
Discrete Applied Mathematics 219 (2017) 158–166

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Two complexity results for the vertex coloring problem✩

D.S. Malyshev a,∗, O.O. Lobanova b

a National Research University Higher School of Economics, 25/12 Bolshaya Pecherskaya Ulitsa, 603155, Nizhny Novgorod, Russia
b Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Avenue, Nizhny Novgorod, 603950, Russia

a r t i c l e i n f o

Article history:
Received 30 October 2015
Received in revised form 3 August 2016
Accepted 16 October 2016
Available online 9 December 2016

Keywords:
Computational complexity
Coloring problem
Hereditary class
Polynomial-time algorithm

a b s t r a c t

We show that the chromatic number of {P5, Kp − e}-free graphs can be computed in
polynomial time for each fixed p. Additionally, we prove polynomial-time solvability of
the weighted vertex coloring problem for {P5, P3 + P2}-free graphs.
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1. Introduction

In this paper, we consider only simple graphs, i.e. finite undirected graphs without loops and multiple edges. A coloring
of a graph G is an arbitrary mapping c : V (G) −→ N, such that c(u) ≠ c(v) for any two adjacent vertices u and v of G.
Elements of the set


v∈V (G){c(v)} are said to be colors. A coloring c∗ of a graph G is a k-coloring if c∗

: V (G) −→ {1, . . . , k}.
The chromatic number of a graph G, denoted by χ(G), is theminimal number k, such that G has a k-coloring. For a given graph
G and a number k, the coloring problem is to decide whether χ(G) ≤ k or not. A similar k-colorability problem is to check
whether vertices of a given graph can be colored with at most k colors. Both problems can be naturally defined in another
way via partition into independent sets. An independent set of a graph is an arbitrary set of its pairwise non-adjacent vertices.
A graph coloring is a partition of vertex set of a given graph into independent sets, called color classes.

For a given graph G and a function w : V (G) −→ N, a pair (G, w) is called a weighted graph. For a weighted graph
(G, w), the weighted coloring problem is to find the smallest number k, denoted by χw(G), such that there is a function
c : V (G) −→ 2{1,2,...,k}, where |c(v)| = w(v) for any v ∈ V (G) and c(v1)∩ c(v2) = ∅ for any edge (v1, v2) of G. The number
χw(G) is called the weighted chromatic number of (G, w). For any graph G, χw′(G) = χ(G), where w′ maps every vertex to
1. So, the weighted coloring problem generalizes the coloring problem.

A class of simple graphs is called hereditary if it is closed under deletion of vertices. It is well-known that any hereditary
(and only hereditary) graph class X can be defined by a set of its forbidden induced subgraphs S. We write X = Free(S),
and the graphs in X are said to be S-free. If S = {G}, then we write ‘‘G-free’’ instead of ‘‘{G}-free’’.

There is a natural lower bound for the chromatic number of graphs. A clique in a graph is a subset of its pairwise adjacent
vertices. The size of a maximum clique of a graph G, denoted by ω(G), is called the clique number of G. Clearly, χ(G) ≥ ω(G).

✩ Some results of this paper was published at arXiv in D.S. Malyshev, O.O. Lobanova: The coloring problem for {P5, P5}-free graphs and {P5, Kp − e}-free
graphs is polynomial, arXiv:1503.02550.
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A graph is said to be perfect if the clique and the chromatic numbers are equal for its every induced subgraph, not necessarily
proper. The class of perfect graphs coincides with Free({C5, C5, C7, C7, . . .}), by The Strong Perfect Graph Theorem [5], see
notation for graphs in the next section. Sometimes, computing the clique number in polynomial time helps to determine
the chromatic number also in polynomial time [15,36]. More precisely, for graphs in [15,36], including perfect graphs,
determining the chromatic number can be polynomially reduced to computing the clique number and the clique number
can be found in polynomial time.

The computational complexity of the coloring, the weighted coloring, and the k-colorability problems and their
edge variants was intensively studied for families of the forms {Free(S)| S has a small number of graphs} and {Free(S)|
every graph in S is small} [1–3,7,8,13,14,17–39,41,42]. The computational complexity of the coloring problem was
completely determined for all the classes of the form Free({G}) [22]. Namely, if⊆i is the induced subgraph relation, then the
problem is polynomial-time solvable for Free({G}) whenever G⊆i P4 or G⊆i P3 + K1; otherwise it is NP-complete. A study
of forbidden pairs was also initiated in [22].

The following result shows some recent advances in classification of the complexity of the coloring problem for {G1,G2}-
free graphs [12]. Note that, by symmetry, the graphs G1 and G2 may be swapped in each of the subcases of the theorem.

Theorem 1. Let G1 and G2 be two fixed graphs. The coloring problem is NP-complete for Free({G1,G2}) if:

1. Cp ⊆i G1 for p ≥ 3, and Cq ⊆i G2 for q ≥ 3
2. K1,3 ⊆i G1, and K1,3 ⊆i G2 or K2 + O2 ⊆i G2 or Cr ⊆i G2 for r ≥ 4 or K4 ⊆i G2

3. G1 and G2 contain a spanning subgraph of a 2K2 as an induced subgraph
4. bull⊆i G1, and K1,4 ⊆i G2 or C4 + K1 ⊆i G2

5. C3 ⊆i G1, and K1,p ⊆i G2 for p ≥ 5
6. C3 ⊆i G1 and P22 ⊆i G2

7. Cp ⊆i G1 for p ≥ 5, and G2 contains a spanning subgraph of a 2K2 as an induced subgraph
8. Cp + K1 ⊆i G1 for p ∈ {3, 4} or Cq ⊆i G1 for q ≥ 6, and G2 contains a spanning subgraph of a 2K2 as an induced subgraph
9. K5 ⊆i G1 and P7 ⊆i G2

10. K6 ⊆i G1 and P6 ⊆i G2.

It is polynomial-time solvable for Free({G1,G2}) if:

1. G1 is an induced subgraph of a P4 or a P3 + K1

2. G1 ⊆i K1,3, and G2 ⊆i hammer or G2 ⊆i bull or G2 ⊆i P5
3. G1 ≠ K1,5 is a forest on at most six vertices or G1 = K1,3 + 3K1, and G2 ⊆i paw
4. G1 ⊆i sK2 or G1 ⊆i P5 + Os for s > 0, and G2 is a complete graph or G2 ⊆i hammer
5. G1 ⊆i P4 + K1 or G1 ⊆i P5, and G2 ⊆i P4 + K1 or G2 ⊆i P5
6. G1 ⊆i K2 + O2, and G2 ⊆i 2K2 + K1 or G2 ⊆i P3 + O2 or G2 ⊆i P3 + K2

7. G1 ⊆i K2 + O2, and G2 ⊆i 2K2 + K1 or G2 ⊆i P3 + O2 or G2 ⊆i P3 + P2
8. G1 ⊆i K2 + Os for s > 0 or G1 = P5, and G2 ⊆i K2 + Ot for t > 0
9. G1 ⊆ O4 and G2 ⊆ P3 + O2

10. G1 ⊆ P5, and G2 ⊆i C4 or G2 ⊆ P3 + O2.

A complete complexity dichotomy for the coloring problem is hard to obtain even in the following cases: (a) two forbidden
induced subgraphs, each on at most four vertices [24]; (b) two connected forbidden induced subgraphs, each on at
most five vertices [32]. For all but three cases either NP-completeness or polynomial-time solvability was shown in the
family of all the hereditary classes, defined by four-vertex forbidden induced structures [24]. The remaining three classes
Free({O4, C4}), Free({K1,3,O4}), Free({K1,3,O4, K2+O2}) are stubborn. A similar resultwas obtained in [32] for two connected
five-vertex forbidden induced fragments, where the number of open caseswas 13. A list of the open cases is presented below
(the numbers in parentheses show the quantities of such kind sets).

1. {K1,3,G}, where G ∈ {bull, butterfly} (2)
2. {fork, bull} (1)
3. {P5,G}, where G is an arbitrary connected five-vertex complement graph of the line graph of a forest with 3 leaves in

each connected component and G ∉ {K5, gem} (10).

Recently, the number of the open cases was reduced to 10 [18,36] by proving that the coloring problem can be solved
in polynomial time for Free({P5, P5}), Free({K1,3, bull}), Free({P5, P3 + O2}). In this paper, we reduce the number to eight by
showing that the coloring problem can be solved for {P5, P3 + P2}-free or {P5, Kp − e}-free graphs in polynomial time. More
generally, we prove polynomial-time solvability of the weighted coloring problem for {P5, P3 + P2}-free graphs.
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2. Notation

As usual, Pn, Cn,On, Kn stand for a simple path, chordless cycle, empty graph, complete graph on n vertices, respectively.
A graph Kp,q is a complete bipartite graph with p vertices in the first part and q vertices in the second. A graph Kp − e is
obtained from a Kp by deleting an arbitrary edge. The graph paw is obtained from a K1,3 by adding a new edge, incident
to degree two vertices. The graphs fork, gem, hammer, bull, butterfly have vertex set {v1, v2, v3, v4, v5}. Edge set for a
fork is {(v1, v2), (v1, v3), (v1, v4), (v4, v5)}, for a gem is {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v2, v3), (v3, v4), (v4, v5)}, for
a hammer is {(v1, v2), (v1, v3), (v2, v3), (v1, v4), (v4, v5)}, for a bull is {(v1, v2), (v1, v3), (v2, v3), (v1, v4), (v2, v5)}, for a
butterfly is {(v1, v2), (v1, v3), (v2, v3), (v1, v4), (v1, v5), (v4, v5)}.

A formula N(x) means the neighborhood of a vertex x of some graph. For a graph G and a set V ′
⊆ V (G),G(V ′) denotes

the subgraph of G, induced by V ′. A graph G1 + G2 is the disjoint union of graphs G1 and G2, having non-intersected sets of
vertices. A graph kG is the disjoint union of k copies of a graph G. A graph G is the complement graph of G.

3. Auxiliary results

3.1. Decomposition by clique separators and its applications to the weighted coloring problem

A clique separator in a graph is a clique whose removal increases the number of connected components. For example, a
graph Kp −e has a clique separator with p−2 vertices. If a graph G has a clique separator Q , then V (G)\Q can be partitioned
into non-empty subsets A and B, such that any element of A is not adjacent to any element of B. Let G1 , G(A ∪ Q ) and
G2 , G(B ∪ Q ), where the symbol , means the equality by definition. We repeat a similar decomposition until no further
decomposition is possible. The whole process can be represented by a binary decomposition tree whose leaves correspond
to some induced subgraphs of G without clique separators. There is an algorithm, having the computational complexity
O(mn), for constructing some binary decomposition tree for any graph with n vertices andm edges [40].

Lemma 1. For any weighted graph (G, w), χw(G) = max(χw(G1), χw(G2)).

Proof. Let c1 and c2 be optimalweighted colorings of (G1, w) and (G2, w), respectively. Let


v∈V (G1)
c1(v) , {col1, . . . , colp}

and


u∈V (G2)
c2(u) , {col′1, . . . , col

′
q}. Without loss of generality, q ≥ p, ∀v ∈ Q c1(v) = {coli(v)

1
, . . . , coli(v)

k
} and

c2(v) = {col′
i(v)
1

, . . . , col′
i(v)
k

}. Let us define a weighted coloring c of (G, w) as follows. For any x ∈ V (G2), c(x) , c2(x).

For any y ∈ V (G1) \V (G2) and i ∈ {1, . . . , p}, col′i ∈ c(y) if and only if coli ∈ c1(y). Hence, G can be colored in χw(G2) colors.
So, χw(G) = χw(G2). �

For a given graph, any maximal its induced subgraph without proper clique separators will be called a C-block of the
graph. Leaves of a decomposition tree of any graph correspond to its C-blocks. Let X be a class of graphs. The set of all
graphs whose every C-block belongs to X, denoted by [X]C , will be called the C-closure of X.

Theorem 2. If the (weighted) coloring problem can be solved in polynomial time for a hereditary class X, then it is so for [X]C .

Proof. Clearly, [X]C is hereditary. Every C-block of any graph G ∈ [X]C belongs to X. A decomposition tree for G can be
constructed in O(|V (G)| · |E(G)|) time. Hence, by the previous lemma, the (weighted) coloring problem can be polynomially
solved for [X]C . �

3.2. Modular decomposition and its applications to the weighted coloring problem

Let G be a graph. A set M ⊆ V (G) is a module in G if either x is adjacent to all the elements of M or to none of them for
each x ∈ V (G) \ M . A module in a graph is trivial if it contains only one vertex or all vertices of the graph; otherwise it is
non-trivial. A graph containing no non-trivial modules is said to be prime. For instance, a P4 is prime and a C4 is not prime.

Modular decomposition of graphs is an algorithmic technique, based on the following decomposition theorem due to T.
Gallai.

Theorem 3 ([11]). Let G be a graph with at least two vertices. Then, exactly one of the following conditions holds:
(1) G is not connected
(2) G is not connected
(3) G and G are connected, and there is a set V ′ with at least four elements and a unique partition P(G) of V (G), such that
(a) G(V ′) is a maximal prime induced subgraph of G
(b) for each V ′′

∈ P(G), V ′′ is a module (perhaps, trivial) in G and |V ′′
∩ V ′

| = 1.
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By Theorem 3, there are decomposition operations of three types. First, if G is not connected, then disconnect it into its
connected components G1, . . . ,Gp. Second, if G has connected components G1, . . . ,Gq, then decompose G into G1, . . . ,Gq.
At length, if G and G are connected, then its maximal modules are pairwise disjoint and they form the partition P(G). The
graph G is decomposed into the subgraphs in {G(V ′′)| V ′′

∈ P(G)}. Additionally, every element of P(G) is contracted to obtain
a graph, which is isomorphic to G(V ′). In other words, G(V ′) is the induced subgraph of G, obtained by taking one element
in each of the elements of P(G).

The decomposition process above can be represented by a uniquely determined tree, called the modular decomposition
tree T (G) of G. Its vertices are some induced subgraphs of G. For the first two decomposition operations, the vertex of T (G)
corresponding to G has the children corresponding to all the connected components of G or G, respectively. For the third
decomposition operation, the children correspond to all the graphs in {G(V ′′)| V ′′

∈ P(G)}. Moreover, we associate the graph
G(V ′) with the vertex of T (G) corresponding to G. A modular decomposition tree can be constructed in O(n + m)-time for
any graph with n vertices andm edges [6].

Clearly, for any function w, we have χw(G) = maxi(χw(Gi)), where G1, . . . ,Gp are the connected components of G.
Similarly, if G1, . . . ,Gq are the connected components of G, then χw(G) =

q
i=1 χw(Gi).

Lemma 2. Let (G, w) be a weighted graph and P(G) be its modular decomposition. Then χw(G) = χw∗(G(V ′)), where w∗(v) =

χw(G(V ′′)) for each v ∈ V ′, V ′′
∈ P(G), {v} = V ′

∩ V ′′.

Proof. Contraction of any V ′′
∈ P(G) to v and assignment w(v) = χw(G(V ′′)) produce a weighted subgraph of G whose

weighted chromatic number is at most χw(G). For the subgraph, every element of N(v) cannot have a color coinciding with
one of the χw(G(V ′′)) colors of v. Hence, the chromatic number of the subgraph is at least χw(G), i.e. it is equal to χw(G).
Therefore, χw(G) = χw∗(G(V ′)). �

Let [X]P be the set of all graphs whose every prime induced subgraph belongs toX. Clearly, [X]P is hereditary whenever
X is hereditary. The sums


v∈V (G) w(v) and


v∈V ′ w∗(v) are equal. The theorem below follows from the previous lemma

and the possibility for constructing modular decomposition tree in linear time [6].

Theorem 4. If the weighted coloring problem can be solved for a hereditary class X in polynomial time, then it is so for [X]P .

3.3. Bipartite Ramsey Theorem

The well-known Ramsey Theorem states that any graph has a sufficiently large independent set or a sufficiently large
clique. There is its analogue for bipartite graphs. A matching in a graph is a subset of pairwise non-adjacent edges. The
following result is a corollary of Theorem 2 from [10] for H = Ks,s.

Lemma 3. Any bipartite graph G having parts A and B, each on n > ss+1 vertices, contains subsets A′
⊆ A, B′

⊆ B, |A′
| = |B′

| =

⌊( n
s )

1
s ⌋, such that A′

∪ B′ induces a matching or G(A′
∪ B′) is complete bipartite.

3.4. Connected {P5, Kp − e}-free graphs without clique separators

Lemma 4. Let G be a connected {P5, Kp − e}-free graph (p ≥ 3) without clique separators, and let Q be its maximum clique.
Then the graph G is O3-free or |Q | ≤ (p + 1)p+2(p − 2).

Proof. Assume that |Q | > (p + 1)p+2(p − 2). Let N(Q ) , {y ∉ Q | ∃x ∈ Q , (y, x) ∈ E(G)}. Let us consider the bipartite
subgraph H of G, induced by all the edges between Q and N(Q ). Every element of N(Q ) is adjacent to at most p − 3
elements of Q , as G is Kp − e-free and Q is maximum. Every element of Q has a neighbor in N(Q ), as G has no clique
separators. Hence, H has a matching with at least ⌊

|Q |

p−2⌋ edges. Let G′ be a subgraph of H , induced by all vertices of some

maximum matching of H . Clearly, the graph G′ is Kp−2,p−2-free and each of its parts has at least ⌊
|Q |

p−2⌋ vertices. Clearly,

⌊
|Q |

p−2⌋ > (p+1)p+2. LetN1 , {u1, u2, . . . , uk} be amaximum subset of Q ∩V (G′), such thatN(Q ) has vertices v1, v2, . . . , vk,

where vi ∈ N(ui) \


j≠i N(uj) for each i. By the previous lemma for s = p + 1, k ≥ ⌊( 1
p+1⌊

|Q |

p−2⌋)
1

p+1 ⌋ ≥ p + 1 ≥ 4. The set
N2 , {v1, v2, . . . , vk} must be independent or a clique. Indeed, G′(N2) must be P3-free; otherwise some vertices vi1 , vi2 , vi3 ,
the vertex ui1 , and an arbitrary element of N1 \ {ui1 , ui2 , ui3} induce a P5 in G. In other words, G′(N2) is the disjoint union
of complete graphs. If G′(N2) is not complete and not empty, simultaneously, then there are vertices vj1 , vj2 , vj3 , such that
(vj1 , vj2) ∈ E(G), (vj1 , vj3) ∉ E(G), (vj2 , vj3) ∉ E(G). The vertices vj1 , vj2 , uj2 , uj3 , vj3 induce a P5 in G.

Suppose that N2 is independent. Then, there is no vertex vi having a neighbor w ∉ Q ∪ N(Q ). Otherwise, to avoid
an induced P5, w must be adjacent to all the vertices of N2. Hence, v1, w, v2, u1, u3 induce a P5 in G. Hence, for each i,
each neighbor of vi that is outside Q must belong to N(Q ). Let wi ∈ N(Q ) be a neighbor of vi. There are three non-
neighbors uk1 , uk2 , uk3 of wi, as G′ is Kp−2,p−2-free. Let u′

∈ Q \ {ui} be a neighbor of wi. Then, (wi, vk1) and (wi, vk2)
are edges of G; otherwise vi, wi, u′, uk1 , vk1 or vi, wi, u′, uk2 , vk2 induce a P5. But, the vertices vk2 , wi, vk1 , uk1 , uk3 induce
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a P5. Hence, N(wi) ∩ Q = {ui}. Therefore, any neighbor of vi that lies outside Q must be adjacent to ui and non-
adjacent to u1, . . . , ui−1, ui+1, . . . , uk, simultaneously. Moreover, it is also true for any vertex of the connected component
of G(N(ui) \ Q ) containing vi. Assume that wi has a neighbor v∗

∈ N(Q ), non-adjacent to ui. Clearly, (vi, v
∗) ∉ E(G). As N1

is maximum, there is a number i∗, such that i∗ ≠ i and (v∗, ui∗) ∈ E(G). As G′ is Kp−2,p−2-free and k ≥ p + 1, there is a
vertex ui∗∗ , such that i∗∗

∉ {i, i∗} and (ui∗∗ , v∗) ∉ E(G). The vertices vi, wi, v
∗, ui∗ , ui∗∗ induce a P5 in G. Therefore, none of

the vertices of the connected component of G(N(ui) \Q ) containing vi has a neighbor in N(Q ), non-adjacent to ui. Hence, Q
is a clique separator.

Suppose that N2 is a clique. Let Q ′ be a maximal clique of G that includes N2. Suppose v ∈ N(Q ) \ Q ′. Since N1 is
maximum, v has neighbors in N1, say, u1, . . . , uq. As G′ is Kp−2,p−2-free, q ≤ p−3. To avoid a P5, induced by v, u1, a vertex in
{uq+1, . . . , uk} and some two vertices in {vq+1, . . . , vk}, non-adjacent to v, v must be adjacent to at least k − q − 1 vertices
among vq+1, . . . , vk. Suppose that (v, vk−1) ∈ E(G). The vertex v must be adjacent to at least q−1 elements of {v1, . . . , vq};
otherwise there are two vertices vi′ , vi′′ in {v1, . . . , vq} \ N(v), such that vi′ , vk−1, v, ui′′ , uk induce a P5 in G. Hence, v is
adjacent to at least k − 2 vertices of N2. Hence, to avoid an induced Kp − e, v ∈ Q ′. As Q ′ is maximal, v cannot exist,
i.e. Q ′

= N(Q ). Moreover, V (G) = Q ∪N(Q ), since N(Q ) is a clique separator otherwise. Hence, G is O3-free, as Q and N(Q )
are cliques. �

3.5. Irreducible {P5, P3 + P2}-free graphs

A connected prime graph without clique separators is said to be irreducible.
Clearly, any {P5, P3 + P2, C5}-free graph is perfect, by The Strong Perfect Graph Theorem. Let G be an irreducible

{P5, P3 + P2}-free graph containing an induced C5 = (v1, v2, v3, v4, v5). We associate the following notation with G, taking
the indices modulo 5 throughout this section:

• Vi , {x ∉ V (C5)| N(x) ∩ V (C5) = {vi−1, vi+1}},
• V ′

i , {x ∉ V (C5)| N(x) ∩ V (C5) = {vi−1, vi, vi+1}},
• V ′′

i , {x ∉ V (C5)| N(x) ∩ V (C5) = V (C5) \ {vi}},
• V ′′′

i , {x ∉ V (C5)| N(x) ∩ V (C5) = {vi−2, vi, vi+2}},
• V ′′′′ be the set of all the vertices, adjacent to all the vertices of the 5-cycle.

The following statement is true, as G is P5-free.

Lemma 5. Every element of V (G) \ V (C5), having a neighbor on the 5-cycle, belongs to
5

i=1(Vi ∪ V ′

i ∪ V ′′

i ∪ V ′′′

i ) ∪ V ′′′′.

Lemma 6. The following statements are true:
(1) Every element of V ′′′′ is adjacent to every element of

5
i=1(Vi ∪ V ′′

i ∪ V ′′′

i ).
(2) The set V ′′′′ is a clique. For each i, Vi is independent and V ′′

i is a clique.
(3) (a) If Vi ≠ ∅, then every element of Vi is adjacent to every element of Vi−1 ∪ Vi+1 ∪ V ′

i ∪ V ′′

i−2 ∪ V ′′

i+2, not adjacent to any
element of V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i , and V ′

i−1 ∪ V ′

i+1 ∪ V ′′

i−1 ∪ V ′′

i+1 = ∅.
(b) For each i, every element of V ′

i is adjacent to every element of V ′

i−1 ∪ V ′

i+1 ∪ V ′′

i−2 ∪ V ′′

i ∪ V ′′

i+2, every element of V ′′

i is
adjacent to every element of V ′′

i−2 ∪ V ′′

i+2.
(c) For each i, any two non-adjacent elements of V ′

i have the same sets of neighbors in V ′

i ∪ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i−1 ∪ V ′′

i+1.
(4) (a) For each i, every element of Vi is adjacent to atmost one element of Vi+2∪Vi−2. Moreover, for any i and j ∈ {i−2, i+2},

there are no two elements of Vi having neighbors in Vj.
(b) If an element of Vi and an element of Vj are adjacent, where j ∈ {i − 2, i + 2}, then V i+j

2
∪

5
s=1(V

′
s ∪ V ′′

s ) = ∅.

(5) For each i, none of the elements of Vi ∪ V ′

i has a neighbor outside
5

i=1 N(vi).
(6) For each i, every element of V ′′

i that has a neighbor outside
5

i=1 N(vi) is adjacent to every element of V ′′

i−1 ∪ V ′′

i+1.

Proof. (1) Let a ∈ V ′′′′ and b ∈
5

i=1(Vi ∪ V ′′

i ∪ V ′′′

i ) be non-adjacent vertices. If b ∈ Vi, then a, b, vi−1, vi, vi+1 induce a
P3 + P2. If b ∈ V ′′

i , then a, b, vi−1, vi−2, vi+1 induce a P3 + P2. If b ∈ V ′′′

i , then a, b, vi, vi+1, vi+2 induce a P3 + P2.
(2) The set V ′′′′ is a clique; otherwise any two non-adjacent its vertices, v1, v2, v4 induce a P3 + P2. For each i, the set Vi is

independent; otherwise any two adjacent its vertices, vi−1, vi, vi+1 induce a P3 + P2. For each i, the set V ′′

i is independent;
otherwise any two adjacent its vertices, vi−1, vi, vi+1 induce a P3 + P2.

(3) Let a1 be an element of Vi. It is adjacent to every element of Vi−1∪Vi+1∪V ′

i−1∪V ′

i+1; otherwiseG contains a P5, induced
by a1, some element of the set, and vi−1, vi−2, vi+2 or vi+1, vi+2, vi−2. Hence, V ′

i−1 ∪ V ′

i+1 must be empty; otherwise some
its element, a1, vi−1, vi, vi+1 induce a P3 + P2. The vertex a1 is adjacent to every element of V ′

i ∪ V ′′

i−2 ∪ V ′′

i+2; otherwise
some its element, a1, vi−1, vi, vi+1 induce a P3 + P2. If V ′′

i−1 ∪ V ′′

i+1 has an element b1, then (a1, b1) ∈ E(G); otherwise
a1, vi+1, vi, b1, vi−2 or a1, vi−1, vi, b1, vi+2 induce a P5. Hence, a1, b1, vi−1, vi, vi+1 induce a P3 + P2. If a1 has a neighbor
b2 ∈ V ′′

i , then a1, b2, vi−1, vi, vi+1 induce a P3 + P2. If a1 has a neighbor b3 ∈ V ′

i−2 ∪ V ′

i+2, then vi+2, b3, a1, vi−1, vi or
vi−2, b3, a1, vi+1, vi induce a P5.
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Let a2 be an element of V ′

i . It is adjacent to every element of V ′

i−1 ∪ V ′

i+1; otherwise G contains a P5, induced by a2, some
element of the set, and vi−1, vi−2, vi+2 or vi−2, vi+1, vi+2. The vertex a2 is adjacent to every element of V ′′

i ; otherwise some
element of V ′′

i , a2, vi−1, vi, vi+1 induce a P3 + P2. The vertex a2 is adjacent to every element of V ′′

i−2 ∪ V ′′

i+2; otherwise some
its element, a2, vi, vi−2, vi+2 induce a P5.

Every element of V ′′

i is adjacent to every element of V ′′

i−2∪V ′′

i+2; otherwise an element of V ′′

i , and an element of V ′′

i−2∪V ′′

i+2,
and vi−1, vi+1, vi+2 or vi−1, vi−2, vi+1 induce a P3 + P2.

Let a′ and a′′ be arbitrary non-adjacent vertices ofV ′

i , b
′ be an element ofV ′

i ∪V ′

i−2∪V ′

i+2∪V ′′

i−1∪V ′′

i+1, adjacent to a
′ and not

adjacent to a′′. If b′
∈ V ′

i , then a′, a′′, b′, vi−1, vi+1 induce a P3 + P2. If b′
∈ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i−1 ∪ V ′′

i+1, then a′′, vi+1, a′, b′, vi−2
or a′′, vi−1, a′, b′, vi+2 induce a P5.

(4) Let v′ be an arbitrary vertex of Vi. Without loss of generality, let it be adjacent to u′
∈ Vi−2 and u′′

∈ Vi−2 ∪ Vi+2. If
u′′

∈ Vi−2, then u′ and u′′ are not adjacent, by the second part of this lemma. Hence, v′, u′, u′′, vi−1, vi+2 induce a P3 + P2. If
u′′

∈ Vi+2, then (u′, u′′) ∈ E(G), by this lemma (part 3-a), and v′, u′, u′′, vi−1, vi−2 induce a P3 + P2.
If elements v∗ and v∗∗ of Vi have neighbors u∗, u∗∗ in Vj, respectively, then (v∗, u∗∗) and (v∗∗, u∗) are not edges of G, by

the previous sentences. By Lemma 6 (part 2), (v∗, v∗∗) and (u∗, u∗∗) are not edges of G. Therefore, v∗, v∗∗, u∗, u∗∗, and vi−1
or vi+1 induce a P5 in G.

Letw1 andw2 be arbitrary adjacent elements of Vi and Vj, respectively, andw3 ∈ V i+j
2

∪
5

s=1(V
′
s ∪V ′′

s ). Ifw3 ∈ V i+j
2
, then,

by Lemma 6 (part 3-a), (w3, w2) ∈ E(G) and (w3, w1) ∈ E(G). Then vi, v i+j
2

, w1, w2, w3 induce a P3 + P2. If w3 ∈
5

i=1 V
′

i ,
then w3 ∈ V ′

i or w3 ∈ V ′

j , by Lemma 6 (part 3-a). By Lemma 6 (part 3-a), w3 is adjacent to w1 and not adjacent to w2 in the
first case, and it is adjacent to w2 and not adjacent to w1 in the second. Then vi, w3, w1, w2, v i+j

2 +2 or vj, w3, w2, w1, vj+2

induce a P5. If w3 ∈
5

i=1 V
′′

i , then w3 ∈ V ′′

i or w3 ∈ V ′′

j , by Lemma 6 (part 3-a). By Lemma 6 (part 3-a), w3 is
adjacent to w2 and not adjacent to w1 in the first case, and it is adjacent to w1 and not adjacent to w2 in the second. Then
{w1, w2, w3} ∪ N(w1) ∩ N(w3) ∩ V (C5) or {w1, w2, w3} ∪ N(w2) ∩ N(w3) ∩ V (C5) induce a P3 + P2.

(5) For each i, any element of Vi ∪ V ′

i has no neighbor outside
5

i=1 N(vi), as G contains an induced P5 otherwise.
(6) Let x be a vertex in V ′′

i that has a neighbor y ∉
5

i=1 N(vi), let z be an arbitrary element of V ′′

i−1 ∪ V ′′

i+1. If
(x, z) ∉ E(G), (y, z) ∉ E(G), then y, x, vi−2, z, vi or y, x, vi+2, z, vi induce a P5. If (x, z) ∉ E(G), (y, z) ∈ E(G), then
x, y, z, vi−2, vi+2 induce a P3 + P2. �

Lemma 7. If
5

j=1 V
′′′

j = ∅, then |V (G)| ≤ 15 or G is O3-free.

Proof. Let V̂ be the subset of all the elements of
5

i=1 N(vi) having at least one neighbor outside
5

i=1 N(vi). By Lemma 6
(parts 2,3-b,6), V̂ ∩

5
i=1 V

′′

i is a clique. This fact and Lemma 6 (parts 1,2,5) imply that V̂ is a clique. This set must be empty;
otherwise it is a clique separator of G.

Let Vi be non-empty for some i, and let v be an arbitrary element of Vi. The set {v, vi} is not a module in G if and only if
v has a neighbor in Vi+2 ∪ Vi−2, by Lemma 6 (parts 1,2,3-a,5). Hence, |Vi| ≤ 2, by Lemma 6 (parts 1,2,3-a,4-a,5); otherwise
some two of its elements constitute a module in G. Additionally,

5
s=1(V

′
s ∪V ′′

s ) = ∅, by Lemma 6 (part 4-b). By the previous
lemma (part 1), V ′′′′ must be empty; otherwise V (G) \ V ′′′′ is a non-trivial module. Hence, |V (G)| ≤ 5 +

5
j=1 |Vj| ≤ 15.

Suppose that
5

i=1 Vi = ∅. One may show that V ′

i is a clique for each i; otherwise any two non-adjacent its elements
constitute a module, by Lemma 6 (parts 1,3-b,3-c,5). Suppose that G has three pairwise non-adjacent vertices. None of them
belongs to V (C5), by Lemma 6 (parts 2 and 3-b) and the fact that V ′

i is a clique for each i. If one of them belongs to V ′′′′, then
the second and third must belong to V ′

i and to V ′

i+2 for some i, by Lemma 6 (parts 1,2,3-b) and the fact that V ′

i is a clique
for each i. The graph G has a P5, induced by the three vertices and vi, vi+2. Suppose that none of the three vertices belongs
to V ′′′′. Clearly, at least one of them must belong to

5
s=1 V

′
s , by Lemma 6 (parts 2 and 3-b). Suppose that it belongs to V ′

i′ .
Then, the other two must belong to V ′

i′−2 ∪ V ′

i′+2 ∪ V ′′

i′−1 ∪ V ′′

i′+1, by Lemma 6 (part 3-b) and the fact that V ′

i is a clique for
each i. Hence, by Lemma 6 (parts 2 and 3-b) and the fact, one of them belongs to V ′

i′+2, the second to V ′′

i′+1 or one belongs to
V ′

i′−2, the second to V ′′

i′−1. Hence, a vertex in V ′

i , a vertex in V ′

i′+2, a vertex in V ′′

i′+1, vi′ , and vi′+2 or vi′−2 induce a P5. We have
a contradiction with our assumption. �

Lemma 8. Let V ′′′

i ≠ ∅. Then the following statements are true:
1. |V ′′′

i | = 1, V ′′′

i−1 = V ′′′

i+1 = ∅,
5

j=1 V
′

j = ∅, and
5

j=1,j≠i V
′′

j = ∅.
2. The element of V ′′′

i is adjacent to every element of Vi. Every element of (


j=1,j≠i Vi) ∪ V ′′

i ∪ V ′′′

i−2 ∪ V ′′′

i+2 is not adjacent to
the element of V ′′′

i .
3. If V ′′

i ≠ ∅, then
5

j=1,j≠i Vj = ∅, and every element of V ′′

i ∪ V ′′′

i has no neighbor outside
5

i=1 N(vi).

Proof. Let a be an arbitrary element of V ′′′

i .
(1) If there is a vertex b1 ∈ V ′′′

i \ {a}, then a and b1 must be adjacent; otherwise vi, vi+2, vi−2, a, b1 induce a P3 + P2.
Then, vi, vi+1, vi+2, a, b1 induce a P3 + P2. If there is a vertex b2 ∈ V ′′′

i−1 ∪ V ′′′

i+1, then a and b2 are not adjacent; otherwise
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vi, vi+1, vi+2, a, b2 or vi, vi−1, vi−2, a, b2 induce a P3 + P2. Then, vi−2, a, vi, vi+1, b2 or vi+2, a, vi, vi−1, b2 induce a P5. Assume
that there is a vertex b3 ∈

5
j=1 V

′

j ∪
5

j=1,j≠i V
′′

j . If b3 ∈ V ′

i−2 ∪ V ′

i+2 and (a, b3) ∉ E(G), then b3, vi−2, a, vi, vi+1 or
b3, vi+2, a, vi, vi−1 induce a P5. If b3 ∈ V ′′

i−2 ∪ V ′′

i+2 and (a, b3) ∉ E(G), then a, b3, vi, vi+1, vi+2 or a, b3, vi, vi−1, vi−2 induce a
P3 + P2. If b3 ∈ V ′

i−2 ∪ V ′

i+2 ∪ V ′′

i−2 ∪ V ′′

i+2 and (a, b3) ∈ E(G), then b3, a, vi, vi+1, vi+2 or b3, a, vi, vi−1, vi−2 induce a P3 + P2.
If b3 ∈ V ′

i−1 ∪ V ′

i+1 ∪ V ′′

i−1 ∪ V ′′

i+1 and (a, b3) ∉ E(G), then a, b3, vi, vi−1, vi−2 or a, b3, vi, vi+1, vi+2 induce a P3 + P2. If
b3 ∈ V ′

i−1 ∪ V ′

i+1 and (a, b3) ∈ E(G), then vi−1, b3, a, vi+2, vi+1 or vi+1, b3, a, vi, vi−2, vi−1 induce a P5. If b3 ∈ V ′′

i−1 ∪ V ′′

i+1

and (a, b3) ∈ E(G), then a, b3, vi, vi+1, vi+2 or a, b3, vi, vi+1, vi+2 induce a P3 + P2. If b3 ∈ V ′

i and (a, b3) ∉ E(G), then
vi−1, b3, vi+1, vi+2, a induce a P5. If b3 ∈ V ′

i and (a, b3) ∈ E(G), then a, b3, vi, vi+1, vi+2 induce a P3 + P2.
(2) If there is an element b′

∈ Vi, non-adjacent to a, then b′, vi+1, vi, a, vi−2 induce a P5. Let a vertex b′′ belong to
(


j=1,j≠i Vi) ∪ V ′′

i ∪ V ′′′

i−2 ∪ V ′′′

i+2. If b
′′

∈ Vi−1 ∪ Vi+1 ∪ V ′′

i ∪ V ′′′

i−2 ∪ V ′′′

i+2 and (a, b′′) ∈ E(G), then a, b′′, vi, vi+1, vi+2 or
a, b′′, vi, vi−1, vi−2 induce a P3 + P2. If b′′

∈ Vi−2 ∪ Vi+2 and (a, b′′) ∈ E(G), then a, b′′, vi+1, vi+2, vi−2 or a, b, vi−1, vi−2, vi+2

induce a P3 + P2.
(3) Let b′′′ be an arbitrary element of V ′′

i , and let b∗ be an arbitrary element of
5

j=1,j≠i Vj. Clearly, b∗
∈ Vi−2 ∪ Vi+2, by

Lemma 6 (part 3-a). By Lemma 8 (part 2), (a, b∗) ∉ E(G) and (a, b′′′) ∉ E(G). Then, (b′′′, b∗) ∈ E(G), by Lemma 6 (part
3-a). Hence, b∗, b′′′, vi−2, a, vi or b∗, b′′′, vi+2, a, vi induce a P5. If c ∈ (N(a) ∪ N(b′′′)) \

5
i=1 N(vi), then c ∈ N(a) ∩ N(b′′′);

otherwise c, a, vi, vi+1, b′′′ or c, b′′′, vi+1, vi, a induce a P5. Then, a, c, b′′′, vi−2, vi+2 induce a P3 + P2. �

Lemma 9. If
5

j=1 V
′′′

j ≠ ∅, then G has at most 23 vertices.

Proof. Assume V ′′′

i ≠ ∅. Suppose that V ′′

i ≠ ∅. Hence,
5

j=1,j≠i V
′′′

j =
5

j=1,j≠i V
′′

j =
5

j=1 V
′

j =
5

j=1,j≠i Vj = ∅, by Lemma 8
(parts 1 and 3). The set of all the vertices having a neighbor outside

5
i=1 N(vi) must be empty. Otherwise, by Lemma 6

(parts 2,5) and Lemma 8 (part 3), any vertex of this type must belong to V ′′′′ and V ′′′′ is a clique separator in G. The set Vi has
at most one element; otherwise it is a non-trivial module, by Lemma 6 (parts 1,2,3-a) and Lemma 8 (part 2). Similarly, V ′′

i
has at most one element; otherwise it is a non-trivial module of G. Moreover, V ′′′′

= ∅; otherwise V (G) \V ′′′′ is a non-trivial
module in G, by Lemma 6 (part 1). Hence, |V (G)| ≤ 5 + |Vi| + |V ′′

i | + |V ′′′

i | ≤ 8.
Suppose that V ′′

i = ∅ and V ′′′

i−2 = V ′′′

i+2 = ∅. Hence,
5

j=1,j≠i V
′′′

j =
5

j=1 V
′′

j =
5

j=1 V
′

j = ∅, by Lemma 8 (part 1). The
set of all the vertices having a neighbor outside

5
i=1 N(vi) is a clique separator, by Lemma 6 (parts 2,5) and Lemma 8 (part

1). Hence, this set must be empty. Clearly, V ′′′′
= ∅; otherwise V (G) \ V ′′′′ is a non-trivial module in G, by Lemma 6 (part

1). For each j, Vj contains at most three elements; otherwise some its two vertices constitute a non-trivial module in G, by
Lemma 6 (parts 1,2,3-a,4-a,5) and Lemma 8 (part 2). Hence, |V (G)| ≤ 5 + |V ′′′

i | +
5

j=1 |Vj| ≤ 21, by Lemma 8 (part 1).
Suppose that V ′′

i = ∅ and |V ′′′

i−2|+ |V ′′′

i+2| > 0. Hence, |V ′′′

i−2|+ |V ′′′

i+2| = 1, by Lemma 8 (part 1). Without loss of generality,
|V ′′′

i−2| = 1. Hence, V ′′′

i−1 = V ′′′

i+1 = V ′′′

i+2 =
5

j=1 V
′′

j =
5

j=1 V
′

j = ∅, by Lemma 8 (part 1). For each j, Vj contains at most
three elements; otherwise some two of its vertices constitute a non-trivial module in G, by Lemma 6 (parts 1,2,3-a,4-a,5)
and Lemma 8 (part 2). Let a and b be the elements of V ′′′

i and V ′′′

i−2, respectively. Then, (a, b) ∉ E(G), by Lemma 8 (part 2), and
N(a)\

5
i=1 N(vi) = N(b)\

5
i=1 N(vi); otherwise an element ofN(a)\N(b) or an element ofN(b)\N(a), and a, b, vi+2, vi+1

induce a P5. If N(a) \
5

i=1 N(vi) is empty, then V ′′′′ is empty; otherwise it is a clique separator in G or V (G) \ V ′′′′ is a non-
trivial module, by Lemma 6 (parts 1,2,5). Hence, |V (G)| ≤ 5+|V ′′′

i |+|V ′′′

i−2|+
5

j=1 |Vj| ≤ 22. Suppose thatN(a)\
5

i=1 N(vi)

is not empty. None of the elements of N(a) \
5

i=1 N(vi) is adjacent to a vertex in V (G) \ (
5

i=1 N(vi) ∪ N(a)); otherwise
an element of V (G) \ (

5
i=1 N(vi) ∪ N(a)), an element of N(a) \

5
i=1 N(vi), a, vi+2, vi+1 induce a P5. Every element of V ′′′′

is adjacent to every element of N(a) \
5

i=1 N(vi); otherwise an element of V ′′′′, an element of N(a) \
5

i=1 N(vi), a, b, vi

induce a P3 + P2 (see Lemma 6, part 1). Hence, V ′′′′ must be empty; otherwise V (G) \ V ′′′′ is a non-trivial module or V ′′′′ is
a clique separator, by Lemma 6 (parts 1,2). Moreover, |N(a) \

5
i=1 N(vi)| ≤ 1, as N(a) \

5
i=1 N(vi) is a module in G, by

Lemma 6 (part 6). Hence, |V (G)| ≤ 5 + |V ′′′

i | + |V ′′′

i−2| +
5

j=1 |Vj| + 1 ≤ 23. �

3.6. Some complexity results for the weighted coloring problem

Lemma 10. The weighted coloring problem for an O3-free graph (G, w) can be solved in O((


v∈V (G) w(v))3) time.

Proof. First, construct an unweighted graph G′ on (


v∈V (G) w(v))3 vertices as follows. For each v ∈ V (G), V ′
v is a clique of

G′ on w(v) vertices. A vertex of V ′
v and a vertex of V ′

u are adjacent if and only if (v, u) ∈ E(G). Clearly, χw(G) = χ(G′) and
G′ is O3-free. Moreover, χ(G′) = |V (G′)| − π(G′), where π(G′) is the size of a maximum matching of G′. This size can be
computed in O(|V (G′)|3) time [9]. �

Lemma 11. For each fixed C, theweighted coloring problem can be solved in time, bounded by a polynomial on the sum of weights
in class of all graphs having at most C vertices.
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Proof. Clearly, the weighted coloring problem for any weighted graph (G, w) on at most C vertices can be solved in
O((


v∈V (G) w(v))O(1)) time, where a hidden exponent constant depends on C . �

4. Main result

Theorem 5. For each fixed p, the coloring problem can be solved in polynomial time for Free({P5, Kp − e}). The weighted coloring
problem can be solved in polynomial time for Free({P5, P3 + P2}).

Proof. It is known that the inequality χ(G) ≤ 4w(G)−1 holds for any P5-free graph G [16]. Moreover, for each fixed k, the
k-colorability problem can be solved in polynomial time for P5-free graphs [17]. Hence, by these results, Theorem 2 and
Lemma 4, the coloring problem for {P5, Kp −e}-free graphs can be polynomially reduced to the same problem for O3-graphs.
The coloring problem for O3-free graphs is polynomially equivalent to determining the size of maximum matchings in the
complement graphs. Hence, for each fixed p, the coloring problem can be solved in polynomial time for Free({P5, Kp−e}). The
weighted coloring problem can be polynomially solved in the class of perfect graphs [15]. Perfect graphs can be recognized
in polynomial time [4]. Any step of the modular decomposition technique keeps the sum of weights. Hence, by these
facts, Theorems 2 and 3, and Lemmas 7 and 9–11, the weighted coloring problem can be solved in polynomial time for
Free({P5, P3 + P2}). �
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