 

o_<~<= 

( ~ , ~ ) ,  = ~ , , r  ~>0; 

this, in particular, implies 

~,r ~ :,r qEr~o. 

An element of G(R) with the representative u(qo) = H * (So''), qo E .Ao(R), is a H.g.f., where we denote by 

qo "~ := ~o * ... * qo the m-fold convolution bf So with m E N fixed. 

If Y E G(R) is a H.g.f. with a representative uy, then for any qo E .Ao(R), we have 

c + o , I  
o 

Hence, Y .~ H in g(R), so that nil H.g.f.s are associated and the derivative Y' of Y is associated to the Dirac 
6 function: 

OO 

~r(~o., x r d= = - ~,r@,, =)r dx ,-.+o 
0 

Any natural power Y" of a H.g.f. Y E ~(R) is also a H.g.f., and so differentiating the equalities Y" ~ H ~ Y, 

we obtain 
m Y  ~-1  �9 Y '  .~ 6 ~ Y ' .  (9.18) 

As in (9.2) one can verify that Y~ r yk and Y"~ ~ Y~ if m ~ k. 
Analogously we can define Dirac generalized functions: 

Defini t ion 9.8. A generalized function D E ~(R") is said to be a Dirac 9eneral izedfunct ion (in short D.g.f.) 
if it has a representative d E gM[R"] with the property 

Vqo E .AoCR) Ba:  (0, co) - -*  (0,oo), l}.mo ace ) = 0, and 3 r />  0 such that 

(a) d(qo,, z) = 0 if e > 0 and Izl > a(e) ; 

(b) [ d(qo,, z) = 1 if e > 0; 
R n 

(c) sup [ laC~,,~)lax < ~. ,,~(o,.u 

(The same remark as in Definition 9.7 holds.) o 

As examples of D.g.f.s, we have the following elements of G(R ") with representatives: u(w) =~  (the usual 

Dirac6 function), u(W) = ~p(~) (~ E .A0(R ") is fixed), u(w) = W"~ 0 r u(~) = (~) '=  (m E 1~) with W E .Ao(R% 
Any two D.g.Ls are associated since for a representative d(qa,,z) of such a generalized function we have 

r d(~,,=)~C=)d= , ~(0), ~ , +0, r E vCa"), ~ E ~ (a~) .  
d 
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Thus, in Colombeau's theory, unlike the distribution theory, there are many generalized functions which 
are similar to the Heaviside function and there are many generalized functions which are similar to the Dirac 

function. 

E x a m p l e  9.9. Let n = 1 and D q ~(R) be a D.g.f. with a representative d(~0~, z). The mapping 

u(tp,, x) = ] d(~o,, t) dt (for some ao < 0) 
a0 

defines a H.g.f. Y e G(R) such that Y ' =  D in g(R). For any a > 0 we show that (Biagioni [15, 1.9.6]) 

1 Cry5 + r_,6) in ~(~ , ) .  / : ) ( :  - a ~) ~ 

In particular, this equality holds for the distribution D = 5 ~/Y(R).  
First, note that  the composition D(z ~ - a~) is well defined according to Theorem 4.6. Let ~o e .Ao(R) and 

let ~/> 0 be such that  a(~) < a ~ for e ~ (0, r/). Setting s~ = v / y " ~ ,  for r e D(R) and ~ ~ (0, r/), we have 

[ d (~ , , :  - -~3r d~ = / , , ' ( ~ , , :  - "~3r d~ = 
R R 

17 2 u (~o~, y) r  + r  dy 
8 y  

(integrate by parts) = 

The first of the 
,(,) 

/ lu(~', z)l dx 

integral 

1/ 
4 -~(,) 

dy = 

, ( ,)  

(,.), ],,,. 
- , ( , }  ~(,) 

above integrals tends to zero as ~ ~ +0 since r has compact support and 

, 0  as e 4 +0. In view of condition (b) of Definition 9.7, it now suffices to consider the 

- ~  ~ (,,3 2 (, ,3 ~ (~,3' ~ dy = ,(,) 

2 " Z Z 2 Z Z 
s,(,) 

= r  + r  , r  + r  
2s~(e) 2a 

as c , + 0 .  [] 

From (9.3), we have H .5  ~ (1/2)5, where H and 6 are the classical Heavislde and Dirac functions. In view 
of (9.18), this is also true for generalized functions. Sometimes in real physlcal problems, the coefficient 1/2 of 
the 6 function in the formulas above does not reflect correctly the physical phenomenon. Thus, we note that 
if we take different H.g.f.s and D.g.f.s, then this coefficient can assume any value (in physical considerations 
this is usually a number between - 1  and 13. For example, let a H.g.f. Y E ~(R), and let a D.g.f. D E ~(~) 
have respective representatives (Obergug~enberger [156, 10.513 
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where @, @ E Ao(R) are fixed. Then it is easily seen that 

Y 

Y . D ~ ( f  f ~(z )dxqJ(y)dy)6  in G(R), 
R --0o 

and with the appropriate choice of ~ and g/one can have the coefficient of 6 as an arbitrary number, t~ 

9.4. D i s c o n t i n u o u s  so lu t ions  of t he  e q u a t i o n  ut Jr f (u ) ,  ~ O. Consider the following first-order 
quasilinear equation ([165, 183, 31]): 

u t ( z , t ) + f ( u ( x , t ) ) = = O ,  (z,f,) 6 S:=ax (0, oo), (9.19) 

where f 6 OM(R), ut(z, t) = Otu(z, t), f (u(x,  t))= = O=f(u(z, t)). We are interested in discontinuous solutions 
of this equation corresponding to the step-like initial data: 

f uL if x < O, 
O) (9.20) m~ I ua if z > 0, 

where uc, ua  fi R, uL # un (this corresponds to the Riemann problem). Let H 6 g(R) be a H.g.f. (not 
necessarily a distribution). Equation (9.19) is naturally interpreted in the form 

ut + y(u)~ ~ 0 in 

and we search for solutions to this equation of the form 

= A H(= - + 

(9.21) 

Au := ua - uc, (9.22) 

where v E • is an unknown number (the velocity of the shock wave or the speed of the discontinuity). 
Solutions of the form (9.22) will be called traveling waves. Substituting the function u(z, t) into Eq. (9.21) 
and noting that  ut(x, t) = - v A u H ' ( z  - vt), we find that 

- v t )  + I(n g(  - + 0 in g ( S ) .  

We will show below that in ~(R), the following equality holds: 

f ( A ~ g ( 2 ~  -- v t )  Jr IIL)~: ~ (f(%$R) -- f (uc ) )g ' ( z  - vt); (9.23) 

assume now that  it is fulfilled. Then 

- v A u H ' ( z  - v~) + (f(uR) -- f (uc))H'(z  - vt) ~. O. 

Since g ' ( z  - vt) 7t 0 in g(R) and Au yt 0, we have 

v = f ( u n )  - f(uc) (9.24) 
u R  - UL 

Relation (9.24) is called the jump condition; in gas dynamics it is known as the Rankine-Hugoniot condi- 
tion [183, Part III]. Thus, we have shown that 

Equation (9.21) has generalized solutions from g(R) in the form of traveling waves (9.22) provided 
the values v, ut. and uR are tied together by the Rankine--Hugoniot condition (9.24). 

Now we prove (9.23). Let r = r  E D(S), and let h e ~M[a] be a representative of the H.g.f .H. 
Integrating by parts, for ~ E .Ao(R) and e > 0, we have 

/(~) l 
011 
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"=--.~I-.~0( / /  -~" / /  )f('~'tl'h(~t,x'--U~')"}"'tl"L)~x(',') d'd~;''~ 
sn{:>~} sn{=_<~t} 

o o  o o  o o  ~ t  

0 ut 0 --oo 

so that  in view of the relation between the integral and the derivative, we have 

oo 

I(~,) = (f(uR) - f( '~L)) / ~)(t~i~, t) dr. (9.25) 
o 

On the other hand, 

lira / / h ' (~ , , x - v t ) r  = 
e,--.+O 

0 R 

sn{=>vq sn{=_<vq 
OQ O 0  O0  

0 eL 0 

hence, taking into account (9.25), we obtain (9.23). 
Note that (Colombeau [45]) Eq. (9.19) with the strong equality = in g(S)  has no discontinuous solutions 

in the form of traveling waves (9.22). For simplicity, assume that f ( u )  = u2/2. Then v = (un + uc) /2  by 
virtue of (9.24). Multiplying the equation u~ + uu= = 0 by u, we find that 

+ o=(y) = o in #(s) .  

Substituting function (9.22) into this equation and arguing as above, we obtain 

2 u~z + unuZ, + u~, 
3 un + uc 

but this value is inconsistent with the above value u. The effect here is that  multiplication by a singular 
function u does not preserve the association: 

ut + uu= ~ O ~=~ uu, + u2u= ~ O. 

In different (sub)spaces of the space d distributions, Burgers' equation (see (9.19), (9.21)) with the flux 
function f(u) = u2/2 with or without viscosity was studied by many authors; let us mention here the classical 
work of Hopf [87] and recent papers of Dix [69] and the author [28, 29], for the viscous Burgers' equation. 
In algebras of Colombe~u's generalized functions, Burgers' equation and its regularizations were studied by 
Biagloni and Oberguggenberger [20, 21]; see also the book by Oberguggenberger [156, Chap. V]. 

9.5. Traveling waves and delta waves. Consider the following quasilinear first-order system of conser- 
vation laws [48, 183, 31]: 

~,+f(u) ,  ~ 0 in ~(s), 
p, -t- (up) ,  ..m 0 in ~(S). (9.26) 

Solutions of this system axe sought in the form of a traveling wave (9.22) and in the form of a combination of 
a traveling wave and a delta wave: 

p(=, ~) = apK(= - ~t) + PL + ~ t ~(= - ~t), (9.27) 
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where Ap = pn - PL # 0, a 6 ~, v is the velocity of the shock (9.24), H and K 6 ~(l~) are (possibly 
different) H.g.f.s and 6 E ~(l~) is a D.g.f. Note that solutions (9.22) and (9.27) correspond to the step-like 
initial data (9.20) and 

S PL if x < 0, 
p(z,  O) 

l pn if x > 0, 

in accordance with the Pdemann problem. Noting that  

p , ( x ,  ~) = - v A p X ' ( x  - ~,t) + ~, 6 (=  - ,,~) - v ~  t 6 ' (x  - v t ) ,  

p , , ( = ,  t )  = - + 6' (=  - "0, 
and substituting (9.27) and (9.22) into the second equation of system (9.26), we find that  the relation 

p~ + u=p  + up= ~ 0 

is of the form (for brevity we omit the argument z - vt) 

( - v A p K '  + c~ 6 - v c t  ~ 6') + A u H ' .  ( A p K  + PL "{- a f, 6)-{- 

+ ( A u H  + UL) . ( A p K '  + a~6') .~ 0. 

Regrouping the terms in the last equation, we have 

(UL -- v ) A p K '  + pLAuH'  + a 6 + A u A p ( K H ) ' +  
(9 .28)  

+c~ ~ (AuCH6)' + (UL -- v)6') = O. 

Consider the last term in parentheses. Set ~ = M ~, where M 6 G(R) is a H.g.f. having the property 

H . 6 . ~ M ' ~ 6 ,  with /3:= 

Since (H6)' ~ ~6', the term in the parentheses vanishes if 

~ A u  + UL - v = O. 

D - -  U L  

Au (9.29) 

(9.30) 

Noting that  K H  ~ H ~ K and ( K H ) '  ..~ H'  ~ K '  ~ 6, from the remaining terms in (9.28) we obtain the 
condition on a 

(UL  - -  v )Ap  + pLAu + o + A u A p  = O. 

Evaluating a with regard to (9,30) and (9.29), we have 

a = y a p  - (unpR - uLpz.). (9.31) 

Thus, 

system (9.26) has generalized solutions from g(S)  in the form of the traveling wave (9.22) and 
in the form of a combination of the traveling wave and the delta wave (9.27) provided a D.g.f. 
6 = M'  is chosen so that  (9.29) holds and a is of the form (9.31). 

For example, if f ( u )  = u2/2 (Burgers' equation (9.21) without viscosity), we have v = (uR + UL)/2, and the 
generalized function 6 can be chosen to be equal to H '  (i.e., M = H), where H is the H.g.f. from (9.22), so 
that/~ = 1/2, H H '  .~ (1/2)H',  and a = - A u ( p a  + pL)/2. 

Note that  calculations above with function (9.27) have no analog in the distribution theory. Note also 
that if a = 0, i.e., the Rankine-Hugoniot jump condition for the second equation of the system (9.26) holds 

U R P R  - -  U L P L  

Pn - PL 
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then the system (9.26) has generalized solutions from G(S) in the form of traveling waves (9.22) and p(z, t) = 
ApK(x - vt) + PL. [2 

We have considered rather a simple example of a system in conservative form and shown that such 
systems have discontinuous solutions and solutions in the form of delta waves. It is interesting to note 
that Colombeau's theory of generalized functions has its important applications in the theory of systems in 
nonconservative form: from the point of view of distribution theory such systems were studied by Le Floch 
and his collaborators [65, 112-114], and in algebras of generalized functions nonconservative systems were 
studied by Colombeau and his collaborators [24, 25, 48, 59, 60-62] and Oberguggenberger [155]. 

Bibliographical notes. 
Here we list some recent papers (known to the author) not mentioned in the body of this paper, which 

contribute to Colombeau's theory and related theories of generalized functions and their applications. 
Colombeau's theory of generalized functions: Aragona [6, 7], Aragona and Colombeau [9, 10], Biagioni and 

Colombean [17-19], Colombean [46], Colombeau and Gald [49, 50], Colombeau and I-Ieibig [51], Kiselman [106], 
Pilipovid [160]. 

Generalized functions and nonstandard analysis: Li Bang-He [116, 117], Li Bang-He and Li Yaqing [118- 
120], Li Yaqing [123], Oberguggenberger [150, 156], Todorov [193-196]. 

Partial differential equations of evolution type: Biagioni [16], Colombeau [40], Colombeau and Heibig [52], 
Colombean, I-Ieibig, and O berguggenberger [53-55], Heibig and Moussaoui [86], Colombeau and Langlals [56, 
571, LangIals [1101, Rosinger [I70, t721, Zhao Baoheng [207]. 

Hyperbolic systems: Biagioni [14], Colombeau and Oberguggenberger [63], Colombeau [44], Gramchev [82, 
83], Lafon and Oberguggenberger [109], Oberguggenberger [146-149, 151-154], Shelkovich [180]. 

Conservation laws: Colombeau and Oberguggenberger [64], Gramchev [85], Oberguggenberger and 
Wang [158]. 

Ordinary differential equations: Colombeau [37, 38] Egorov [71], Kim [105], Ligqza [121, 122], Radyno 
and Ngo Fu Tkhan' [161], Radyno and Nguen Hot Ngia [163], Rubel [173-175]. 

Colombeau type alyebras of generalized functions: Antonevich and Radyno [4], Gramchev [83], Ober- 
guggenberger [1571, Taka~i [1881, Taka~i and Ta~a~i [189]. 

Products of distributions: Lysik [128], Kadtubowska and Wawak [97], Keller [104], Embacher, Grfibl, and 
Oberguggenberger [74], Jelfnek [96], Ivanov [93], Christov and Damyanov [32], Vinokurov [200], Wawak [203]. 

Fourier transform and convolution in algebras of generalized functions: Colombeau [37, 39], Nedeljkov 
and Pilipovi~ [143], Nedeljkov [142], Radyno, Ngo Fu Tkhan', and Sabra Ramadan [162]. 

Periodic 9eneralized functions: Valmorin [198, 199]. 
Numerical methods: Adamczewski, Colombeau, and Le Roux [I], Barka, Colombean, and Perrot [11], 

Colombeau, Laurens, and Perrot [58], Laurens [111]. 

. 

, 

3. 

. 

R E F E R E N C E S  

M. Adamczewski, J. F. Colombeau, and A. Y. Le Roux, "Convergence of numerical schemes involving 
powers of the Dirac delta function," J. Math. Anal. Appl., 145, No. 1, 172-185 (1990). 

R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975). 

W. Ambrose, "Products of distributions with values in distributions," J. Reine Angew. Math., 315, 
73-91 (1980). 

A. B. Antonevich and Ya. V. Radyno, "On a general method for constructing algebras of generalized 
functions," Soy. Math. Dokl., 43, No. 3, 680-684 (1991). Translated from DokL Ross. Akad. Nauk, 
318, No. 2, 267-270 (1991). 

122 



5. P. Antosik, J. Mikusifiski, and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, 
Amsterdam (1973). 

6. J. Aragona, "Th$or~mes d'existence pour l'op~rateur 0 sur les formes diff~rentielles gSndralis6es," 
C. R. Acad. Sci., SSr. I, 300, No. 8, 239-242 (1985). 

7. J. Aragona, "On existence theorems for the 0 operator on generalized differential forms," Proc. London 
Math. Sot., 53, No. 3, 474-488 (1986). 

8. J. Aragona and H. A. Biagioni, "Intrinsic definition of the Colombeau algebra of generalized functions," 
Anal. Math., 17, No. 2, 75-132 (1991). 

9. J. Aragona and J. F. Colombeau, "On the O-Neumann problem for generalized functions," J. Math. 
Anal. Appl., 110, No. 1, 179-199 (1985). 

10. J. Aragona and J. F. Colombeau, "The interpolation theorem for holomorphic generalized functions," 
Ann. Polon. Math., 49, No. 2, 151-156 (1988). 

11. Y. A. Barka, J. F. Colombeau, and B. Perrot, "A numerical modelling of the fluid/fluid acoustic dioptra," 
J. d'Acoustique, 2, No. 4, 333-346 (1989). 

12. L. Berg, "Multiplication of distributions," Math. Nachr., 76, 195-202 (1977). 

13. L. Berg, "Taylor's expansion in a distribution algebra," Z. Anal Anwend., 2, No. 3, 265-271 (1983). 

14. H. A. Biagioni, "The Cauchy problem for semilinear hyperbolic systems with generalized functions as 
initial conditions," Results Math., 14, No. 3[4, 231-241 (1988). 

15. H. A. Biagioni, A Nonlinear Theory of Generalized Functions, Lecture Notes Math., Vol 1421 (1990). 

16. H, A. Biagioni, "Generalized solutions to nonlinear first-order systems," Monatsh. Math., 118, Nos. 1-2, 
7-20 (1994). 

17. H. A. Biagioni and J. F. Colombe~u, "Borel's theorem for generalized functions," Stud. Math., 81, 
No. 2, 179--183 (1985). 

18. H. A. Biagioni and J. F. Colombean, "Whitney's extension theorem for generalized functions," J. Math. 
Anal Appl., 114, No. 2, 574-583 (1986). 

19. H. A. Biagioni and J. F. Colombeau, "New generalized functions and C** functions with values in 
generalized complex numbers," J. London Math. Soc. (2), 33, No. 1, 169-179 (i986). 

20. H. A. Biagioni and M. Oberguggenberger, "Generalized solutions to Burgers' equation," I. Diff. Equa- 
tions, 97, No. 2, 263-287 (1992). 

21. H. A. Biagioni and M. Oberguggenberger, "Generalized solutions to the Korteweg-de Vries and the 
regularized long-wave equations," SIAM J. Math. AnaL, 23, No. 4, 923-940 (1992). 

22. N. N. Bogoliubow and O. S. Parasiuk, "Uber die Multiplikation der Kausalfunktion in der Quantenthe- 
orie der Felder," Acta Math., 77, No. 3, 227-266 (1957). 

23. N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of the Quantum 
Field Theory [in Russian], Nanka, Moscow (1987). 

24. J. J. Canret, J. F. Colombean, and A. Y. Le Roux, "Solutions g6n~ralis~es discontinues de probl~mes 
hyperboliques non conservatifs," C. R. Acad. Sci. S6r. I, 302, No. 12, 435--437 (1986). 

123 



25. J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux, "Discontinuous generalized solutions of nonlinear 
nonconservative hyperbolic equations," J. Math. Anal. Appl., 139, No. 2, 552-573 (1989). 

26. R. A. Cerutti, Distributional products, Preprint Trab. Mat. / Inst. Argent. Mat., 179, 1-16 (1991). 

27. L. Z. Cheng and B. Fisher, "Several products of distributions on R"~," Proc. Roy. Soc. London, Set. A, 
426, No. 1871, 425-439 (1989). 

28. V. V. Chistyakov, "The Cauchy problem for a parabolic equation with nonlinear irregularity," Mosc. 
Univ. Math. Bull., 41, No. 3, 54-59 (1986). 

29. V. V. Chistyakov, "On weak solutions to Burgers'-type equations with nonsmooth data," Mat. Zametki, 
58, No. 3, 471-476 (1995). 

30. V. V. Chistyakov, "Some products of distributions in the Colombeau algebra of generalized functions," 
In: Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 1. NII MIOO 
NGU, Novosibirsk (1995), pp. 175-184. 

31. V. V. Chistyakov, "Travelling wave and delta wave solutions to the Riemann problem for a conservative 
system," In: Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 2, NII 
MIOO NGU, Novosibirsk (1996), to appear. 

32. Chr. Christov and B1. Damyanov, "Multiplication of ,generalized functions," Math. Meth. Theor. 
Phys., 5 (1989). 

33. J. F. Colombeau, Differential Calculus and Holomorphy. Real and Complex Analysis in Locally Convez 
Spaces, North-Holland Math. Studies, Vol. 64, Amsterdam (1982). 

34. J. F. Colombeau, "New generalized functions. Multiplication of distributions. Physical applications. 
Contribution of J. Sebasti~o e Silva," Portugal Math., 41, Nos. 1--4, 57-69 (1982). 

35. J. F. Colombeau, "Une multiplication g~n~rale des distributions," C. R. Acad. Sci., S~r. I, 296,No. 8, 
357-360 (1983). 

36. J. F. Colombeau, "A multiplication of distributions," J. Math. Anal AppL, 94, No. 1, 96-115 (1983). 

37. J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland Math. 
Studies, Vol. 84, Amsterdam (1984). 

38. J. F. Colombeau, New general ezistence results for partial differential equations in the C ~176 case, Preprint, 
University of Bordeaux (1984). 

39, J. F. Colombeau, Elementary Introduction to New Generalized Functions, North-Holland Math. Studies, 
Vol. 113, Amsterdam (1985). 

40. J. F. Colombeau, "Nouvelles solutions d'~quations aux d~riv~es partielles," C. R. Acad. Sci., S~r. I, 
301, No. 6, 281-283 (1985). 

41. J. F. Colombeau, "A new theory of generalized functions," In: J. Mujica (ed.), Complez Analysis, 
Functional Analysis, and Approzimation Theory, North-Holland Math. Studies, Vol. 125, Amsterdam 
(1986), pp. 57-65. 

42. J. F. Colombeau, "Some aspects of infinite-dimensional holomorphy in mathematical physics," In: 
J. A. Barroso (ed.), Aspects of Mathematics and Its Applications, Amsterdam (1986), pp. 253-263. 

124 



43. J. F. Colombeau, "Introduction to 'new generalized functions' and multiplication of distributions," In: 
H. Hogbe-Nlend (ed.), Functional Analysis and Its Applications, ICPAM Lecture Notes; Nice, France, 
Aug. 25-Sept. 20, 1986, World Scientific Publ. Co., Singapore (1988), pp. 338-380. 

44. J. F. Colombeau, "Generalized functions; multiplication of distributions; applications to elastic- 
ity, elastoplasticity, fluid dynamics and acoustics," In: B. Stankovid, E. Pap, S. Pilipovid, and 
V. S. Vladimirov (eds.), Generalized Functions, Convergence Structures, and Their Applications, In- 
tern. Conf., June eS-e7 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 13-27. 

45. J. F. Colombeau, "Multiplication de distributions et acoustique," J. d'Acoustique, 1, Nos. 1-2, 9-14 
(1988). 

46. J. F. Colombeau, "The elastoplastic shock problem as an example of the resolution of ambiguities in 
the multiplication of distributions," J. Math. Phys., 30, No. 10, 2273-2279 (1989). 

47. J. F. Colombeau, "Multiplication of distributions," BulL Amer. Math. Soc., 23, No. 2, 251-268 (1990). 

48. J. F. Colombeau, Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and 
Theoretical Physics, Lecture Notes Math., Vol. 1532 (1992). 

49. J. F. Colombeau and J. E. Gal~, "Holomorphic generalized functions," J. Math. Anal. Appl., 103, 
No. 1,117-133 (1984). 

50. J. F. Colombeau and J. E. Gal~, "Analytic continuation of generalized functions," Acta Math. Hung., 
52, Nos. 1-2, 57-60 (1988). 

51. J. F. Colombean and A. Heibig, Nonconservative products in bounded variation functions, Preprint, 

No. 39, Ecole Normale Supfirieure de Lyon (1990). 

52. J. F. Colombeau and A. Heibig, "Generalized solutions to Cauchy problems," Monatsh. Math., 117, 
Nos. 1-2, 33-49 (1994). 

53. J. F. Colombean, A. Heibig, and M. Oberguggenberger, Generalized solutions to partial differential 

equations of evolution type, Preprint, No. 54, l~cole Normale Sup~rieure de Lyon (1991). 

54. J. F. Colombeau, A. Heibig, and M. Oberguggenberger, "Le probl~me de Cauchy dans un espace de 
fonctions g~afiralis&s. I," C. R. Acad. Set., S~r. I, 317, No. 9, 851-855 (1993). 

55. J. F. Colombeau, A. Heibig, and M. Oberguggenberger, "Le probl~me de Cauchy dans un espace de 
fonctions g~n~ralis&S. II," C. R. Acad. Sci., S~r. I, 319, No. 11, 1179-1183 (1994). 

56. J. F. Colombeau and M. Langlais, "Existence et unicit~ de solutions d'&tuations paraboliques non 
lin~alres avec conditions initiales distributions," C. R. Acad. Sci., S~r. I, 302, No. 10, 379--382 (1986). 

57. J. F. Colombeau and M. Langlais, "Generalized solutions of nonlinear parabolic equations with distri- 
butions as initial conditions," J'. Math. Anal. Appl., 145, No. 1,186-196 (1990). 

58. J. F. Colombeau, J. Laurens, and B. Perrot, "Une m~thode numSrique de r~solution des ~quations 
de l'acoustique dans un milieu ~ caract~ristiques C ~ par morceaux," In: CoUoque de Physique, Col- 
loque C 2, supplement aut .  51, No. 2 (1990), pp. 1227-1230. 

59. J. F. Colombean and A. Y. Le R.oux, "Numerical techniques in elastoplasticity," In: Nonlinear Hyperbolic 
Problems, Lecture Notes Math., VoI. 1270, (1987), pp. 103-114. 

60. J. F. Colombean and A. Y. Le R.oux, "Multiplications of distributions in elasticity and hydrodynamics," 
J. Math. Phys., 29, No. 2, 315-319 (1988). 

125 



61. J. F. Colombean, A. Y. Le Roux, A. Noussair, and B. Perrot, "Microscopic profiles of shock waves and 
ambiguities in multipfications of distributions," SIAM J. Numer. Anal., 26, No. 4, 871-883 (1989). 

62. J. F. Colombeau, A. Y. Le Roux, and B. Perrot, "Multiplication de distributions et ondes de choc 
dlastiques ou hydrodynamiques en dimension us," C. R. Acad. Sci., Sdr. I, 305, No. 11, 453-456 
(1987). 

63. J. F. Colombeau and M. Oberguggenberger, "On a hyperbolic system with a compatible quadratic term: 
generalized solutions, delta waves, and multiplication of distributions," Commun. Part. Diff. Equat., 
15, No. 7, 905-938 (1990). 

64. J. F. Colombeau and M. Oberguggenberger, Approximate generalized solutions and measure valued 

solutions to conservation laws, Preprlnt, No. 37, ]~cole Normale Supdrieure de Lyon (1990). 

65. G. Dal Maso, Ph. Le Floch, and F. Murat, Definition and weak stability of nonconservative products, 
Preprint CMAP-CNRS, R. I. No. 272, Ecole Polytechnique, Palaiseau (France) (1993). 

66. B1. P. Damyanov, "The sheaf structure of Schwartz distributions," In: Complex Analysis and General- 
ized Functions. 5th Intern. Conf. Varna, Sept. 15-21, 1991, Sofia (1993), pp. 33-42. 

67. P. A. M. Dirac, "The physical interpretation of the quantum dynamics," Proc. Roy. Soc. London A, 
113, 621-641 (1927). 

68. P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proc. Roy. Soc. 
London A, 114, 243-265 (1927). 

69. D. B. Dix, "Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation," SIAM J. 
Math. Anal., 27, No' 3, 708-724 (1996). 

70. R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York 
(1965). 

71. Yu. V. Egorov, "On generalized functions and linear differential equations," Vestn. MGU,.Ser. I, No. 2, 
92-95 (1990). 

72. Yu. V. Egorov, "A contribution to the theory of generalized functions," Usp. Mat. Nauk, 45, No. 5, 
3-40 (1990). 

73. L. Ehrenpreis, "Solutions of some problems of division I," Amer. J. Math., 76, 883-903 (1954). 

74. H. G. Embacher, G. Grfibl, and M. Oberguggenberger, "Products of distributions in several variables 
and applications to zero-mass QED2," g. Anal. Anwendungen, 11, No. 4, 437-454 (1992). 

75. B. Fisher, "The product of distributions," QuarL J. Math. Oxford, Ser. (2), 22, No. 86, 29i-298 (1971). 

76. B. Fisher, "The product of the distributions z-" and 6('-z}(z)," Proc. Cambridge Philos. Soc., 72, 
No. 2, 201-204 (1972). 

77. B. Fisher, "Neutrices and the product of distributions," Stud. Math., 5'/, 263-274 (1976). 

78, B. Fisher, "On defining the product of distributions," Math. Nachr., 99, 239-249 (1980). 

79. G. B. Folland, Real Analysis. Modern Techniques and Their Applications, John Wiley & Sons, New 
York (1984). 

80. I. M. Gel'fond and G. E. Shilov, Generalized Functions. Vol. 1, Academic Press, New York (1964). 

126 



81. A. Gonzalez Domingues and R. Scarfiello, "Nota sobre la formula v.p. ' �9 6 = 1/~ ,, - ~ v ,  Rev. Un. Mat. 
Argentina, 1, 53-67 (1956). 

82. T. Gramchev, "Semilinear hyperbolic systems and equations with singular initial data," Monatsh. Math., 
112, 99-113 (1991). 

83. T. Gramchev, "Nonlinear maps in spaces of distributions," Math. Z., 209, No. 1,101-114 (1992). 

84. T. Gramchev, "Le problhme de Cauchy pour des systhmes hyperboliques non-lin~aires avec donn~es 
initiales distributions," Bulgar. Math. Dokl., 45, No. 8, 1-5 (1992). 

85. T. Gramchev, Entropy solutions to conservation laws with singular initial data, Preprint (1992). 

86. A. Heibig and M. Moussaoui, "Generalized and classical solutions of nonlinear parabolic equations," 
Nonlinear Anal. Theory. Meth. Appl., 24, No. 6, 789-794 (1995). 

87. E. Hopf, "The partial differential equation ut + uu~: = #u=," Commun. Pure Appl. Math., 3, No. 3, 
201-230 (1950). 

88. L. HSrmander, "On the division of distributions by polynomials," Ark. Mat., 3, No. 54, 555-568 (1958). 

89. L. HSrmander, The Analysis of Linear Partial Differential Operators. Vol. I. Distribution Theory and 
Fourier Analysis, Springer-Verlag, Berlin-New York (1983). 

90. M. Itano, "On the multiplicative products of distributions," J. Sci. Hiroshima Univ., Ser. A-I, 29, 
No. 1, 51-74 (1965). 

91. M. Itano, "On the theory of multiplicative products of distributions," J. Sci. Hiroshima Univ., Ser. A-I, 
30, No. 2, 151-181 (1966). 

92. M. Itano, "Remarks on the multiplicative products of distributions," Hiroshima Math. J., 6, No. 2, 
365-375 (1976). 

93. V. K. Ivanov, "Hyperdistributions and multiplication of Schwartz distributions," Dokl. Akad. Nauk 
SSSR, 204, No. 5, 1045-1048 (1972). 

94. V. K. Ivanov, "An associative algebra of the simplest generalized functions," Sib. Mat. Zh., 20, No. 4, 
731-740 (1979). 

95. J. Jel~nek, "Characterisation of the Colombeau product of distributions," Comment. Math. Univ. 
Carolin., 27, No. 2, 377-394 (1986). 

96. J. Jel{nek, "Distinguishing example for the Tillman product of distributions," Comment. Math. Univ. 
Carolin., 31, No. 4, 693-700 (1990)." 

97. E. Kadtubowska and R. Wawak, "Local order functions and regularity of the product of distributions," 
Bull. Acad. Polon. Sci., Ser. Math., 32, No. 9, 523-533 (1984). 

98. A. Kamifiski, "On convolutions, products and Fourier transforms of distributions," Bull. Acad. Polon. 
Sci., Set. Math., 25, No. 4, 369-374 (1977). 

99. A. Kamhlski, "On the product ~ -  ~f(t-x)(z)," Bull. Acad. Polon. Sci., Set. Math., 25, No. 4, 375-379 
(1977). 

100. A. Kamifiski, "On the exchange formula," Bull. Acad. Polon. Sci., Ser. Math., 26, No. 1, 19-24 (1978). 

127 



101. 

102. 

103. 

104. 

105. 

i06. 

107. 

108. 

109. 

110. 

iii. 

112. 

113. 

114. 

115. 

116. 

117. 

118. 

119. 

A. Kamirlski, "Remarks on delta- and unit-sequences," Bull. Acad. Polon. Sci., Ser. Math., 26, No. 1, 
25-30 (1978). 

A. Kamifiski, "Convolution, product and Fourier transform of distributions," Stud, Math., 74, No. 1, 
83-96 (1982). 

A. Kamifiski, "On model delta-sequences and the product of distributions," In: Complez Analysis and 
Generalized Functions. 5th Intern. Conf. Varna, Sept. 15-gl, 199I, Sofia (1993), pp. 148-155. 

K. Keller, "Irregular operations in quantum field theory. I. Multiplication of distributions," Rep. Math. 
Phys., 14, No. 3, 285-309 (1978). 

A. V. Kim, "Generalized solutions of nonlinear differential equations," Icy. Vuzov, Mat., No. 5, 58-63 
(1987). 

C. O. Kiselman, "Sur la d$finition de l'opdrateur de Monge-Amp~re complexe," In: Lecture Notes 
Math., Vol. 1094 (1984), pp. 139-150. 

H. KSnig, "Neue Begrfindung der Theorie der 'Distributionen' yon L. Schwartz," Math. Nachr., 9, 
129-148 (1953). 

H. KSnig, "Multiplikation yon Distributionen. I," Math. Ann., 128, 420-452 (1955). 

F. Lafon and M. Oberguggenberger, "Generalized solutions to symmetric hyperbolic systems with dis- 
continuous coefficients: the multidimensional case," J. Math. Anal. Appl., 160, No. 1, 93-106 (1991). 

M. Langlais, ~Generalized functions solutions of monotone and semilinear parabolic equations," 
Monatsh. Math., 110, No. 2, 117-136 (1990). 

J. Laurens, "Une moddlisation numdrique du dioptre acoustique liquide solide," Colloque de Physique, 
Colloque C 2, suppldment aut .  51, No. 2, 1219-1222 (1990). 

Ph. Le Floch, "Solutions faibles entroI~iques des syst~mes hyperboliques non lindaires sous form non 
conservative," C. R. Acad. Sci., Sdr. I, 306s No. 4, 181-186 (1988). 

Ph. Le Floch, "Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form," 
Commun. Part. Diff. Equat., 13, No. 6, 669-727 (1988). 

Ph. Le Floch and T.-P. Liu, "Existence theory for nonlinear hyperbolic systems in nonconservative 
form," Forum Math., 5, 261-280 (1993). 

H. Lewy, "An example of a smooth linear partial differential equation without solution," Ann. Math., 
66, No. 1, 15,5--158 (1957). 

Li Bang-He, "Nonstandard analysis and multiplication of distributions," Sci. Sinica, 21, No. 5, 561-585 
(1978). 

Li Bang-He, ~On the Moire problem from the distributional point of view," J. Sys. Sci. Math. Sci., 6, 
No. 4, 263-268 (1986). 

Li Bang-He and Li Yaqing, "Nonstandard analysis and multiplication of distributions in any dimension," 
Sci. Sinica (Set. A), 28, No. 7, 716-726 (1985). 

Li Bang-He and Li Yaqing, "On the harmonic and analytic representations of distributions," Sci. Sinica 
(Ser. A), 28, NO. 9, 923-937 (1985). 

128 



120. Li Bang-He and Li Yaqing, "New generalized functions in nonstandard framework," Acta Math. Sci., 
12, No. 3, 260-269 (1992). 

121. J. Ligqza, "Generalized solutions of ordinary linear differential equations in the Colombeau algebra," 
Math. Bohem., 118, No. 2, 123-i46 (1993). 

122. J. Lig~za, "Generalized solutions of boundary value problems for ordinary linear differential equations 
of second order in the Colombeau algebra," In: Dissertationes Math. (Rozprawy Mat.). Pap. Conf. 
"Different Aspects of Differentiability," 1993, Warsaw, Sept. 13-18, No. 340 (1995), pp. 183-194. 

123. Li Yaqing, "What can a product of distribution zero and itself be?" Syst. Sci. Math. Sci., 3, No. 4, 
381-383 (1990). 

124. J. J. Lodder, "A simple model for a symmetrical theory of generalized functions, h Definition of 
singular generalized functions. II: Operators on generalized functions," Physica A, 116, No. 1, 45-58, 
59-73 (1982). 

125. J. J. Lodder, "A simple model for a symmetrical theory of generalized functions. III: Products of 
generalized functions. IV: Some extensions and conclusions. V: Some applications," Physica A, 116, 
No. 3, 380-39I, 392--403, 404-410 (1982). 

126. S. Lojasiewicz, "Sur la valeur et la limite d'une distribution dons un point," Stud. Math., 16, No. 1, 
1-36 (1957). 

127. S. Lojasiewicz, "Sur la fixation des variables dons une distribution," Stud. Math., 17, 1-64 (1958). 

128. G. Lysik, "On the regularity of the product of distributions," Bull. Polish Acad. Sci. Math., 35, 
Nos. 3-4 203-210 (1987). 

129. B. Malgrange, "Existence et approximation des solutions des ~quations aux d~riv~es partielles et des 
~quations de convolution," Ann. Inst. Fourier, 6, 271-355 (1955). 

130. A. Marzouk, Rdgularitg de solutions gdngralisges d'gquations diffgrentielles alg~briques, Thesis, Bor- 
deaux (1989). 

131. A. Marzouk and B. Perrot, Regularity results for generalized solutions of algebraic equations and algebraic 
differential equations, Preprint. 

132. V. P. Maslov, "Three algebras corresponding to nonsmooth solutions of systems of quasilinear hyperbolic 
equations," Usp. Mat. Nauk, 35, No. 2, 252-253 (1980). 

133. V. P. Maslov, "Nonstandard characteristics in asymptotic problems," Usp. Mat. Nauk, 38, No. 2, 3-36 
(1983). 

134. V. P. Maslov and G. A. Omel'yanov, "Asymptotic soliton-form solutions of equations with small dis- 
persion," Usp. Mat. Nauk, 36, No. 3, 63-126 (1981). 

135. V. P. Maslov and V. A. Tsupin, "Necessary conditions for the existence of infinitesimally narrow solitons 
in gas dynamics," Dokl. Akad. Nauk SSSR, 246, No. 2, 298-300 (1979). 

136. V. P. Maslov and V. A. Tsupin, "6-Shaped Sobolev generalized solutions of quasilinear equations," Usp. 
Mat. Nauk, 34, No. 1, 235--236 (1979). 

137. V. G. Maz'ya, S. L. Sobolev Spaces, Springer-Voting, Springer Series in Soviet Mathematics (1985). 

138. G. H. Meisters, "Linear operators commuting with translations on :D(R) are continuous," Proc. Amer. 
Math. Sot., 106, No. 4, 1079-1083 (1989). 

129 



139. J. Mikusifiski, "Irregular operations on distributions," Stud. Math., 20, No. 2, 163-169 (1961). 

140. J. Mikusifiski, "Criteria of the existence and the associativity of the product of distributions," Stud. 
Math., 21, No. 3, 253-259 (1962). 

141. J. Mikusiriski, "On the square of the Dirac delta-distribution," Bull. Acad. Polos. Sci., Sgr. Math., 
14, No. 9, 511-513 (1966). 

142. M. Nedeljkov, "The Fourier transformation in some subspaces of Colombeau's generalized functions," 
In: Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15-21, 1991, Sofia 
(1993), pp. 219-228. 

143. M. Nedeljkov and S. Pilipovid, "Convolution in Colombeau's spaces of generalized functions. Part h 
The Space ~, and the a-integral. Part II: The convolution in ~a," PubL Inst. Math., 52, 95-104, 
105-112 (1992). 

144. M. Oberguggenberger, "Multiplication of distributions in the Colombeau algebra ~(| Boll. Unione 
Mat. Ital. (6), 5-A, No. 3, 423-429 (1986). 

145. M. Oberguggenberger, "Products of distributions," J. Reine Angew. Math., 365, 1-11 (1986). 

146. M. Oberguggenberger, "Weak limits of solutions to semilinear hyperbolic systems," Math. Ann., 274, 
No. 4, 599-607 (1986). 

147. M. Oberguggenberger, "Solutions g~ndralisdes de syst~mes hyperboliques semilindaires," C. R. Acad. 
Sci., S~r. I, 305, No. 1, 17-18 (1987). 

148. M. Oberguggenberger, "Generalized solutions to semilinear hyperbolic systems," Monatsh. Math., 103, 
No. 2, 133-144 (1987). 

149. M. Oberguggenberger, "Hyperbolic systems with discontinuous coefficients: examples," In: 
B. Stankovid, E. Pap, S. Pilipovid, and V. S. Vladimirov (eds.), Generalized Functions, Convergence 
Structures, and Their Applications, Intern. Conf., June 23-27 (1987) in Dubrovnik, Yugoslavia, Plenum 
Press, New York (1988), pp. 257-266. 

150. M. Oberguggenberger, "Products of distributions: nonstandard methods. Z. Anal. Anwendungen, 7, 
No. 4, 347-365. (1988) Corrections to this article: Z. Anal Anwendungen, 10, 263-264 (1991). 

151. M. Oberguggenberger, "Syst~mes hyperboliques ~ coetticients discontinus: solutions gdndralis~es et use 
application ~ l'acoustique lin~a~re," C. R. Math. Rep. Acad. Sci. Canada, 10, No. 3, 143-148 (1988). 

152. M. Oberguggenberger, "Hyperbolic systems with discontinuous coefficients: generalized solutions and a 
transmission problem in acoustics," J. Math. Anal. AppL, 142, No. 2, 452-467 (1989). 

153. M. Oberguggenberger, "Semilinear wave equations with rough initial data: generalized solutions," In: 
P. Antosik and A. Kamifiski (eds.), Generalized Functions and Convergence, World Scientific Publ., 
Singapore (1990), pp. 181-203. 

154. M. Oberguggenberger, "The Carleman system with positive measures as initial data - -  generalized 
solutions," Transp. Theory Statist. Phys., 20, Nos. 2&3, 177-197 (1991). 

155. M. Oberguggenberger, "Case study of a nonlinear, nonconservative, nonstrictly hyperbolic system," 
Nonlinear Anal Theory. Math, Appl, 19, No. 1, 53-79 (1992). 

156. M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, 
Pitman Research Notes Math., Vol. 259, Longman, Harlow (1993). 

130 



157. M. Oberguggenberger, "Generalized functions and stochastic processes," In: Proceedings of Conference 
on Stochastic Analysis, to appear. 

158. M. Oberguggenberger and Y.-G. Wang, "Generalized solutions to conservation laws," Z. Anal. Anwend., 
13, No. 1, 7-18 (1994). 

159. P. A. Panzone, "On the product of distributions," Notas de Algebra y Analisis, Univ. Nacional del Sur, 
Bahia Blanca, 16, i-vi, 1-73 (1990). 

160. S. Pilipovid, "Pseudo-differential operators and the microlocalization in the space of Colombeau's gen- 
eralized functions," Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur., 20, 13-27 (1995). 

161. Ya. V. R.adyno and Ngo Fu Tkhan', "Differential equations in a n algebra of new generalized functions," 
Dokl. Akad. Nauk Belarnsi, 37, No. 4, 5-9 (1993). 

162. Ya. V. R.adyno, Ngo Fu Tkhan', and Sabra Ramadan, "Fourier transform in an algebra of new gener- 
alized functions," Dokl. Ross. Akad. "Nauk, 327, No. 1, 20-24 (1992). 

163. Ya. V. Radyno and Nguen HoY Ngia, "The Cauchy problem in the space of generalized functions of 
J. Colombeau," Dokl. Akad. Nauk Belarnsi, 34, No. 6, 489-492 (1990). 

164. C. K. Raju, "Products and compositions with the Dirac delta function," J. Phys. A: Math. Gen., 15, 
No. 2, 381-396 (1982). 

I65. R.. D. Pdchtmyer, Principles of Advanced Mathematical Physics, Vol. 1, Springer-Verlag, New York 
(1978). 

166. J.-P. Rosay, "A very elementary proof of the Malgrange-Ehrenpreis theorem," Amer. Math. Monthly, 
98, No. 6, 518-523 (1991). 

167. E. E. Kosinger, Distributions and Nonlinear Partial Differential Equations, Lecture Notes Math., 
Vol. 684 (1978). 

168. E. E. Rosinger, Nonlinear Partial Differential Equations. Sequential and Weak Solutions, North-Holland 
Math. Studies, VO1. 44, Amsterdam (1980). 

169. E. E. Rosinger, Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Math. 
Studies, Vol. 146, Amsterdam (1987). 

170. E. E. Rosinger, "Global version of the Cauchy-Kovalevskaia theorem for nonlinear PDEs," Acts Appl. 
Math., 21~ No. 3, 331-343 (1990). 

171. E. E. Rosinger, Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions; 
North-Holland Math. Studies, Amsterdam (1992). 

172. E. E. Rosinger, "Characterization for the solvability of nonlinear partial differential equations," Trans. 
Amer. Math. Sac. , 330, 203-225 (1992). 

173. L. A. Rubel, "Solutions of algebraic differential equations," J. Diff. Equat., 49, No. 3, 441-452 (1983). 

174. L. A. Rubel, "Some.research problems about algebraic differential equations," Trans. Amer. Math. 
Sot., 280, No. 1, 43-52 (1983). 

175. L. A. R.ubel, "Generalized solutions of algebraic differential equations," J. Diff. Equat., 62, No. 2, 
242-251 (1986). 

176. W. Rudin, Functional Analysis, McGraw-Hill, New York (1973). 

131 



177. 

178. 

179. 

180. 

181. 

182. 

183. 

184. 

185. 

186. 

187. 

188. 

189. 

190. 

191. 

192. 

193. 

194. 

P. Schapira, "Une Squation aux dfiriv6es partielles sans solutions dans l'espace des hyperfonctions," 
C. R. Acad. Sci., S6r. A, 265, No. 21, 665-667 (1967). 

L. Schwartz, "Sur l'impossibilit6 de la multiplication des distributions," C. R. Acad. Sci., 239, No. 15, 
847-848 (1954). 

L. Schwartz, Th~orie des Distributions, Nouvelle ~dition, Hermann, Paris (1973). 

V. M. Shelkovich, "An algebra of distributions and generalized solutions of nonlinear equations," Dokl. 
Ross. Akad. Nauk, 342, No. 5, 600-602 (1995). 

R. Shiraishi, =On the value of a distribution at a point and multiplicative products," J. Sci. Hiroshima 
Univ., Set. A-I, 31, No. 1, 89-104 (1967). 

R. Shiraishi and M. Itano, "On the multiplicative products of distributions," J. Sci. "Hiroshima Univ., 
Set. A-I, 28, No. 2, 223-235 (1964). 

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wissen., Vol. 258, 
Springer-Verlag, New York (1983). 

S. L. Sobolev, "Methode nouvelle b. resoudre le probl~me de Cauchy pour les 6quations lin6aires hyper- 
boliques normales," Mat. Sb., 1, No. 1, 39-72 (1936). 

S. L. Sobolev, Some Applications of Functional Analysis in the Mathematical Physics [in Russian], 
Nauka, Moscow (1988). 

S. L. Sobolev, Selected Questions of the Theory of Functional Spaces and Generalized Functions [in 
Russian], Nanka, Moscow (1989). 

K. D. Stroyan and W. A. J. Luxemburg, Introduction to the Theory of Infinitesimals, Pure Appl. Math. 
Vol. 72, Academic Press, New York (1976). 

A. Takaei, =New generalized functions of/C~{Mp} type," Univ. Novom Sadu. Zb. Rad. Prirvd.-Mat. 
Fak. Ser. Mat., 23, No. 2, 129-140 (1993). 

D. Talca~i and A. Taka~i, =An operational calculus in Colombean's new generalized functions," Bull. 
Appl. Math., 57, 153-161 (1991). 

T. D. Todorov, =Asymptotic functions as kernels of the Schwartz distributions," Bulgar. J. Phys., 12, 
No. 5, 451.-464 (1985): 

T. D. Todorov, "The products o~(z), 6(z). z-",  8(x). x-", etc. in the class of the asymptotic functions," 
Bulgar. J. Phys., 12, No. 5, 465-480 (1985). 

T. D. Todorov, Sequential approach to Colombeau's theory of generalized functions, ICTP, Trieste, 
Preprint IC/87/126 (1987). 

T. D. Todorov, =Colombeau's generalized functions and non-standard analysis," In: B. Stankovid, 
E. Pap, S. Pilipovi~, and V. S. Vladimlrov (eds.), Generalized Functions, Convergence Structures, and 
Their Applications, Intern. Conf., June P3-~7 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New 
York, (1988), pp. 327-339. 

T. D. Todorov, "A nonstandard delta function," Proc. Amer. Math. Soc., 110, No. 4, 1143-1144 
(1990). 

132 



195. T. D. Todorov, "Pointwise kernels of Schwartz distributions," Proc. Amer. Math. Soc., 114, No. 3, 
817-819 (1992). 

196. T. D. Todorov, "An existence result for linear partial differential equations with C ~ coefficients in an 
algebra of generalized functions," Trans. Amer. Math. Soc., 348, No. 2, 673-689 (1996). 

197. J. Tysk, "Comparison of two methods of multiplying distributions," Proc. Amer. Math. Soc., 93, 
No. 1, 35-39 (1985). 

198. V. Valmorin, "Fonctions g~n~ralis~es p~riodique s e t  probl~me de Goursat," C. R. Acad. Sci. S~r. I, 
320, No. 5, 537-540 (1995). 

199. V. Valmorin, "A new algebra of periodic generalized functions," Z. Anal. Anwend., 15, No. 1, 57-74 
(1996). 

200. V. A. Vinokurov, "Change of variables and multiplication of generalized functions," Dokl. Akad. Nauk 
SSSR, alg, No. 5, 1057-1064 (1991). 

201. V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Mir, Moscow (1979). 

202. P. Wagner, "On the multiplication and convolution of homogeneous distributions," Rev. Colombiana 
Mat., 24, Nos. 3--4 183-198 (1990). 

203. R. Wawak, "Some remarks about the product of distributions," Bull. Acad. Polon. Sci., Set. Math., 
32, Nos. 3-4, 179-183 (1984). 

204. R. Wawak, "Improper integrals of distributions," Stud. Math., 86, No. 3, 205-220 (1987). 

205. R. Wawak, "On the value of a distribution at a point," In: B. Stankovid, E. Pap, S. Pilipovid, and 
V. S. Vladimirov (eds.), Generalized Functions, Convergence Structures, and Their Applications, Intern. 
Conf., June 23-27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 359-364. 

206. R. Wawak, "On the Colombeau product of distributions," In: P. Antosik and A. Kamifiski (eds.), 
Generalized Functions and Convergence, World Scientific Publ.' Singapore (1990). 

207. Zhao Baoheng, "Solutions of the SchrSdinger equation with 6-function potential and product of distri- 
butions," J. China Univ. Sci. Tech., 23, No. 1, 27-30 (I993). 

208. W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, 
Graduate Texts in Math., Vol. 120, Springer-Verlag, New York (1989). 

133 


