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Bulat N. Gafarov1

DO UNOBSERVED COMPONENTS MODELS FORECAST INFLATION IN RUSSIA?

I apply the model with unobserved components and stochastic volatility (UC-SV) to forecast
the Russian consumer price index. I extend the model which was previously suggested as a model
for inflation forecasting in the USA to take into account a possible difference in model parameters
and seasonal factor. Comparison of the out-of-sample forecasting performance of the linear AR
model and the UC-SV model by mean squared error of prediction shows better results for the latter
model. Relatively small absolute value of the standard error of the forecasts calculated by the
UC-SV model makes it a reasonable candidate for a real time forecasting method for the Russian
CPI.

JEL classification: C53, E37.
Keywords: Stochastic volatility, MCMC, Russia, CPI, forecasting.
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1 Introduction

After the liberalization of prices in 1990 inflation became one of the major concerns of the Russian
government. Russia passed through the period of hyperinflation in the early 1990-s and expe-
rienced two rapid rises in prices during the crises of 1996 and 1998. Such high instability in
domestic prices led to negative consequences for the economy. Fortunately, after the exchange rate
depreciation in 1998 and subsequent changes in economic policy inflation tended toward stabiliza-
tion. As a result, prices became more predictable, which stimulated interest for precise short term
inflation forecasting methods in Russia. But despite this interest to the best of our knowledge in
the late 2000-s any non-naive methods were absent in Russian academic literature. In this situa-
tion, application of the best foreign inflation forecasting practices to Russian economy becomes an
interesting topic for research.

One good example of recent research in the area of inflation forecasting is the paper (Stock and
Watson, 2007) (SW hereafter). In their study the authors present a new model with unobserved
components and stochastic volatility (UC-SV hereafter) and show that their method outperforms
all univariate and even multivaritate US inflation forecasts in terms of mean squared out-of-sample
forecasting error in period after the Great Moderation. The Purpose of the present paper is to adopt
UC-SV to Russia and compare its forecasting performance with the “textbook” benchmark, an
autoregression model (AR hereafter).

In the present research I propose a Bayesian approach to calibrate the UC-SV model for the
Russian inflation and add a seasonal component to take into account differences between method-
ologies of publication of the data by the Russian and the US statistical agencies. According to SW
the UC-SV model outperforms the competitors in periods of relatively stable inflation. So as a
measure of inflation I choose the official Consumer price index because it seems to be less volatile
than other two main price indices, the GDP deflator and the Producer Price Index. The estimated
parameters of the model turned out to be close to the parameters for the U.S. GDP deflator. I
compute out-of-sample forecasts of the CPI based on the UC-SV model and compare them with
”textbook” univariate recursive autoregessional (AR) forecasts. The Results of the comparisons of
the forecast resemble qualitatively the results of SW. The UC-SV model allows to forecast Rus-
sian quarterly CPI better than the AR model on horizons from one to four quarters if I include an
additional seasonal factor in the model. So the UC-SV model can be used as a better benchmark
model for inflation in Russia.

The structure of the paper is the following. In the second part I describe a benchmark AR model
and modifications of UC-SV. In the third part I present results of estimations and comparisons. The
fourth part concludes.
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2 Competitive Models

2.1 Pseudo out-of-sample methodology and a benchmark model

In contemporary literature it is acknowledged that in-sample prediction errors there is a poor mea-
sure of real-time prediction performance. Indeed, highly nonlinear models with a large number
of parameters could fit data well, but due to misspecification or large errors in estimates of the
parameters characterizing the model could provide poor real-time forecasts. Pseudo out-of-sample
approach was established to avoid this problem. Pseudo out-of-sample forecasting is forecasting
of a part of sample based on the model, estimated on another part of the sample. Unlike in-sample
predictions, this approach is robust to over-fitting. The method is called ”Pseudo” to distinguish
it from real-time forecasting, which is often called out-of-sample forecasting. The difference is
the following. In contrast to ”real” out-of-sample forecasting, pseudo out-of-sample forecasting
exercises are made after the entire sample became available. It the present paper I use a recursive
scheme for forecasts comparison. Following (Stock,Watson, 2007) I choose mean squared predic-
tion error () as a measure of forecasting performance. One can find a comprehensive review of this
methodology in (Stock and Watson,2003).

To the best of our knowledge this is the first academic paper about inflation forecasting in
Russia. So as a benchmark for comparison I use the same AR model with unit restriction as in SW,

∆πt = µ +α(L)∆πt +νt (1)

where µ is a constant term, α(L) is a lag polynomial,∆πt is a first difference of inflation measure.
I estimate the number of lags by the Akaike criterion (AIC).

2.2 Unobserved Components Model with Stochastic Volatility

In the paper SW the authors show the evidence in favor of changing parameters in linear time
series models of the US inflation. They show that the best model from the ARIMA class for the
US GDP inflation is IMA(1,1), but the coefficient in this model varies over time. To describe the
entire US sample of 50 years of price observations the authors proposed a new model to allow for
the variation in the coefficients. They suggested the following reasoning. One can easily check,
that IMA(1,1) model,

∆πt = εt−θεt−1 (2)

is equivalent to the local level model with noise (Harvey,2006), where a signal to noise ratio is
constant. This ratio is a one-to-one function of the IMA(1,1) coefficient θ . Thus, one could model
the time varying θ through variation in signal to noise ratio. This idea led the authors to the
following specification, called Unobserved Components with Stochastic Volatility (UC-SV),

πt = τt +ηt (3)
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τt = τt−1 + εt (4)

ηt = ση ,tζη ,t (5)

εt = σε,tζε,t (6)

lnσ
2
η ,t = lnσ

2
η ,t−1 +νη ,t (7)

lnσ
2
ε,t = lnσ

2
ε,t−1 +νε,t (8)

where πt is an inflation measure, ζt = (ζη ,t ,ζε,t) is i.i.d. N(0, I), νt = (νη ,t ,νε,t) is i.i.d. N(0,γI),γ
is a scalar parameter, which controls the smoothness of the stochastic volatility process. This spec-
ification allows variances of innovations ηt and εt to drift independently over time, thus allowing
for variation in θ . Modeling the variation of coefficient in time as a random walk is very flexible
and it is very common for Bayesian VAR literature.

SW shows that the UC-SV model either outperformed or performed as well as other univariate
and some activity-based multivariate models in terms of mean squared prediction errors on the full
the U.S. 50-year sample. The gains in forecasting performance were higher in stable period of
the Great Moderation (1984-2004). This feature made the model attracting for application to the
Russian CPI index, as it seems natural to expect structural breaks in it due to transition in pricing
system and changes in monetary policy. Furthermore, approximately since 2002 the CPI inflation
became relatively stable and in this aspect started to resemble the US inflation since 1990-s. These
features make the UC-SV model an appropriate candidate for forecasting model for the Russian
CPI.

2.2.1 Bayesian estimation

The authors of SW used Bayesian methods, namely Monte Carlo Markov Chain (MCMC) routine,
to estimate the UC-SV model. These methods have some additional flexibility and computational
advantages in comparison with classical methods, such as Maximum Likelihood (ML) and Gen-
eralized Method of Moments (GMM). The first advantage is that in Bayesian framework one can
easily impose restrictions on parameters through proper specification of the priors. The second ad-
vantage is that one does not need to have a closed form density specification and to solve nonlinear
multivariate optimization problems. Indeed, the MCMC method provides estimates of the param-
eters based on averages from simulated sample from a posterior distribution (Lancaster, 2004).

The Bayesian approach is not just another way to estimate statistical models. This is also new
interpretation of statistical data and models. In this approach I assume some prior distributions
and update them using information from the sample. In this framework I do not assume that
the sampling will continue and that the estimated parameter of the models will converge to some
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limiting values. So the Bayesian framework is subjective and there are no identification concerns
in this approach. Under the classical statistics framework I assume existence of some parameters
which describe the whole population this feature may seem strange. But from the application
perspective it does not bring a big difference in interpretation of model predictions and choice of
the priors is up to the researcher.

The authors of SW a priori impose lower bounds on lnσ2
ε,tand lnσ2

η ,t to avoid over-fitting and
imposed the particular value for the only parameter γ = 0.04. These restrictions, according to
the authors, lead to good results for the US GDP deflator. It seems that the calibration γ = 0.04
was based on the behavior of the model on the entire US sample. This approach could lead to
two problems. The first problem is that the forecasts of inflation, based on the model with such
calibration are not pseudo out-of-sample as they use information from the entire sample. Thus it
made the comparison of UC-SV forecasts with other models incorrect. The second problem is the
following. Even if such a calibration performs well for the US GDP deflator, no one can guarantee
that such priors will perform well for other inflation series, in particular, for the Russian CPI. These
two problems can be solved if by using non-degenerate prior distribution for γ .

Also, for the sake of generality I omit the restriction on the variance of νt = (νη ,t ,νε,t), namely,
make different variances for the components possible,

Var(νit) = γi (9)

where i represents eitherε , orη . To resample the parameters of interest in the Gibbs sampler
framework one need to specify a posterior distribution for γi conditional on the other parameters,
namely τt ,lnσ2

ε,tand lnσ2
η ,t . One obtains a likelihood function for γi conditional on the serieslnσ2

ε,t

and lnσ2
η ,tby using equations (7) and (8) ,

L(γi) = p(γ|τ, lnσ
2
ε , lnσ

2
η) = (

1√
2πγi

)T exp

[
−

∑
T+1
t=2 (lnσ2

i,t− lnσ2
i,t−1)

2

2γi

]
(10)

where T is a size of a sample. For the proper specification of the posterior distribution one
need to specify a prior distribution for γi. One way to do it is to use an improper non-informative
prior, either Jeffrey’s prior or a constant prior. Another way is to use some informative prior
which has an expectation Eγ = 0.04. A good candidate for this purpose is a conjugate prior for
the likelihood function (10), as it corresponds to uninformative priors updated through the same
Bayesian procedure by previous researchers. It is an inverse-gamma distribution,

f (γ;α,β ) =
β α

Γ(α)
(γ)−α−1 exp(−β/γ) (11)

which has an expectation Eγ = β

α−1 . Note that the caseα = 0 and β = 0 corresponds to Jeffrey’s
non-informative prior. The posterior distribution for (10) and (11) also has an inverse-gamma
distribution, but with parameters

α̂ = α +
T
2
, β̂ = β +

∑
T+1
t=2 (lnσ2

i,t− lnσ2
i,t−1)

2

2
. (12)
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I use both informative and non-informative priors in this paper. I choose the parameters for
the informative prior to approximately match posterior results based on the USA data from (Stock,
Watson, 2007). I assume that the value Eγ = 0,04 was based on the likelihood function with non-
informative prior with sample size T=200, the sample size of the USA GDP deflator in (Stock,
Watson, 2007). It means, that α = 200/2 = 100 and β = 0.04(100− 1) = 3.96. To guarantee a
stability of the simulation algorithm for the non-informative prior I add an additional maximum
boundary γ < 1. The results of estimation can be found in the third part. One can find the estimation
scheme, based on the original code from ( Stock, Watson 2007), in the appendix at the end of the
paper.

2.2.2 Treatment of seasonality

In the paper SW the authors study seasonally adjusted GDP deflator and they do not include the
seasonal factors in the model. Rosstat does not provide the adjusted time series, so in the present
paper I use unadjusted time series for Russian CPI with explicit seasonal component in the model.
This approach allows forecasting explicitly both seasonally adjusted and unadjusted series.

I use seasonal dummies to recursively filter the Russian CPI time series from seasonality. How-
ever, the dummies could leave some residual seasonality due to potential variability in the seasonal
pattern. So I propose another modification of the UC-SV which incorporates an additional un-
observable seasonal factor to allow for such seasonal noise. which incorporates an additional
unobservable seasonal factor. Following (Harvey, 2006) I change equation (3) and add another
equation,

πt = τt + st +ηt (13)

st =−st−1− st−2− st−3 +ψt (14)

where st is an unobservable seasonal factor, and ψt is the innovation for the factor. This model
referred to as the extended model in the rest of the paper. The variance of ψt , in principle, could be
modeled in a manner similar to lnσ2

ε,t and lnσ2
η ,t . However, in this paper I study only the constant

variance of ψt to keep things simple. Values for Varψ could be estimated, but this task is beyond
the scope of the study. So in this work I use only some non-zero values as part of sensitivity
analysis.

The original MCMC algorithm from SW was changed to estimate this extended model. At the
stage when series of τ are re-sampled, expectations of τ are estimated on the basis of the two-sided
Kalman smoother, not the conventional formula for conditional expectations of components of a
normal vector. These changes were necessary to simplify computations.
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Table 1: Bayesian estimates of γ.
Model Prior γη ,5% Eγη γη ,95% γε,5% Eγε γε,95%

Original informative 0.034 0.043 0.052 0.034 0.043 0.052
Extended non-informative 0.821 0.979 1.00 0.776 0.972 1.000
Extended informative 0.035 0.042 0.050 0.035 0.041 0.049

Remark: γη ,5%,γη ,95%,γε,5%,γε,95% correspond respectively to 5% and 95% quartiles of re-sampled
posterior distributions of γη and γε . Values Eγη and Eγε correspond to posterior expectations of
the parameters.

3 Results

3.1 Data

Consumer price index (CPI) was chosen as a measure of Russian inflation. On the basis of the
monthly data the following measure was obtained,

πt = 400ln(pt/pt−1) (15)

where pt is a CPI at the end of the quarter t. This measure corresponds to the annual rate of
inflation.

I omit the data before the year 2000 due to the large crisis outliers in 1998-1999 years as the
method is sensitive to such problems. So the sample was from the first quarter of the year 2000 to
the fourth quarter of the year 2010, 44 points altogether.

3.2 Estimation of parameters

The only parameters in the model are variances of innovations in lnσ2
ε,tand lnσ2

η ,t . These param-
eters were estimated with use of both the original model (3)-(8) and extended model (4)-(8) and
(13)-(14). The simulation sample for the forecasting was 100 burn in iterations and 5000 informa-
tive iterations.

It can be seen from the table that the estimates based on the non-informative prior differ strik-
ingly from the estimates based on the informative prior. The latter estimates differ only slightly
from the prior expectations.

Smoothed estimates for series τ , ση , σε are presented below. These estimates are based on the
original model with the informative priors. Other variants are not presented here to save space.

In Figure 1 one can see some time variation in ση ,σε which corresponds to changes in coef-
ficients of AR approximations. However, these changes are not very prominent, so linear models
could forecast inflation as good as the UC-SV during the sample. Estimates of τt have an interpre-
tation as an indicator of long-run inflationary expectations (Mishkin,2007) and could be used, for
example, for VAR modeling of Russian economy.
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Figure 1: Estimates of the standard deviations of the (a) transitory and (b) permanent innova-
tions, (c) estimates of the τt and seasonally adjusted πt(dotted line), using the original UC-SV(.04)
model. The dashed lines are the 5% and 95% quantiles of the posterior distributions of ση ,t ,σε,tand
τt ,

a)Estimates of ση ,t

b) Estimates of σε,t

c) Estimates of τt
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Table 2: Mean squared forecast errors of different models
Model Priors H=1 H=2 H=3 H=4

AR(AIC) - 4.01 4.49 5.45 5.89
UC-SV, original degenerative 4.16 4.37 5.00 5.20
UC-SV, original informative 4.17 4.38 5.03 5.21

UC-SV, extended,Varψt = 0 non-informative 4.27 4.50 5.55 5.63
UC-SV, extended,Varψt = 0 informative 4.06 4.37 5.33 5.47

UC-SV, extended, Varψt = 0.03 informative 3.92 4.36 5.23 5.46
UC-SV, extended, Varψt = 0.1 informative 3.80 4.33 5.24 5.52
UC-SV, extended, Varψt = 1 informative 3.78 4.39 5.54 5.72

Remark: Bold numbers denote forecasts with MSE less than corresponding MSE of the AR(AIC)
forecast. H denotes forecast horizons. First date for h=1 was 2006:IV, for h=2 2007:I, for h=3
2007:II, and for h=4 2007:III. The last date for comparison for all forecasts is the same – 2010:IV.

3.3 Forecasting performance

I have chosen three models for forecasts comparisons: recursive AR(AIC), original UC-SV and
extended UC-SV. The first two models are the most competitive time series models in the case of
the US inflation (Stock, Watson 2007), and the last one is an adaptation of the UC-SV model for the
Russian data. Different priors and different parameters for seasonal noise were used as sensitivity
check. Particular values for Varψt ∈ {0,0.03,0.1,1} were chosen arbitrarily, but small enough not
to distort the results too much. For the original model I take two priors: the degenerative one with
γ = 0.04 and the inverse-gamma with α = 100 and β = 3.96 which is referred to as an informative
prior. For extended model I try two priors : non-informative Jeffrey’s prior with α = 0 and β = 0
with upper bound γ < 1, and informative prior with α = 100 and β = 3.96. The simulation sample
for the forecasting was 100 “burn-in” iterations and 1000 informative iterations.

As a measure of forecast performance I use Mean Squared Error (MSE hereafter). Let π̂t be
the value of forecast of the CPI ,πt , the first and the last dates comparison to be T1 is T2 corre-
spondingly. Then the measure is

MSE =

√√√√ 1
T2−T1−1

T2

∑
t=T1

(πt− π̂t)2.

I can say that some model performs better than the benchmark if its MSE is smaller than the MSE

of the benchmark model.
I study four forecasting horizons (h): one, two, three and four quarters ahead. The first date for

h=1 is 2006:IV, for h=2 2007:I, for h=3 is 2007:II, and for h=4 is 2007:III. The last date for com-
parison of all forecasts is the same – 2010:IV. According to the pseudo out-of-sample methodology
a forecast for every date is based only on information prior to that date. I also sequentially estimate
the seasonal dummies for every date. The mean squared errors of the forecasts are presented in
Table 2.textbook

The results in Table 2 demonstrate that all UC-SV forecasts with informative priors outperform
notably the benchmark AR(AIC) on three and four quarters horizons. For the smaller horizons
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h=1 and h=2 differences in prediction errors between the AR(AIC) and the original UC-SV with
informative priors are small. But the extended UC-SV model with Varψt 6= 0 outperforms the
forecasts based on the AR(AIC) on one quarter ahead outperforms all the modifications of UC-SV.

One can see that addition of the seasonal factor in the UC-SV model led to almost 5% im-
provement of MSE in comparison with the AR(AIC) for h=1 and 9% improvement in comparison
with the original UC-SV model. This improvement, however, lead to slight deterioration of MSE
of forecasts for three and four quarters ahead in comparison to the original UC-SV model. These
differences may be a result of additional filtering of the seasonal factor, but it may be also due to
re-sampling variability. It is difficult to give a curtain answer as inference theory for comparison of
such models is not well established. In principle, one can calculate standard errors for MSE in as-
sumption that the forecasting model is true DGP model using Monte Carlo simulations. However
this task seems too computer intensive as the used number of elementary iterations of resampling
will be performed about 1000 times to simulate a sample with reasonable size. Another problem
is that critical values for the MSE computed this way would be incorrect in case if the forecasting
model would be misspecified. So I leave this question for the future research.

Surprisingly, the informative priors concentrated near the value γ = 0.04 gave as good results
for Russia as for the U.S. At the same time, the non-informative prior gave the worst results.
Perhaps, it happened because of the insufficient number of simulations.

Note that I scale quarterly inflation by 400. So the absolute values of the forecast errors value
MSE = 3.80, for example, would approximately imply a standard error of the quarterly inflation
forecast equal to 0.95%.

4 Conclusion

The first contribution of the paper is the suggested modification of the simulation algorithm for
posterior distributions in the UC-SV model framework. This modification allows estimation of
variances of innovations in stochastic volatilities and calibration of the UC-SV model for any time
series, not only to the U.S. GDP deflator. I apply the new variant of the estimation algorithm to
Russian CPI. The estimates for the Russian inflation exhibit little difference from the parameters
used in the original paper SW.

Another contribution is introduction of a seasonal noise in the model. Such modification im-
proved forecasts of the Russian CPI inflation for short horizons. These results suggest that further
research in modeling of the seasonal component of the Russian CPI is required. In particular, ad-
dition of estimation stage for the variation of the seasonal noise could be a new topic for research.

The last contribution is purely practical. I show that the forecasts based on UC-SV model
diminish mean squared out-of-sample prediction errors for all horizons from one quarter to four
quarters in comparison with simple the AR models. Absolute value of standard errors is about 1%
for one quarter ahead forecast and 1.3% for four quarter ahead forecast. So the UC-SV model can
be used for forecasting the Russian CPI.
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6 Appendix

6.1 Resampling scheme

In this part the algorithm used for simulation of a sample is described. This algorithm is a realiza-
tion of Gibbs sampler.

• Step 1. Compute and subtract means for every quarter are from the initial series of πt .

• Step 2. Set initial values for γi, lnσ2
η ,t , lnσ2

ε,t .

• Step 3. Estimate conditional expectation and variance of st ,τt on the basis of values from the
previous step. This can be done with the use of either the formula for conditional expectation
and variance for a normal vector, or using Kalman filter. In the original paper (Stock, Watson
2007) the former approach was used. I use the latter approach in the present study for
estimation of the extended UC-SV model due to its computational effectiveness.

• Step 4. Simulate new realization of st ,τt on the basis of the parameter estimates from the
previous step. 2

• Step 5. Estimate conditional expectations and variances of lnσ2
η ,t , lnσ2

ε,t , as in step 3, on the
basis of values st ,τtand γ from the previous step.

• Step 6. Simulate new realization of lnσ2
η ,t , lnσ2

ε,t , on the basis of conditional expectations
and variances of lnσ2

η ,t , lnσ2
ε,t and γ from the previous step.

• Step 7. Simulate new realization of γ on the basis of likelihood function from the previous
step and the prior distribution.

• Step 8. Save values of st ,τt ,lnσ2
η ,t , lnσ2

ε,t and γ . Go to step 3.

2I make simulation of the unobserved states for the extended model with use of the algorithm of Durbin and
Koopman (Durbin, Harvey,Koopman, Shephard 2004)
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This cycle generates a path for a Markov chain which has the posterior distribution for st ,τt ,
lnσ2

η ,t , lnσ2
ε,t and γ as a limiting distribution. So when the chain is converged it starts generate

a sequence on simulated values st ,τt , lnσ2
η ,t , lnσ2

ε,t and γ . On the basis of this sample all Bayesian
estimates are computed.

The contribution of the present paper to the algorithm is the following. I use Kalman filter to
resample st ,τt in steps 3 and 4, and add step 7 to simulate γ .

© Bulat N. Gafarov 2013
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