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Abstract. Given a simplicial poset S whose geometrical realization is a closed
orientable homology manifold, Novik and Swartz introduced a Poincare duality
algebra pRrSs{pl.s.o.p.qq{INS , which is a quotient of the face ring of the poset S.
The ranks of graded components of this algebra are now called h2-numbers of S
and can be computed from face-numbers and Betti numbers of S. We introduce a
topological model for this Poincare duality algebra. Given an pn´ 1q-dimensional
simplicial homology manifold S we construct a 2n-dimensional homology mani-
fold with boundary pX carrying the action of a compact n-torus. The Poincare–
Lefschetz duality on pX is used to reconstruct the algebra pRrSs{pl.s.o.p.qq{INS .

1. Introduction

A finite poset S is called simplicial if it contains a unique minimal element
(denoted H) and for each element I P S the subset SďI “ tJ P S | J ď Iu is
isomorphic to a boolean lattice (that is the poset of faces of a simplex). The rank of
the lattice is called the rank of the element I and is denoted |I|. The elements I P S
are called simplices and the number |I| ´ 1 is called the dimension of I. Dimension
of S is the maximal dimension of its simplices. The elements of rank 1 are called the
vertices of S. The number of simplices of fixed dimension j is called the f -number
and is denoted fj. A simplicial poset S is called pure if all simplices maximal by
inclusion have the same dimension.
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Every simplicial poset S can be turned into a topological space |S| by associating
a topological simplex of the same dimension to any element of S and gluing these
simplices together using order relation in S. One of the basic questions in this area is
the following: what can be said about f -numbers of S, if |S| belongs to a given class
of topological spaces (say |S| is a homology sphere or |S| is a homology manifold)?

Let S be a pure simplicial poset of dimension n ´ 1 and rms “ t1, . . . ,mu “
VertpSq be the set of its vertices. Let R be a ground ring which is either a field
or Z. A map λ : rms Ñ Rn is called a (homological) characteristic function if, for
any maximal simplex I P S, the set of vertices of I maps to a basis of Rn. We
assume that there is a fixed basis in Rn, and, for any vertex i P rms, the value λpiq
has coordinates pλi,1, . . . , λi,nq in this basis.

LetRrSs be the face ring of S (see [11, 3]). By definition, RrSs is a commutative
associative graded algebra over R generated by formal variables vI , one for each
simplex I P S, with relations

vI1 ¨ vI2 “ vI1XI2 ¨
ÿ

JPI1_I2

vJ , v0̂ “ 1.

Here I1 _ I2 denotes the set of least upper bounds of I1, I2 P S, and I1 X I2 P S is
the intersection of simplices (it is well-defined and unique when I1 _ I2 ‰ 0̂). The
summation over an empty set is assumed to be 0. For topological reasons we take
the doubled grading on the ring: the generator vI has degree 2|I|. The natural map
Rrms “ Rrv1, . . . , vms Ñ RrSs defines the structure of Rrms-module on RrSs.

Any characteristic function λ : rms Ñ Rn determines the set of linear elements:

θ1 “
ÿ

iPrms

λi,1vi, θ2 “
ÿ

iPrms

λi,2vi, ¨ ¨ ¨ , θn “
ÿ

iPrms

λi,nvi P RrSs

(these elements have degree 2, but we will use the term “linear” when its meaning
is clear from the context). The definition of characteristic function implies that
θ1, . . . , θn is a linear system of parameters in RrSs (see e.g.[4, Lm.3.5.8]). Moreover,
any linear system of parameters arises from some characteristic function in this way.
Let Θ be the ideal in RrSs generated by the elements θ1, . . . , θn.

The quotient RrSs{Θ is a finite-dimensional vector space. The standard rea-
soning in commutative algebra implies that, whenever S is Cohen–Macaulay, the
dimension of the homogeneous component pRrSs{Θq2k is hk, the h-number of S [11].

When S is Buchsbaum, the additive structure of RrSs{Θ is still independent
of the choice of characteristic function but dimensions of homogeneous components
have more complicated description. By Schenzel’s theorem [10, 8], the dimension
of pRrSs{Θq2k is

h1k
def
“ hk `

ˆ

n

k

˙

˜

k´1
ÿ

j“1

p´1qk´j´1rβj´1pSq

¸

,

where rβj´1pSq “ rk rHj´1pS;Rq.
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Recall that the socle of an Rrms-module M is an R-subspace

SocM def
“ ty PM | Rrms` ¨ y “ 0u,

where Rrms` is the maximal graded ideal of the ring Rrms. Since the products with
polynomials of positive degrees are trivial, the socle is an Rrms-submodule of M.
In [8] Novik and Swartz proved the existence of certain submodules in SocpRrSs{Θq
for any Buchsbaum simplicial poset. Namely, in degree 2k ă 2n there exists a vector
subspace

pINSq2k Ď SocpRrSs{Θq2k,
isomorphic to

`

n
k

˘

rHk´1pS;Rq, the direct sum of
`

n
k

˘

copies of rHk´1pS;Rq. Let
INS denote the direct sum of pINSq2k over all k, where we assume pINSq2n “ 0.
Since INS lies in the socle, it is an Rrms-submodule. Moreover, INS is an ideal in
RrSs{Θ (for simplicial complex this fact easily follows from the surjectivity of the
map Rrms Ñ RrSs, and for simplicial poset, whose geometrical realization is a
homology manifold, this was checked in [2, Rem. 8.3]). Therefore we may consider
the quotient ring pRrSs{Θq{INS. The dimension of its homogeneous component of
degree 2k is equal to h2k where

h2k
def
“ h1k ´

ˆ

n

k

˙

rβk´1pSq “ hk `

ˆ

n

k

˙

˜

k
ÿ

j“1

p´1qk´j´1rβj´1pSq

¸

,

for 0 ď k ď n´ 1, and h2n “ h1n. In particular, h2k ě 0 for any Buchsbaum simplicial
poset.

Now we restrict to the case when the ground ring is either Z or Q. The class of
Cohen–Macaulay simplicial posets contains an important subclass of sphere trian-
gulations. By abuse of terminology we call simplicial poset a homology sphere (resp.
manifold) if its geometrical realization is a homology sphere (resp. manifold).

Every homology sphere is Cohen–Macaulay. For homology spheres the ring
RrSs{Θ is a Poincare duality algebra (this is not surprising in view of Danilov–
Jurkiewicz and Davis–Januszkiewicz theorems). In general one can prove this by the
following topological argument. Consider the cone over |S| endowed with a dual sim-
ple face stratification and consider the identification space XS “ pCone |S|ˆT nq{„,
similar to the construction of quasitoric manifolds [6]. Using the same ideas as
in [6], one can prove that the cohomology algebra of XS over R is isomorphic to
RrSs{Θ (see e.g. [7]). When R “ Z, the space XS is a homology manifold over
integers. In case R “ Q, this space is a homology manifold over Q. In both cases
the Poincare duality over the corresponding ring implies that RrSs{Θ is a Poincare
duality algebra. In particular, this proves Dehn–Sommerville relations for homology
spheres: hk “ hn´k.

The goal of this paper is to construct a topological model for the algebra pRrSs{Θq{INS,
where S is a homology manifold. Any homology manifold S is a Buchsbaum simpli-
cial poset. Thus the ring pRrSs{Θq{INS is well-defined. Novik and Swartz [9] proved
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that pRrSs{Θq{INS is a Poincare duality algebra if S is an oriented connected ho-
mology manifold. This implies h2j “ h2n´j (generalized Dehn–Sommerville relations)
for oriented connected homology manifolds. In the case R “ Q or Z we recover
this result by exploiting a Poincare–Lefschetz duality on a certain 2n-dimensional
homology manifold with boundary associated with the simplicial poset S.

The idea of our construction is the following. In Section 2 we associate a Poincare
duality algebra with any manifold with boundary pM, BMq, either smooth, topolog-
ical, or homological. This algebra will be denoted PD˚

pM,BMq. Given any homology
manifold S, instead of taking the cone (as in the case of spheres) we consider the
cylinder pQ “ |S| ˆ r0, 1s. This space is a manifold with two boundary components:
B0 pQ and B1 pQ. Consider the identification space pX “ p pQ ˆ T nq{„ where the iden-
tification collapses certain torus subgroups over the points of B0 pQ (similarly to a
quasitoric case), and does nothing over B1 pQ. The space pX is a homology manifold
with boundary; its boundary consists of points over B1 pQ. Then we have

Theorem 1. The algebra PD˚
p pX,B pXq

is isomorphic to pRrSs{Θq{INS if R “ Q
or Z.

The only place in the argument, where we need the restriction on a ground ring,
is the construction of the torus space. The relation „ collapses certain compact
subgroups of the compact torus T n, and this identification cannot be defined for
characteristic functions over general fields. Nevertheless, if the characteristic func-
tion λ over R can be represented as λ1 bR for some characteristic function λ1 over
Z (or Q), then the statements hold true over a field R and this particular choice of
characteristic function.

2. Poincare duality algebras

Definition 2.1. A finite-dimensional, graded, associative, graded-commutative,
connected algebra A˚ “

Àd
k“0A

k over R is called Poincare duality algebra of formal
dimension d, if

(1) Ad – R;
(2) The product map Ak b Ad´k

ˆ
Ñ Ad is a non-degenerate pairing for all

k “ 0, . . . , d. Over integers the finite torsion should be mod out.

While the motivating examples of Poincare duality algebras are cohomology of
connected orientable closed manifolds, there exist another natural source of duality
algebras.

Construction 2.2. Let pM, BMq be a compact connected orientable homology
manifold with boundary, dimM “ d. As a technical requirement we will also assume
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that M contains a neighborhood of BM of the form BM ˆ r0, εs. Consider the R-
module A˚ “

Àd
k“0A

k, where

Ak “

$

’

&

’

%

H0pMq, if k “ 0;

image of ı˚ : HkpM, BMq Ñ HkpMq, if 0 ă k ă d;

HdpM, BMq, if k “ d.

The homomorphism ı˚ : HkpM, BMq Ñ HkpMq is induced by the inclusion ı : pM,Hq ãÑ

pM, BMq.
There is a well-defined product on A˚ induced by the cup-products in cohomol-

ogy. Indeed, let a1 P Ak1 and a2 P A
k2 . If either k1 or k2 is zero, then there is

nothing to define, since A0 is spanned by the unit of the ring. If k1 ` k2 ă d then
a1 ¨ a2 is just the product of two elements in the ring H˚pMq. This product lies in
the image of H˚pM, BMq since the factors do. If k1 ` k2 “ d, then we may consider
the elements b1, b2 P H˚pM, BMq such that ı˚pbεq “ aε, and take their product in
the ring H˚pM, BMq. This gives an element in HdpM, BMq “ Ad which we call the
product of a1 and a2. It is easily seen that this element does not depend on the
choice of representatives b1, b2 for the elements a1, a2.

The Poincare–Lefschetz duality [5, Th.9.2] implies that the pairing between Ak
and Ad´k is non-degenerate. Thus A˚ is a Poincare duality algebra. We denote it
by PDpM,BMq and call the Poincare duality algebra of a manifold with boundary.

Remark 2.3. By Poincare–Lefchetz duality, instead of cohomology we can work
with homology. We have

PDkpM,BMq –

$

’

&

’

%

HdpM, BMq, if k “ 0;

image of ı˚ : Hd´kpMq Ñ Hd´kpM, BMq, if 0 ă k ă d;

H0pMq, if k “ d,

and the product is given by the intersection product in homology.

3. Collar model

3.1. Buchsbaum simplicial posets. Let S 1 be the barycentric subdivision of
a simplicial poset S. For each proper simplex I P Sz0̂ consider the following subsets
of the geometrical realization |S| – |S 1|:

GI “ |tpI0 ă I1 ă . . .q P S 1 such that I0 ě Iu|,

BGI “ |tpI0 ă I1 ă . . .q P S 1 such that I0 ą Iu|.

The subset GI is called the face of |S| dual to I. A simplicial poset S is called
Buchsbaum (over R) if HjpGI , BGI ;Rq “ 0 for any I P Sz0̂ and j ‰ dimGI . In par-
ticular, any homology manifold is Buchsbaum, since in this case GI are homological
cells.
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3.2. Collar model. Consider the compact n-torus with a fixed coordinate
representation T n “ tpt1, . . . , tnq | ts P C, |ts| “ 1u. If R is either Z or Q,
the vector w “ pw1, . . . , wnq P Rn determines a compact 1-dimensional subgroup
tw “ tpe2π

?
´1w1t, . . . , e2π

?
´1wntq | t P Ru. Let rms “ VertpSq be the set of vertices

of S and let λ : rms Ñ Rn be a characteristic function over Z or Q. Let Ti Ă T n

denote the one dimensional subgroup tλpiq. For a simplex I P S, I ‰ 0̂ let TI denote
the product of the one-dimensional subgroups Ti corresponding to the vertices of
I where the product is taken inside T n. The definition of characteristic function
implies that TI is a compact subtorus of T n of dimension |I|.

Consider the space pQ “ |S|ˆr0, 1s which will be called the collar of |S|. Let Bε pQ
denote the subset |S|ˆtεu for ε “ 0, 1. The faces GI can be considered as the subsets
of B0 pQ Ă pQ. To make the notation uniform, we set G0̂ “

pQ and T0̂ “ t1u Ă T n.

Construction 3.1. Consider the identification space pX “ p pQˆ T nq{„, where
the points px, tq, px1, t1q are identified whenever x “ x1 P GI and t´1t1 P TI for some
simplex I P S. Let f : pQ ˆ T n Ñ pX denote the quotient map, and µ denote the
projection to the first factor, µ : pX Ñ pQ. The preimage µ´1pGIq is denoted by XI .
Let B1 pX denote the subset B1 pQ ˆ T n Ă pX. Note that T n acts on pX, and pQ is the
orbit space of this action. The j-dimensional orbits of the action are the interior
points of the faces GI , dimGI “ j

3.3. Absolute and relative spectral sequences. The dual face structure on
|S| induces the topological filtration

Q0 Ă Q1 Ă . . . Ă Qn´1 “ B0 pQ Ă Qn “ pQ, Qj “
ď

dimGIďj

GI

which lifts to the orbit type filtration on pX:

X0 Ă X1 Ă . . . Ă Xn´1 Ă Xn “ pX.

Let pE
pQq

1
p,q “ Hp`qpQp, Qp´1q ñ Hp`qp pQq and pE pXq

1
p,q “ Hp`qpXp, Xp´1q ñ Hp`qp pXq

be the homological spectral sequences associated with these filtrations. By the result
of [1, Th.5.2], whenever S is Buchsbaum, the map

f 2
˚ :

à

q1`q2“q

pE
pQq

2
p,q1
bHq2pT

n
q Ñ pE

pXq
2
p,q

is an isomorphism for p ą q and injective for p “ q (and zero for p ă q, since target
groups are trivial by dimensional reasons).

Nontrivial higher differentials dě2 in both spectral sequences for pQ and pX can
only originate in the rightmost column pE

pQq
˚
n,˚ (resp. pE

pXq
˚
n,˚). For pQ this can be

easily seen from the shape of pE
pQq
˚
˚,˚: all other differentials either originate in zero

or hit zero, since S “ Qn´1 is a manifold. For pX it follows from the properties of f 2
˚ ,

mentioned in the previous paragraph. Indeed, let dr : pE
pXq
r
p,q Ñ pE

pXq
2
p´r,q`r´1 be a
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nontrivial differential. Then dr ˝ f˚ “ f˚ ˝ pd
r
Q b idH˚pTnqq is also nontrivial. This

contradicts to the facts that drQ : pE
pQq
r
p,q Ñ pE

pQq
2
p´r,q`r´1 is zero and f˚ is injective

(if its target is nonzero).
On the other hand, the rightmost column of the spectral sequence vanishes:

pE
pQq

1
n,˚ – Hn`˚p pQ, B0 pQq “ 0, since the collar pQ collapses to B0 pQ. Similar vanishing

occurs for pE
pXq
˚
˚,˚: we have pE pXq

1
n,q – Hn`qp pX, B0 pXq “ 0. Thus there are no higher

differentials dě2 in both spectral sequences.
We also need the homological spectral sequences for the relative homology:

pE
p pQ,B1 pQq

q
r
p,q ñ Hp`qp pQ, B1 pQq “ 0, pE

p pX,B1 pXqq
r
p,q ñ Hp`qp pX, B1 pXq.

The first pages are the following:

pE
p pQ,B1 pQq

q
1
p,q “

#

Hp`qpQp, Qp´1q, if p ă n;

Hn`qp pQ,Qn´1 \ B1 pQq, if p “ n,

pE
p pX,B1 pXqq

1
p,q “

#

Hp`qpXp, Xp´1q, if p ă n;

Hn`qp pX,Xn´1 \ B1 pXq, if p “ n.

Note that the rightmost terms pE
p pQ,B1 pQq

q1n,q have the form:

Hn`qp pQ, B0 pQ\ B1 pQq – Hn`qp|S| ˆ r0, 1s, |S| ˆ t0, 1uq – Hn`q´1pSq,

and the higher differentials

pd
p pQ,B1 pQq

q
r : pE

p pQ,B1 pQq
q
˚
n,´r`1 Ñ pE

p pQ,B1 pQq
q
˚
n´r,0 – Hn´rpSq

are isomorphisms (so that the spectral sequence for p pQ, B1 pQq collapses to zero).
Similar to the non-relative case, the induced map

f 2
˚ :

à

q1`q2“q

pE
p pQ,B1 pQq

q
2
p,q1
bHq2pT

n
q Ñ pE

p pX,B1 pXqq
2
p,q

is an isomorphism for p ą q and injective for p “ q (this follows from the general
method developed in [1]).

3.4. Proof of Theorem 1. The proof essentially relies on calculations made
in [2]. If S is a connected orientable homology manifold, then pX is a connected
orientable homology manifold with the boundary B1 pX – |S| ˆ T n. The boundary
admits a collar neighborhood as required in Construction 2.2. For I ‰ 0̂ the subset
XI is a closed submanifold of codimension 2|I| lying in the interior of pX. It is
called the face submanifold, and its homology class rXIs P H2n´2|I|p

pXq is called the
face class. Note that for |I| ‰ 0 the classes rXIs appear in the spectral sequence
pE

pXq
˚
˚,˚ as the free generators of the group: pE

pXq
1
q,q with q “ n´ |I|. The relations

on these classes in H2qp pXq are the elements in the image of the first differential,
hitting the group pE

pXq
1
q,q (since all higher differential vanish). In [2, Prop.4.3 and
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Lm.8.2] we checked that these relations are the same as the linear relations on vI
in the ring pRrSs{Θq2pn´qq when q ď n ´ 2. If q “ n ´ 1, there are no relations on
rXIs P H2n´2p pXq since there are no differentials hitting the group pE

pXq
1
n´1,n´1.

In addition to face classes, there exist other homology classes in H˚p pXq, namely
the classes coming from the part of the spectral sequence below the diagonal. They
lie in the groups pE

pXq
2
p,q – Hpp pQq b HqpT

nq for q ă p ă n. In [2] we called them
spine classes.

Let us keep track on the behavior of homology classes, when they map to the
relative homology by the homomorphism ı˚ : H˚p pXq Ñ H˚p pX, B1 pXq. Again, we
may look at their representatives in the spectral sequence pE

p pX,B1 pXqq
˚. At this time,

higher differentials are nontrivial. All spine classes of H˚p pXq are killed by higher
differentials. Indeed, they lie in the part of the relative spectral sequence which is
isomorphic to pE

p pQ,B1 pQq
q˚˚,˚ bH˚pT

nq, and the latter sequence collapses to 0.
On the other hand, the diagonal terms pE

p pX,B1 pXqq
˚
q,q are hit by higher differentials

as well. Thus there are more relations on rXIs in the group H˚p pX, B1 pXq than in the
group H˚p pXq. The higher differential

pd
p pX,B1 pXqq

r : pE
p pX,B1 pXqq

1
n,n´2r`1 Ñ pE

p pX,B1 pXqq
1
n´r,n´r

is injective, as follows from [2, Prop.2.7(5)], and gives an inclusion of Hn´rpSq b
Hn´rpT

nq into pE
p pX,B1 pXqq

1
n´r,n´r. Under the degree reversing identification rXIs Ø

vI (and by Poincare duality in S), this inclusion gives the Novik–Swartz sub-
module pINSq2r –

`

n
r

˘

rHr´1pSq inside pRrSs{Θq2r, for r ě 2 (see details in [2,
Th.4.6 and Sect.8]). When r “ 1, only the first differential pd

p pX,B1 pXqq
1 hits the cell

pE
p pX,B1 pXqq

1
n´1,n´1. Its image corresponds to the linear span of θ1, . . . , θn in RrSs2.

The Novik–Swartz submodule INS in degree 2 vanishes, since S is connected.
These considerations prove that the image of the map

ı˚ : H2n´2rp pXq Ñ H2n´2rp pX, B1 pXq

is isomorphic to the homogeneous component of pRrSs{Θq{INS of degree 2r for each
0 ă r ă n.

When r “ n, the submodule pINSq2n is trivial. Thus H0p pXq coincides with
pRrSs{Θq2n “ ppRrSs{Θq{INSq2n. The group H2np pX, B1 pXq – R is obviously identi-
fied with ppRrSs{Θq{INSq0 – R.

Theorem 1 now follows from Remark 2.3 and the fact that the correspondence
rXIs Ø vI translates the intersection product on pX to the product in the face ring.
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