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Abstract Miller (J Symb Log 69(3):907–913, 2004, http://projecteuclid.org/euclid.
jsl/1096901774) and independently Nies et al. (J Symb Log 70(2):515–535, 2005)
gave a complexity characterization of 2-random sequences in terms of plain Kol-
mogorov complexity C(·): they are sequences that have infinitely many initial
segmentswith O(1)-maximal plain complexity (among the strings of the same length).
Later Miller (Notre Dame J Form Log 50(4):381–391, 2009) showed that prefix
complexity K (·) can also be used in a similar way: a sequence is 2-random if and
only if it has infinitely many initial segments with O(1)-maximal prefix complex-
ity (which is n + K (n) for strings of length n). The known proofs of these results
are quite involved; in this paper we provide elementary proofs. Miller (J Symb
Log 69(3):907–913, 2004, http://projecteuclid.org/euclid.jsl/1096901774) also gave
a quantitative version of the first result: the 0′-randomness deficiency of a sequence ω

equals lim infn[n − C (ω1 . . . ωn)] + O(1). Our simplified proof can also be used
to prove this. We show (and this seems to be a new result) that a similar quan-
titative result is also true for prefix complexity: 0′-randomness deficiency equals
lim infn[n + K (n) − K (ω1 . . . ωn)] + O(1).
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1 Introduction

The connection between complexity and randomness is one of the basic ideas that
motivated the development of algorithmic information theory and algorithmic ran-
domness theory. However, at first the definition of complexity (plain complexity of
a bit string, introduced by Solomonoff [20] and Kolmogorov [10] as the minimal
length of a program that produces this string) and the definition of randomness (given
by Martin-Löf [14]) were given separately, and only later some connections between
them became clear.

Levin [8,12] and later Chaitin [5] introduced a modified version of complexity,
called prefix complexity and denoted usually by K (·), that corresponds to self-
delimiting programs. It turned out (see the papers of Schnorr [18], Levin [11],
Chaitin [5]) that a bit sequence ω = ω1ω2 . . . is Martin-Löf random if and only if
supn[n−K (ω1 . . . ωn)] is finite.Moreover, this supremum coincides with randomness
deficiency (a quantitative version of Martin-Löf definition of randomness suggested
by Levin and Gacs, see [9]).

Let us recall the definition of randomness deficiency, since it is less knowncompared
to other notions of algorithmic information theory. By 2ω we denote the Cantor space
of infinite bit sequences.

– A basic function is a function f : 2ω → Q+ whose value f (ω) is a non-negative
rational number that depends on a finite initial prefix of ω of some length. Basic
functions are constructive objects, so we can speak about computable sequences
of basic functions.

– A lower semicomputable function is a function f : 2ω → R
+
(values are non-

negative reals and+∞) that is a pointwise upper bound of a computable sequence
of basic functions. Equivalent definition: a sum

∑
hi (·) where hi (·) is a com-

putable sequence of basic functions.
– A randomness test is a lower semicomputable function t such that the integral∫

t (ω)dP(ω) does not exceed 1. (Here P is the uniform Bernoulli measure on
Cantor space that corresponds to independent fair coin tossings.)

– There exists a universal randomness test u(ω) that exceeds every other one (up
to O(1)-factor). We fix some universal randomness test u. Its logarithm logu(ω)

is called the randomness deficiency of ω and denoted by d(ω). The randomness
deficiency is defined up to O(1)-additive term since different universal tests differ
at most by a bounded factor.

The quantitative version of Schnorr–Levin theorem says that

d(ω) = sup
n

[n − K (ω1 . . . ωn)] + O(1).

This statement looks a bit counterintuitive.One can expect that a sequence is random
if its initial segments (prefixes) have maximal possible complexity (among all strings
of the same length). But themaximal prefix complexity for n-bit strings is n+K (n), not
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Prefix and plain Kolmogorov complexity characterizations… 617

n, up to O(1) additive term. So why we compare K (ω1 . . . ωn) to n, not to n+K (n)?
Or why dowe consider prefix complexity and not the plain one, for which the maximal
complexity of n-bit string is indeed n?

The obstacle here is an old Martin-Löf observation: for every sequence ω the dif-
ference n − C (ω1 . . . ωn), as well as the difference n + K (n) − K (ω1 . . . ωn), is
unbounded. There are some workarounds, still: for example, instead of requiring that
n − C (ω1 . . . ωn) is bounded for all n, we can require it to be bounded for infinitely
many n, i.e., consider sequences such that lim infn[n − C (ω1 . . . ωn)] is finite.1 It is
easy to see that indeed this lim inf is finite for almost all sequences (except for a set
of zero measure). What are these sequences?

The answer was found by Miller [15] and independently by Nies, Frank Stephan
and Sebastian Terwijn [17]. They proved that this class of sequences coincides with the
class of 2-random sequences, i.e., the sequences that areMartin-Löf random even with
an oracle for 0′ (the halting problem). The proof in [15] is quite involved, and the proof
in [17] is simple, but uses a special tool from recursion theory (the low basis theorem).
Some other approach was suggested in [3], and later Conidis [6] showed that one can
avoid low basis theorem in this way. Still Conidis’ argument is a bit complicated. In
Sect. 2 we provide a simple proof of Conidis’ result thus giving an elementary proof
of Miller–Nies–Stephan-Terwijn characterization of 2-random sequences. Extending
this argument and using an effective version of Fatou lemma, we get also a new simple
proof for a quantitative version of this characterization from [15]:

lim inf[n − C (ω1 . . . ωn)] = d0
′
(ω) + O(1).

In the right-hand side d0
′
stands for the randomness deficiency relativized to 0′; this

deficiency is finite when ω is 2-random.
Later Miller [16] got a similar result for prefix complexity: a sequence ω is 2-

random if and only ifω has infinitely many initial segments with O(1)-maximal prefix
complexity (which is n + K (n) for strings of length n), i.e., if

lim inf[n + K (n) − K (ω1 . . . ωn)]

is finite. The original proof was even more complicated than the proof for plain com-
plexity; it used van Lambalgen theorem about random pairs, Kučera – Slaman result
about random lower semicomputable reals and some other tools. Some simplifications
were found by Laurent Bienvenu and others (see Downey and Hirschfeldt [7]), but
even with these simplifications the proof remains quite difficult. In Sect. 3 we present
a much simpler proof.

1 The other (may be, more natural) approach is to consider the so-called monotone complexity, or a priori
complexity, that do not have this problem. We do not consider these complexities in our paper.
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618 B. Bauwens

Finally, in Sect. 4 we show that this result also has a quantitative version, thus
completing the picture:

d0
′
(ω) = sup n − K 0′

(ω1 . . . ωn) + O(1)

= lim inf[n − C (ω1 . . . ωn)] + O(1)

= lim inf[n + K (n) − K (ω1 . . . ωn)] + O(1).

It is not clearwhether this quantitative version can be extracted fromMiller’s argument.
Sections 2–4 are (mostly) independent, so the readers interested only in plain or

prefix complexity can proceed directly to the corresponding part of the paper.

2 Plain complexity and 2-randomness

This section is devoted to the Miller–Nies–Stephan–Terwijn characterization of
2-random sequences in terms of plain complexity, and it’s quantified form:

Theorem 1 [Miller]

d0
′
(ω) = lim inf[n − C (ω1 . . . ωn)] + O(1).

First let us reproduce the proof of the easy direction (≤). We assume that d0
′
(ω)

equals d, and show that n − C (ω1 . . . ωn) ≥ d − O(1) for sufficiently large n. Since

d0
′
(ω) = lim sup n − K 0′

(ω1, . . . , ωn)

(we omit O(1) terms here and later) we may assume that

K 0′
(ω1 . . . ωm) ≤ m − d

for some m. Then we can use the additivity property2 for plain complexity [1],

C (a, b) = K (a|C (a, b)) + C (b|a,C (a, b)),

for a = ω1 . . . ωm and b = ωm+1 . . . ωn . Then we have

C (ω1 . . . ωn) ≤ C (a, b) ≤ K (a|C (a, b)) + C (b|C (a, b)).

The second term does not exceed |b|, i.e., n − m; therefore, it is enough to show that
the first term is bounded by m − d, i.e., by K 0′

(ω1, . . . , ωm). Indeed, the condition
C(a, b) tends to infinity as n → ∞, and limN K (x |N ) ≤ K 0′

(x). (Indeed, we can
approximate 0′ making N steps of enumeration, and for large N this is enough.)

2 The direction (≤) that we need is quite simple:C (a, b) = C (a, b|C (a, b)), andC (u, v|w) ≤ K (u|w)+
C (v|w) by concatenation of the programs.
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Prefix and plain Kolmogorov complexity characterizations… 619

Now we switch to the other direction (≥). The qualitative version says that a
sequence ω such that n − C (ω1 . . . ωn) → ∞, is not 0′-random. We start by proving
this version. So let us assume that C (ω1 . . . ωn) < n − c for all sufficiently large n.
To show that ω is not Martin-Löf 0′-random, we need to cover ω by a 0′-effectively
open set of small measure (uniformly).

Consider the set Un of sequences α such that C (α1 . . . αn) < n − c. This is an
effectively open set (uniformly in n) that has measure at most 2−c (since there are less
than 2n−c strings of complexity less than n−c). We know that our sequenceω belongs
to all Un for sufficiently large n (but we do not know the threshold for “sufficiently
large”). It remains to apply the following result of Conidis [6] (for its applications and
discussion see also [3] where this statement was mentioned as a conjecture, and the
revised version [4]).

Theorem 2 [Conidis] Let ε > 0 be a rational number and let U0,U1, . . . be a
sequence of uniformly effectively open sets of measure at most ε each. Then for every
rational ε′ > ε there exists a 0′-effectively open set V of measure at most ε′ that
contains lim infn→∞ Un = ⋃

N
⋂

n≥N Un, and the 0′-enumeration algorithm for V
can be effectively found given ε, ε′, and the enumeration algorithm for Ui .

Proof Let us denote by Uk..l the intersection Uk ∩Uk+1 ∩ . . . ∩Ul . The set V will be
constructed asU1..k1 ∪Uk1+1..k2 ∪. . . for some 0′-computable sequence k1 < k2 < . . .;
this guarantees that V is 0′-effectively open and that lim inf Ui ⊂ V . It remains to
explain how we choose ki such that V has measure at most ε′.

Let us fix an increasing computable sequence ε < ε1 < ε2 < · · · < ε′. There exists
some k1 such that for every i > k1 the set

U1..k1 ∪Ui

has measure at most ε1. Indeed, if for some i the measure is greater than ε1, then,
adding Ui as a new term in the intersection (by increasing k1 up to i), we decrease
the measure of the intersection at least by ε1 − ε. (If A ∪ B has measure greater than
ε1 > ε while B itself thas measure at most ε, then A\B has measure at least ε1 − ε,
so the measure of A decreases at least by ε1 − ε after intersecting it with B.) If the
newly found ki does not satisfy the condition, we repeat the process. Each time this
happens, the measure of the intersection decreases by at least ε1 − ε, hence this can
happen only finitely many times.

For similar reasons we can then find k2 such that for every i the set

U1..k1 ∪Uk1+1..k2 ∪Ui

has measure at most ε2 for every i > k2. Indeed, the size ofU1..k1 ∪Ui is bounded by
ε1, hence if the measure of the set above exceeds ε2, then there is at least a (ε2 − ε1)-
part of Uk1+1..k2 outside U1..k1 ∪ Ui (in particular, outside Ui ). Thus adding Ui as a
new term in the intersection Uk1+1..k2 decreases its measure by at least ε2 − ε1; such
a decrease may happen only finitely many times.
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620 B. Bauwens

We continue this construction for k3, k4 etc. Note that this construction is
0′-computable and the union

V = U1..k1 ∪Uk1+1..k2 ∪Uk2+1..k3 ∪ . . .

is an 0′-effectively open cover of lim inf Un of measure at most ε′.

Amore careful analysis of this argument allows us to get the statement of Theorem1
in weak form, with logarithmic precision. So we need to modify the argument. First,
we formulate a version of Conidis’ theorem with functions instead of sets (that also
can be considered as a constructive version of Fatou’s lemma).

Theorem 3 Let f1, f2, . . . be a series of uniformly lower semicomputable functions
on Cantor space such that

∫
fi (ω) dμ(x) does not exceed some rational ε > 0 for

all i . Then for every ε′ > ε one can uniformly construct a lower 0′-semicomputable
function ϕ such that q

lim inf fn(ω) ≤ ϕ(ω) for every ω, and
∫

ϕ(ω)dμ(ω) ≤ ε′.

We get the original Conidis’ result when fi are indicator functions of open sets. In
fact, the proof remains almost the same. For each function fi we consider the set Ui

below its graph, i.e., the set of pairs (ω, u) in 2ω × R such that 0 ≤ u ≤ fi (ω). The
measure of this set equals

∫
fi (ω) dω. The intersection/union operations with these

sets correspond to min/max operations with the functions. So the same construction
as before gives the function

ϕ(ω) = sup( f1..k1(ω), fk1+1..k2(ω), . . .)

where

fk..l(ω) = min( fk(ω), fk+1(ω), . . . , fl(ω)).

It is easy to see that lim infn fn(ω) ≤ ϕ(ω) (note that lim inf operation on functions
corresponds to the same operation on sets). Also functions fi.. j are lower semi-
computable (minimum of a finite family of lowersemicomputable functions is lower
semicomputable), and the function ϕ is semicomputable with an oracle that computes
the sequence ki .

Theorem 3 is proved. 
�
Now we use this theorem to show that if C(ω1 . . . ωn) < n − c for large n, then

d0
′
(ω) ≥ c − O(1). For that we need to construct a 0′-lower semicomputable ran-

domness test that exceeds 2c on all those ω.
One may try to let fn(ω) be equal to 2n−C (ω1...ωn). Then for all ω in question we

have fn(ω) > 2c for large n, and lim inf fn(ω) ≥ 2c. If the integrals
∫

fn(ω) dω were
bounded, we could finish the proof by applying Theorem 3. However, it is not the
case: we know that fn(ω) exceeds 2k on a set of measure at most 2−k (for every k),
but this is not enough for the integral bound.
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Prefix and plain Kolmogorov complexity characterizations… 621

To fix the problem, we change the definition of fn . For a binary string u, let us
define the function χx2ω that equals 1 on the extensions of x and equals 0 otherwise.
Its integral is 2−|x |. Multiplying this function by 2|x |−m for some m, we get a function
with integral 2−m . Then consider the sum

fm(ω) =
∑

{x |C (x)<m}
2|x |−mχx2ω .

This sum contains less than 2m terms; each has integral 2−m , so the integral of the
sum is bounded by 1. On the other hand, if C (ω1 . . . ωn) < n − c for all large enough
c, the sum for fm(ω) includes a term of size at least 2c for all sufficiently large m.

This observation finished the proof of Theorem 1.

3 Prefix complexity and 2-randomness

In this section we provide a simple proof of the following result of Miller:

Theorem 4 [Miller] A sequence ω is 2-random (Martin-Löf random with oracle 0′)
if and only if lim infn[n + K (n) − K (ω1 . . . ωn)] is finite.

In the next section we will prove a quantitative version of this result: this lim inf
equals d0

′
(ω), and this will require a more complicated proof. However, in one of the

directions the quantitative result is equally simple, so we start with this direction.
Let us prove that d0

′
(ω) ≤ lim inf[n + K (n) − K (ω1 . . . ωn)]. We use almost

the same argument as for Theorem 1. Since d0
′
(ω) is equal to lim infm[m −

K 0′
(ω1 . . . ωm)] up to O(1) additive term, we assume that K 0′

(ω1 . . . ωm) = m − d
and show that K (ω1 . . . ωn) ≤ n + K (n) − d + O(1) for large n.

Let a = ω1 . . . ωm and b = ωm+1 . . . ωn . Using the bound for the prefix complexity
of a pair K (u, v) ≤ K (u)+K (v|u)+ O(1) (also in the conditional version), we note
that (up to O(1)-terms)

K (ω1 . . . ωn) ≤ K (n) + K (ω1 . . . ωn|n)

≤ K (n) + K (a, b|n)

≤ K (n) + K (a|n) + K (b|a, n).

It remains to note that

– the last term does not exceedm−n (the condition is enough to reconstructm−n,
and the prefix complexity of a string when its length is given, is bounded by this
length);

– for sufficiently large n the value of K (a|n) does not exceed K 0′
(a) (the required

part of 0′ can be reconstructed during n enumeration steps).

So, for large n the right-hand side is bounded by

K (n) + K 0′
(a) + n − m ≤ K (n) + (m − d) + n − m = n + K (n) − d,

as required.
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622 B. Bauwens

It remains to prove the (qualitative) statement in the other direction:

Let ω be a binary sequence such that K (ω1 . . . ωn)− (n+K (n)) → −∞. Then
ω is not 2-random.

It will be done in the rest of the section, in several steps.

3.1 Slow convergence

Let us start with the following simple definition. Let ai and bi be two series with
non-negative terms. We say that ai -tails are bounded by bi -tails if

(aN + aN+1 + · · · ) ≤ c(bN + bN+1 + · · · )

for some c and all N . We assume here that
∑

ai converges (but
∑

bi may diverge).
Reformulation: ai -tails are not bounded by bi -tails if the ratio

aN + aN+1 + · · ·
bN + bN+1 + · · ·

is unbounded.

Examples:

1. Letm(i) be the (discrete) a priori probability of i , the maximal (up to a constant)
lower semicomputable converging series; wemay letm(i) = 2−K (i) (see e.g., [13]
or [19]). Then the tails of every convergent computable series

∑
ai are bounded

by the tails of the series
∑

m(i). Indeed, ai ≤ O(m(i)) implies the same relation
for tails.

2. On the other hand, for every lower semicomputable series there exist a computable
series with rational terms that has the same limit and has bigger tails (that bound
the tails of the first one). Indeed, each lower semicomputable term can be split into
a sum of a computable series, and we can add all the summands (for all terms) one
by one; this delay can only increase the tails. Therefore, being bounded by tails of
some convergent computable series is equivalent to being bounded by the tails of∑

m(i).

3.2 Lower semicomputable tests and 2-randomness

Recall from the introduction that Martin-Löf randomness can be defined using ran-
domness tests (lower semicomputable non-negative functions on the Cantor space that
have integral at most 1, see the Introduction). It turns out that lower semicomputable
tests can be used in a more ingenious way to show that some sequence is not 2-random
(not ML-random relative to the halting problem).

Let fi (·) be a sequence of (uniformly) lower semicomputable non-negative func-
tions on 2ω. Assume that the sum

∑
i

∫
fi is finite. Thus

∑
i fi (·) is a lower

semicomputable test, and every sequence ω such that
∑

i fi (ω) diverges, is not ML-
random. Moreover, the following statement (where both the condition and the claim
are weaker) is true:
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Lemma 1 If the tails of the series
∑

i fi (ω) are not bounded by any computable
series, then ω is not 0′-random.

As we have seen, we may use for comparison the series
∑

i m(i) instead of com-
putable series.

Proof Without loss of generality we may assume that f1(·), f2(·), . . . is a computable
sequence of basic functions (splitting each semicomputable term into a sum of com-
putable terms, we only increase the tails).

To show that every ω with this property (very slow convergence) is not 0′-random,
we need to construct for every rational ε > 0 a 0′-effectively open set of measure
at most ε that covers (all such) ω. This construction goes as follows. Consider com-
putable increasing sequences of basic functions Si : 2ω → Q and rational numbers ti
(“thresholds”) constructed in the following way. We start with zero function S0 and
zero threshold t0. Then for each i = 1, 2, 3, . . . we do the following steps:

– First, let Si (ω) = Si−1(ω) + fi (ω), and ti = ti−1.
– If after that the measure of the set {ω|Si (ω) > ti } exceeds ε, increase ti to get rid

of this excess (minimally).
– Change Si as follows: Si (ω) := max(Si (ω), ti )

If the two last “correction steps” were omitted, the sequence Si would converge to∑
i fi . The correction steps make functions Si bigger (small values of Si are replaced

by the threshold). Note that the second step is well defined, since Si is a basic function,
and ti will be one of its finitely many values. The following two invariant relations are
easy to check:

– The measure of the set {ω|Si (ω) > ti } is bounded by ε. [Indeed, the second step
restores this relation if it was destroyed by the first step, and the third step does
not change the set in question, since the inequality is strict.]

– εti + ∫ [Si (ω) − ti ] dω ≤ ∑i
k=0

∫
fk(ω)dω. Indeed, the first step increases the

integral in the left-hand side by
∫

fi , and two other steps combined only decrease
the left-hand side: the difference of the integrals (i.e., the gray area in Fig. 1)
exceeds ε(ti − ti−1)

Fig. 1 Construction of Wε

2ω

new Si

old Siti−1

ti

> ε

> (ti− ti−1)ε
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624 B. Bauwens

Since the right-hand side of the last inequality is bounded by assumption, the sequence
ti is a bounded (computable increasing) sequence, and its limit T = lim ti is lower
semicomputable (and therefore 0′-computable). The limit of Si is some lower semi-
computable function S(·).

Recall that we have to construct a 0′-effectively open set of small measure that
covers all ω where tails of fi exceed tails of all converging computable series. This
set is defined as the set Wε of all ω such that S(ω) > T . We need to check that this
set works:

– Wε is 0′-effectively open (uniformly in ε), since T is 0′-computable and S is lower
semicomputable (even without 0′-oracle).

– The measure of Wε does not exceed ε. Indeed, if it does, then the measure of the
set {ω|Si (ω) > T } would exceed ε for some i , which would immediately make
the threshold greater than its limit value T .

– Finally, we need to show that ω ∈ Wε if the tails of the series
∑

i fi (ω) are not
bounded by tails of any computable converging series. In our case we compare
it with the convergence ti → T , i.e., with the series

∑
(ti − ti−1). Indeed, our

assumption guarantees that some tail fi (ω)+ fi+1(ω)+ · · · exceeds the distance
T − ti−1, and this implies that S(ω) > T (since we add fn(ω) at each step, starting
from the same point ti−1; additional increases are possible, too).

3.3 Proof of Theorem 4

Now we are ready to finish the Proof of Theorem 4 by applying Lemma 1 to the
sum used in Gács’ formula for the universal lower semicomputable test. We already
mentioned the formula for randomness deficiency:

d(ω) = sup
n

[n − K (ω1 . . . ωn)] + O(1).

It is convenient to rewrite it in exponential form. Namely, let m(x) be the universal
discrete semimeasure m(x) = 2−K (x), and let P(x) be the uniform measure of the
interval x2ω, i.e., P(x) = 2−|x |. Then for the universal test u(ω) = 2d(ω) we get (up
to O(1)-factors in both directions)

u(ω) = max
x≺ω

m(x)

P(x)

where the maximum is taken over prefixes x of ω. Gacs [9] showed not only this
formula, but also a similar formula where maximum is replaced by sum:

u(ω) =
∑

x≺ω

m(x)

P(x)

(See [2] for the details.) In fact, we only need to know that the right hand side of this
formula has finite integral. For a fixed x the integral of the corresponding term ism(x),
so the entire integral is

∑
x m(x) ≤ 1.
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Prefix and plain Kolmogorov complexity characterizations… 625

To prove Theorem 4, we apply Lemma 1 to the sequence

fi (ω) = m(x)/P(x) = 2i−K (ω1...ωi )

and our assumption says that the ratio fi (ω)/m(i) tends to infinity. (Recall that
m(i) = 2−K (i).) So the tails of the series fi (ω) are not bounded by the tails of the
series m(i) and therefore not bounded by tails of any computable converging series
(being maximal,

∑
m(i) has O(1)-bigger tails). The theorem is proven.

4 Prefix-free complexity: the quantitative result

This section is devoted to the quantitative version of the result of the previous section.

Theorem 5

d0
′
(ω) = lim inf

i
[i + K (i) − K (ω1 . . . ωi )] + O(1).

In the previous section we already proved the ≤-inequality; now we need to prove
the reverse one. This follows from Lemma 2 and in its proof we use a quantitative
version of Lemma 1.

Lemma 2 Let fi (·) be a series of lower semicomputable functions on the Cantor
space such that

∑
i

∫
fi < ∞. Then there exist a 0′-lower-semicomputable function

Q(·) on Cantor space with finite integral such that

lim inf
i

[
fi (ω)

m(i)

]

≤ O(Q(ω)).

The ≥-inequality of Theorem 5 then follows from this lemma if we let (as before)

fi (ω) = m(ω1 . . . ωi )/P(ω1 . . . ωi ) = 2i−K (ω1...ωi ).

The lemma gives us a function Q(·) that is a 0′-lower semicomputable test (up to a
constant: the integral of Q may exceed 1, but is finite) and

log Q(ω) ≥ lim inf [ (i − K (ω1 . . . ωi )) + K (i) ] + O(1)

for every ω. Since d0
′
(ω) is universal, we get the desired ≥-inequality.

It remains to prove Lemma 2. As we have done in Sect. 3, we convert functions
fi : 2ω → R to sets in 2ω ×R. Then we apply a version of Lemma 1 (Lemma 3 below)
to functions defined on this space.

Let us first explain what are the changes in Lemma 1. We considered a sequence
of functions gi (x) and then the set of points x where the ratios

gi (x) + gi+1(x) + · · ·
m(i) + m(i + 1)+ · · ·
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626 B. Bauwens

are not bounded (we have changed the notation and write gi instead of fi to avoid
confusion, since now the lemma is applied not to fi but to other functions). The change
is that now we consider a larger set of points where these ratios are not bounded by
some specific constant (1, though any other constant would work), and cover it by a
0′-effectively open set of finite measure. (The entire space 2ω × R now has infinite
measure, so this makes sense.) Here is the exact statement:

Lemma 3 Consider a sequence of uniformly lower semicomputable non-negative
functions gi : 2ω × R≥0 → R≥0 such that

∑
i

∫
2ω×R≥0

gi is finite, where the inte-
grals are taken with respect to the product of standard measures on Cantor space and
R≥0. Then there exists a 0′-effectively open set W ⊆ 2ω × R≥0 of finite measure that
covers all points z such that

gi (z) + gi+1(z) + · · · > m(i) + m(i + 1) + · · ·

for some i .

In this lemmawe speak about effectively open sets and lower semicomputable func-
tions for the space 2ω ×R≥0, so we need to define them formally. An effectively open
set is a union of an enumerable family of basic open sets of the form x2ω×(a, b)where
x2ω is an interval in the Cantor space and (a, b) is an open interval with rational end-
points; the interval [0, b) can also be used instead of (a, b). A lower semicomputable
function g : 2ω ×R≥0 → R≥0 can be defined as a function such that for every rational
r the preimage {(ω, u)|g(ω, u) > r} is effectively open uniformly in r . However,
for the proof it is convenient to use an equivalent definition of lower semicomputable
functions as pointwise limit of increasing computable sequences of basic functions.
Here, a basic function is a non-negative function b(ω, r) that depends only on some
finite prefix of ω (of some length m) and each function f (ω, ·) is piecewise constant
with finite support, rational breakpoints and rational values. Such a function is a con-
structive object, so we can speak about computable sequences of basic functions in
which the breakpoints and the number of breakpoints of each basic function are com-
putable. Taking differences, we can also say that a lower semicomputable function is
a sum of a series whose terms are basic functions.

Proof We use the same construction as in the proof of Lemma 1 (see Fig. 2, which is
the 3d analogue of Fig. 1), but now the threshold ε is large; we will see later how large
ε should be. Without loss, we can assume the functions gi to be computable (rather
than lower semicomputable) basic functions defined on 2ω ×R≥0; indeed, by delaying
terms, the tails only increase, making the statement only stronger. The functions Si
are now basic functions too, and ti are still rational numbers. Recall the construction:
we first add gi (was fi ) to Si−1, then take minimal ti such that the set Si (·) > ti has
measure at most ε, and then let Si := max(Si , ti ). The choice of ti now is a more
difficult task, but since ε is rational, functions Si are basic, and the set Si (·) > ti is
non-increasing in ti , the number ti is rational and can be computed from i .

The construction of Si and ti depend on ε, so we use the notation Sε
i and tεi for

them. The set W ε where the function lim Sε
i exceeds T ε = lim tεi is 0′-effectively

open uniformly in ε. Note that the limit T ε is finite and the set W ε has measure at
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most ε (for every ε) for the same reasons as before; more precisely, T ε = O(1/ε).
(T εε ≤ ∑

i

∫
gi (z)dz ≤ O(1).) We need only to prove that for some ε the set W ε

contains all the points z such that

gi (z) + gi+1(z) + · · · > m(i) + m(i + 1) + · · ·

for some i .
This is guaranteed if

m(i) + m(i + 1) + · · · ≥ �tεi + �tεi+1 + · · ·

where�tεi is defined as the difference ti − ti−1 (in the construction for the correspond-
ing value of ε). We show that �tεi ≤ m(i) for large ε. Since �tεi is computable (given
i and ε) and

∑

i

�tεi = O(1/ε),

we can estimate �tεi :

�tεi = O(m(i)2K (ε)/ε). (∗)

Indeed, the sum

∑

ε,i

2−K (ε)ε�tεi ≤
∑

ε

2−K (ε)εO(1/ε) = O
(∑

ε

2−K (ε)
)

is finite, so

2−K (ε)ε�tεi ≤ O(m(i, ε)) ≤ O(m(i)).

Whatever the O-constant in (∗) is, we can ensure that �tεi < m(i) if we take ε large
and simple enough, i.e., ε = 2k for large k. As we have seen, such ε finishes the proof
of Lemma 3.

Using this result, we can now prove Lemma 2 (and therefore finish the proof of
Theorem 5).

Proof Let a(i) be a computable sequence of rational numbers that converges slower
than m(i) in the sense that a(i) + a(i + 1) + · · · > m(i) + m(i + 1) + · · · for all i .
By universality of m, it suffices to prove the statement of the lemma where m(n) is
replaced by a(n), i.e., to construct Q such that

Q(ω) ≥ lim inf
i

[
fi (ω)

a(i)

]

.
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628 B. Bauwens

Firstwe construct the functions gi (ω, u) towhichLemma3 is applied. (Remember that
ω is a point inCantor space, and u is a non-negative real number.) Consider the function
fi/a(i) and the points below its graph, i.e., pairs (ω, u) such that 0 ≤ u < fi (ω)/a(i).
The area of this “lower-graph” is

∫
fi/a(i). Then we consider the indicator function

of this set multiplied by a(i): let gi (ω, u) be equal to a(i) if 0 ≤ u < fi (ω)/a(i) and
zero otherwise (see also Fig. 2). The integral of gi (over Ω × R) equals

∫
fi , so the

sum of integrals is finite. The functions are uniformly lower semicomputable.
Applying Lemma 3, we get a 0′-effectively open set W ⊂ 2ω × R≥0 of finite

measure that contains all pairs (ω, u) such that

gi (ω, u) + gi+1(ω, u) + · · · > m(i) + m(i + 1) + · · ·

Note that that includes all points (ω, u) such that

0 ≤ u < lim inf
i

[
fi (ω)

a(i)

]

.

Indeed, for suchω and u the point (ω, u) is under the graph of fi/a(i) for large enough
i , so gi (ω, u) = ai for large enough i and

gi (ω, u) + gi+1(ω, u) + · · · = a(i) + a(i + 1) + . . . > m(i) + m(i + 1) + · · ·

for large enough i .
Now, having the 0′-effectively open set W , we define the function Q as a maximal

function such that the area under this function is in W :

Fig. 2 Constructing ti and Si ,
and choice of gi (ω, r)

2ω
Si−1

ti−1

ai

fi/ai

ω

r

gi(ω ,r)
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Prefix and plain Kolmogorov complexity characterizations… 629

Q(ω) = sup{v|(ω, u) ∈ W for all u in [0, v)}.

Note that this function is lower semicomputable for every effectively openW with the
same oracle; the area under its graph is included in W and therefore the integral of Q
does not exceed the area ofW and is finite. As we already noted, Q is an upper bound
for lim inf in question. Lemma 2 is proved.
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