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INTRODUCTION

The development of the technologies for obtaining
and generating new materials based on the use of
intense energy fluxes [1–3] leads to the problem of
taking the inertia of the medium into account in the
transport processes, that is, of describing these pro�
cesses beyond the hydrodynamic scale under failure of
the local quasiequilibrium principle. Lately, the inter�
est in this problem has been in using the radiation of
lasers with picoseconds and femtosecond pulse dura�
tion to study the process of heat transport in films and
thin�layer structures [4–6].

It is believed [4–10] that the semiphenomenologi�
cal approach allows the problem to be solved by the
introduction of the small time τ into the expression for
the flux, which characterizes the relaxation effect on
the small time scale, and the further transition to the
hyperbolic transport equation. Although such a way of
considering the inertia of the medium has long been
known, its application leads to the loss of the laws of
conservation [11]. Consequently, the behavior of the
resulting equations is unknown.

These difficulties are caused by the fact that both
small and large time scales take part in describing the
transport process in the hyperbolic transport equation,
as opposed to the microscopic approach, wherein
rapid temporal fluctuations on the hydrodynamic
scale are averaged and excluded from consideration
[12]. As the conservation law, the continuity equation
applied to the transition between the relaxation
expression for the flux [13] and the hyperbolic trans�
port equation covers not any relationship between the
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flux and the time. These difficulties can be removed by
the current method, which uses the difference between
the solutions of the second�order equation and the
associated first�order equation with the matrix coeffi�
cients such that each component of this solution satis�
fies the initial equation.

The purpose of the present paper is to simulate the
influence of the inertia of the medium on the transport
processes occurring under the action of intense energy
fluxes.

INDIVIDUAL TRANSPORT PROCESSES

We use the coordinate representation to construct a
model. For simplicity, let us restrict ourselves to the
process of heat (mass) transport in solids. We use the
probabilistic interpretation of the solution to decrease
the number of dimensional variables. Then, the semi�
phenomenological transport equation for the reduced
description of these processes in the superposition
state 〈n| =  [14] has the following form:
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where n1,2(t, x) is the probability density of finding the
system in states 〈1| and 〈2|; Γ is the frequency of system

transition between the states; V0 =  is the lim�
iting velocity of the transition; and τ = 1/2Γ and B =
(a, D) are the kinetic coefficients of thermal diffusivity
and diffusion.

The presence of the off�diagonal matrix elements
in this equation means the existence of system transi�
tions between the different basis states. Note that the
equality between the off�diagonal matrix elements in
(1) and the equality (or complex conjugation) of the
off�diagonal Hamiltonian matrix elements have the
same physical meaning: the probability of finding the
system in even one basis state N1,2(t) should be con�
stant in time.

To go into the entropy representation, we extract
the velocity and kinetic balance matrices V and Γ and
write Eq. (1) in the form of the continuity equation

(2)

After the substitution ds = Gdn, we reduce Eq. (2)
to the continuity equation for the vector function s =
s(t, x):

(3)

where G = (T–1, –μ/T) is the thermodynamic multi�
plier eatablishing the relationship between the heat
(diffusion) process and the entropy density, Xi =

 is the thermodynamic force, T is the temper�
ature, and μ is the chemical potential of the diffusing
component.

After performing the Fourier transform over the
variable x in (3), we move to the equation for the func�
tion . Setting ς = 0 and denoting S(t) = ,
we obtain the equation describing the process (1) in
the entropy representation for the integral change in
the vector function σ(t, x):

(4)

where σ is the entropy source of the process in the
superposition state 〈S| = , X =  is

the thermodynamic force, and G = (T–1, –μ/T) is the
thermodynamic multipliers of the thermal and difffu�
sion processes.

We consider that Eq. (1) describes the transitions
between states 〈1| and 〈2| and allows one to bring the
processes occurring in the large and small time scales
into correspondence. To describe these processes, we
go to the stationary basis states, wherein the system
transitions between the basis states are absent. In this
case, the system in one stationary state can be observed
in another one. After performing the canonical trans�

formation H = UnL , σ = USL  and denoting

nst = n and Sst = S for states 〈I| and 〈II|, we
obtain
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Equations (5) and (6) describe the irreversible pro�
cess in the stationary state 〈nst| =  and

〈Sst| =  for the coordinate and entropy
representations, respectively. They make it possible to
consider the macroscopic and microscopic processes
as a unified fluctuation process, where the fluctuation
and dissipative properties appear according to the
selected time scale. In them, the kinetic balance
matrix Γ provides the performance of the heat (mass)
and entropy conservation laws for the system in the
thermodynamic equilibrium state (X = 0):

(7)

After denoting the Fourier transform of the vector
function  at ζ = 0 and S(t, X) at X = 0 as ψ, we
obtain dψ/dt = Γψ. Hence, we find the equality from
which the conservation laws (7) follow:

where ψ0 and  are the initial conditions for the vec�
tor functions ψ(t) and ψst in the superposition and sta�
tionary states respectively; R is the diagonal form of
the Γ matrix; and P and P–1 are the matrix of eigenvec�
tors and its inverse.

The n+(t, x) and S–(t) solutions for stationary state
〈II| on the small time scale do not take part in the con�
servation laws (7) and are not observable in the exper�
iment.

In order to establish the role of the metric, we con�
sider the processes on the large time scale in stationary
state 〈I|. Using the relation V = dΩ+/dX for the trans�
port velocity, we obtain
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that is, the transport process in state 〈I| takes place on
the linear paths x = Vt, and it has the limiting value V0

(X  ∞) only on them. In the experiment, the paths

in the form of x =  and the ones close to them are
more characteristic. Since the first terms of the expan�

sion of the  ≈  operator in a series
make the main contribution to the solution of (5), the
results of studying the deviations from the hydrody�
namic description of the transport processes under the
action of intense energy fluxes allow one to prove the
influence of the small�scale processes experimentally
and to determine the frequency Γ = 1/2τ of the system
transition between basis states 〈1| and 〈2|.

The other case arises for the small�scale process
occurring in stationary state 〈II|. It restricts the appli�
cation of the laws of conservation and the second law
of thermodynamics. The irreversible process in state
〈II| follows the process in state 〈I| specularly. Although
this process is not observed, we cannot eliminate it
according to the physical sense; i.e., the solutions for
both states are equivalent at t  ∞. However, the pro�
cess in state 〈II| occurs with an entropy decrease, being
opposite to the dissipation process. The values Ω– =
⎯2Γ define the size of the “gap” between the states
with the positive and negative values of Ω. In station�
ary state 〈II|, the system is open and is in contact with
a thermostat, which induces the fluctuations in the
system. Here, a feature of the approach comes into
view [14]. According to this approach, the small�scale
process similar to the microobject cannot be consid�
ered separately, excluding its interaction with the envi�
ronment.

Note that the solutions n1,2(t, x) and n�(t, x) (any
component of the vector functions n is generally rota�
tion�independent) satisfy the hyperbolic equation

Thus, even though the fact that the conservation
law is absent in this equation is neglected, the number
of possible solutions is too large to describe the rela�
tionship observed in the experiment. These solutions
describe no oscillating processes in the local�nonequi�
librium systems.

RELATED TRANSPORT PROCESSES

Up to now, the inertia of the medium was taken
into account for the individual transport processes.
The first and, probably, unique paper [15] considering
the transport processes with the cross effects taken into
account is based on the entropy representation of
these processes using the relaxation expression for the
flux [13] and on the formalism of the theory of irre�
versible processes, which is developed for the hydrody�
namic scale. Therefore, the loss of the conservation
laws occurs upon the transition from the entropy rep�
resentation to the coordinate one.
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To provide the fulfillment of the conservation laws,
we use the coordinate representation, which should
lead to the representation of the entropy source in a
quadratic form of the thermodynamic forces (fluxes)
on the hydrodynamic scale under the right choice of
the elements of the matrix coefficients [16]. For sim�
plicity, we restrict ourselves to the case of the related
heat and mass transport processes 1 and 2 in solids.
Then, the semiphenomenological transport equation
giving the reduced description of these processes in the
superposition state takes the form

(8)

where H =  is the block�type differential

matrix operator;

ni is the two�component vector function describing
processes 1 and 2; Hij are the block elements of the H
operator with the diagonal elements i = j describing
the separate transport processes and the off�diagonal

elements describing the cross effects;  =  is

the limiting transport velocity, which is independent of
the external perturbation; τi = (2Γii)

–1 is the small time
characterizing the small scale; and Bij are the kinetic
coefficients measured in quasiequilibrium experimen�
tal conditions for the diagonal (individual) (i = j) and
off�diagonal (cross) (i ≠ j) processes.

The transition to the entropy representation is sim�
ilar to the one described for the individual processes.
Extracting the velocity and kinetic balance matrices V
and Γ, we go to the continuity equation

(9)

and, making the substitution ds = Gdn, we reduce
Eq. (9) to the continuity equation for the vector func�
tion s = s(t, x)
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(10)

where X =  and G =  are the

block�type diagonal matrices of thermodynamic
forces and multiplier, respectively;

 is the thermodynamic force; G1 = T –1

and G2 = –μ/T are the thermodynamic multipliers
establishing the relationship between the changes in
the physical properties and the entropy density; gij =

 = ; T is the temperature; and μ is the
chemical potential of the diffusing component.

After perfoming the Fourier transform over x, we
move to the equation for the vector function .
Setting ζ = 0 and denoting S(t) = , we obtain
the equation describing the process (8) in the entropy
representation for the integral change in the vector
function s(t, x):

(11)

where σ =  is the matrix operator of the

entropy source, which depends on the thermody�

namic forces Xi; S = ; and Si = , i = 1, 2.

Here, the expressions for the block elements of the σ
operator have the form σij = (Γii + XiVij), (i = j) and
σij = gijXiVij, (i ≠ j).

Since the heat and mass conservation laws must be
satisfied independently, we impose the following con�
ditions to extract the solutions satisfying Eqs. (8) and
(11) from a set of mathematically feasible solutions:

(12)

They result in decomposing the equations into two
two�component vector functions ni(t, x) and Si(t)
describing the superposition state of the system 〈ni| =
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where n  is the probability density of finding

the system in states 〈1| and 〈2|,  is the integral
change in the entropy in these states, and σi is the
operator of the entropy source in the superposition
state. Note that the probabilistic interpretation of the
solution leads to the dimensions of the entropy source
and the thermodynamic forces s–1 and cm–1, respec�
tively. This does not depend on process 1 or 2 and
allows one to simpify the form of the resultant expres�
sions.

Upon selecting the indices i = 1, j = 2, Eqs. (13)
describe the heat transport under the action of the heat

force X1 =  and the heat process under action

of the chemical force X2 = , which was
stimulated by the mass transport. Upon selecting the
indices i = 2, j = 1, Eqs. (13) describe the mass trans�
port under the action of the X2 force and the diffusion
process under the action of the X1 force, which was
stimulated by the heat transport.

According to [15], we consider that Eqs. (13) describe
the transitions between states 〈1| and 〈2|. This brings two
processes occurring on different time scales into corre�
spondence. To describe these processes, we move to the

stationary basis states . After the

canonical transformation Hi = UnLi , σi = UsLi

and the denotation  = ni,  = Si, we obtain
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(15)

(15a)

where Un,s is the unitary operator; Ωi is the entropy

source operator in the stationary state; and  are the
expressions for the entropy source on the large and
small time scales for the thermal i = 1 and diffusion i =
2 processes, respectively.

In Eqs. (12)–(14), the kinetic balance matrix G =
Gii provides the fulfillment of the conservation laws of
the heat (mass)

(16a)

and the entropy (for the system in the thermodynamic
equilibrium state (Xi, Xj) = 0)

(16b)

in superposition states 〈1| and 〈2| and stationary state 〈I|.
As in the case with the individual processes, the

solutions  and  for stationary state 〈II|
on the small time scale, the conservation laws for
which are not fulfilled, do not take part in the conser�
vation laws (16). Therefore, they are not observed in
the experiment.

Because the processes in state 〈I| take place on the

linear paths x = Vt, V ∈ [0, [, where  is the lim�
iting transport velocity, the question of the transition
to the hydrodynamic scale with the paths in the form

of  arises. For this purpose, we restrict ourselves
to the first terms of the expansion of the root in a series
in (14a) and (15a) and describe the kinetics of the pro�
cess for state 〈I| as follows:
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subsequent terms describe the influence of the inertia
of the medium.

The difference between the coordinate and entropy
representations are thus evident. Since the heat and
mass conservation laws are fulfilled independently, the
effect of the cross terms in (17a) is reduced only to the
change (which is slight owing to the small cross
effects) in the kinetic coefficients. Another case arises
for representation (17b). The system entropy increases
independently upon the occurrence of heat, diffusion,
and cross processes. For the whole process, we finally
obtain the well�known expression for the entropy
source in the quadratic form of thermodynamic forces
[16]:

where b12 = b21.

CONCLUSIONS

1. A semiphenomenological model of the transport
processes under the action of intense energy sources
making it possible to go outside the hydrodynamic
approximation by considering the inertia of the
medium on an external perturbation is proposed.

2. The model is based on the assumption of the pos�
sible existence of the system in both superposition and
stationary basis states; in this case, the fluctuation and
dissipative components of the processes are consid�
ered as a unified process wherein they are the compo�
nents of the vector state.

3. It is shown that the observed deviations from a
linear response of the medium to an external perturba�
tion can be related to the inertia of the small�scale
(fluctuation) processes.

4. It is also shown that, if the inertia of the medium
is taken into account, the transport equations, which
satisfy the conservation law, have the form of a system
of first�order differential equations with two basis
states.

5. Corrections to the classical equations and
expressions for fluxes are found. They allow one to cal�
culate the influence of the degree of nonequilibrium of
the medium on the transport processes.
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