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Abstract—We discuss applications of generating functions for colored graphs to asymptotic
expansions of matrix integrals. The described technique provides an asymptotic expansion
of the Kontsevich integral. We prove that this expansion is a refinement of the Kontsevich
expansion, which is the sum over the set of classes of isomorphic ribbon graphs. This yields a
proof of Kontsevich’s results that is independent of the Feynman graph technique.
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1. INTRODUCTION

In this article we discuss two different asymptotic expansions of matrix integrals. The original
approach using the so-called Feynman diagram technique, which is described, for instance, in [3],
leads to sums over isomorphism classes of ribbon graphs (see [4]). Asymptotic expansions of more
general Gaussian integrals are sums over isomorphism classes of colored graphs without ribbon
structure. Here we derive the former expansion from the latter one. This provides an independent
proof of the expansion used by Kontsevich in [4]. It might be very interesting to compare the
algebra arising in these two approaches. The asymptotic expansion using ribbon graphs in [4] leads
to the tau function of the KdV hierarchy, while the sums over colored graphs satisfy simple partial
differential equations that generalize the Burgers equation (see [1] or [2] for details).

We describe the general approach using colored graphs in Section 2. In Section 3 we specialize
the results of Section 2 for the matrix integral discussed in [4]. In this section we also derive the
expansion over ribbon graphs. The proof is based on simple topological considerations, which are
contained in Section 4. In the last Section 5 we give an explicit calculation of the first term of the
expansion using colored graphs.

2. COLORED GRAPHS

The notion of colored graph was introduced in [1]. Informally speaking, a colored graph is a
combinatorial object that may be constructed using a finite number of components of the following
two types.

1. Vertices having a finite number of tails (i.e., half-edges) each of which is colored with one of
r ≥ 1 given colors. Denote the color set by Ω; in this section it would be convenient to number the
colors and assume that

Ω = {1, . . . , r}. (2.1)

For a vertex v we define its valency multi-index ν(v) = (n1, . . . , nr), where ni ≥ 0 is the number of
tails of color i adjacent to v. The total valency of the vertex is defined as |ν(v)| =

∑
ni. Generally,

colored graphs are by definition weighted graphs; this means that each vertex v is assigned a
nonnegative integer g(v), which is called the genus of the vertex v. However, sometimes there is no
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COLORED GRAPHS AND MATRIX INTEGRALS 3

need to consider weighted graphs; in this case we may simply assume that the genera of all vertices
are zero. Corresponding simplifications of our notations are described in Remark 2.1.

2. In order to connect two tails of colors i and j into one edge, we need a component of the
second type, which we will call an (ij)-connector. So connectors may be considered as two-valent
vertices of a different type, but probably it is more natural to think of them as “middles of edges.”

So by definition a colored graph Γ is any finite connected graph constructed using the described
vertices and connectors; some tails may remain free, but each connector must be adjacent to exactly
two half-edges. For a colored graph Γ we define its multi-index of tails N(Γ) = (N1, . . . , Nr), where
Ni ≥ 0 is the number of free tails of color i. The vertex set of Γ is denoted by V (Γ) or simply by V
if no confusion is possible, and the edge set of Γ is denoted by E(Γ) or simply by E. The genus of
a connected graph Γ is defined as

g(Γ) = b1(Γ) +
∑

v∈V (Γ)

g(v), (2.2)

where b1(Γ) is the first Betti number of the graph Γ.
Next consider a set of independent variables am,N for all nonnegative integers m and all multi-

indices N = (n1, . . . , nr) with all ni ≥ 0 and a symmetric r × r matrix Σ = (σij). The variables
am,N may be considered as coefficients of a formal Taylor power series expansion

U(Y, �) =
∑

m,N

am,N
Y N

N !
�

m−1 ∈ 1
�

C[[y1, . . . , yr, �]], (2.3)

where Y = (y1, . . . , yr), Y N = yn1
1 . . . ynr

r , and N ! = n1! . . . nr!. We will also use the following
notations: the multi-index (0, . . . , 0, 1, 0, . . . , 0) (the ith component is 1 and all the other components
are zero) will be denoted by {i}; the multi-index {i}+ {j} will be denoted by {ij}; the multi-index
{i} + {j} + {k} will be denoted by {ijk}, and so on.

Consider the expansion

U(Y, �) =
∑

m

Um(Y )�m−1 (2.4)

and define the gradient formal power series vector

F (Y ) = ∇Y U0(Y ) =
(

∂U0(Y )
∂y1

, . . . ,
∂U0(Y )

∂yr

)

(2.5)

and the Hessian power series matrix

H(Y ) = ∇Y F (Y ), H(Y )ij =
∂2U0(Y )
∂yi∂yj

. (2.6)

Consider the following generating power series:

Ψ({am,N}, Y,Σ, �) =
∑

All colored
graphs Γ

Y N(Γ)
�

g(Γ)−1

|AutΓ|
∏

v∈V (Γ)

ag(v),ν(v)

∏

e∈E(Γ)

σij (2.7)

and

P({am,N},Σ, �) =
∑

All stable colored
graphs Γ without tails

�
g(Γ)−1

|Aut Γ|
∏

v∈V (Γ)

ag(v),ν(v)

∏

e∈E(Γ)

σij. (2.8)
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4 I.V. ARTAMKIN

In the last products in (2.7) and (2.8), the indices i and j are the colors of the connector formed by
the edge e.

Recall that a graph is called stable if it has no genus 0 vertices of valency less then 3 and no
genus 1 isolated (i.e., 0-valent) vertices. Therefore, there are no genus 0 and genus 1 stable graphs
without tails. Consider the expansions

Ψ({am,N}, Y,Σ, �) =
∑

g≥0

Ψg({am,N}, Y,Σ)�g−1 (2.9)

and
P({am,N},Σ, �) =

∑

g≥2

Pg({am,N},Σ)�g−1. (2.10)

Note that all the Ψg are formal power series, while Pg are polynomials depending only on a
finite number of am,N with m ≤ g and satisfying certain homogeneity conditions described in [1].
These polynomials are called stable graph polynomials in [1]. (We will not need the explicit form of
the homogeneity conditions for stable graph polynomials in this paper.)

In [1] we prove that the main generating power series Ψ can be expressed in terms of the series
F and H (see (2.5) and (2.6)) and the stable graph polynomials (2.10). To state these results, let
us consider the gradient formal power series vector

Φ({am,N}, Y,Σ) = ∇Y Ψ0({am,N}, Y,Σ) =
(

∂Ψ0

∂y1
, . . . ,

∂Ψ0

∂yr

)

(2.11)

and
Θ({am,N}, Y,Σ) = Y + ΣΦ({am,N}, Y,Σ). (2.12)

Next we present (without proofs) the results of [1]. To make the expressions shorter, we will
omit the arguments of Θ defined in (2.12).

1. The vector power series Φ satisfies the functional equation

Φ({am,N}, Y,Σ) = F (Θ), (2.13)

or, equivalently, the formal power series

Y − ΣF (Y ) and Θ = Y + ΣΦ({am,N}, Y,Σ) (2.14)

are inverse to each other. Inverting Y − ΣF (Y ) or solving the functional equation (2.13) and then
integrating Φ, we determine the series Ψ0.

2. For g = 1

Ψ1({am,N}, Y,Σ) = U1(Θ) − 1
2

tr log(E − ΣH(Θ)), (2.15)

where E is the identity matrix.
3. For g > 1

Ψg({am,N}, Y,Σ) = Pg

({
∂NUm

∂Y N
(Θ)

}

, (E − ΣH(Θ))−1Σ
)

. (2.16)

The most important property of the generating series Ψ (2.7) is that it provides a formal asymp-
totic expansion of a certain Gaussian integral. For this purpose we set Σ to be a real positive definite
symmetric matrix and consider the Gaussian measure on R

r

dμY,Σ(X) =
1

(2π� det Σ)r/2
exp

(

−(Y − X)TΣ−1(Y − X)
2�

)

dX (2.17)
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COLORED GRAPHS AND MATRIX INTEGRALS 5

with mean value Y and covariance matrix �Σ. By analogy with [2], one can easily check that the
formal power series (2.7) is the asymptotic expansion of the logarithm of the following Gaussian
integral:

log
∫

exp(U(X)) dμY,Σ(X) ∼ Ψ({ag,N}, Y,Σ, �). (2.18)

The series U is given by the Taylor expansion (2.3); therefore, an asymptotic expansion of any
integral of this kind may be interpreted as a generating function with appropriate coefficients ag,N .
In the most common case, when

a0,N = 0 for |N | ≤ 2 and a1,(0,...,0) = 0, (2.19)

nonstable graphs contribute zero summands to the generating function Ψ (2.7) and therefore we
obtain P substituting 0 for Y in Ψ:

P({ag,N},Σ, �) = Ψ({ag,N}, 0,Σ, �). (2.20)

So, in this case, the generating series for stable graph polynomials (2.8) may also be interpreted as
an asymptotic expansion of the Gaussian integral

log
∫

exp(U(X)) dμ0,Σ(X) ∼ P({ag,N},Σ, �), (2.21)

where

dμ0,Σ(X) =
1

(2π� det Σ)r/2
exp

(

−XTΣ−1X

2�

)

dX. (2.22)

Remark 2.1. The expression (2.3) for the series U is sometimes too general. For instance, for
matrix integrals discussed in this paper and in certain other interesting cases it is not necessary to
study weighted graphs. For this purpose we may simply put

ag,N = 0 for g > 0. (2.23)

In this case U = U0
�

and U1 = U2 = . . . = 0 and we may shorten the notations and write aN instead
of a0,N .

If in addition U0 is a homogeneous polynomial of degree d ≥ 3, then

aN = 0 for |N | �= d, (2.24)

which means that in the sum (2.7) it is sufficient to consider the summation only over d-valent
graphs. For the matrix integrals discussed in this paper d = 3.

3. MATRIX INTEGRALS

Now we are going to apply the described approach to matrix integrals discussed in [4]. Now X
is a Hermitian n × n matrix; denote

X = Z +
√
−1V, (3.1)

where Z is symmetric and V is skew-symmetric. So X depends on

r = n2 (3.2)
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6 I.V. ARTAMKIN

real parameters; in [4] the Gaussian measure on R
r is given by

dμΛ(X) = cΛ exp
(

− tr
XΛX

2

)

dX (3.3)

and the matrix integral is

log
∫

exp
(√

−1
6

tr X3

)

dμΛ(X). (3.4)

By the homogeneous substitution

X → �
−1/3X, Λ → �

−1/3Λ (3.5)

we can transform this integral to the form corresponding to (2.21):

log
∫

exp
(√

−1
6�

tr X3

)

dμ̃Λ(X), (3.6)

where

dμ̃Λ(X) = c̃Λ exp
(

− tr
XΛX

2�

)

dX. (3.7)

This is exactly the integral (2.21) for the case r = n2 and

U(X) =
U0(X)

�
=

√
−1
6�

tr X3. (3.8)

Note that we have just the case described in Remark 2.1: ag,N are nonzero only for g = 0 and
|N | = 3.

Next let us present explicit expressions for the cubic polynomial U0 and the covariance matrix Σ
in this case.

To make all the formulas more clear, let us fix the following notations for the coordinates in R
r.

There are exactly n(n+1)
2 coordinates zij with i ≤ j corresponding to the elements of the symmetric

matrix Z from (3.1); let us denote them by xij. The remaining n(n−1)
2 coordinates vij with i < j

correspond to the nondiagonal elements of the skew-symmetric matrix V from (3.1); let us denote
them by xij . It would be convenient for us to define the symbols ij and ij to be symmetric: ij = ji

and ij = ji, but in any case xij (or xij) will mean the corresponding element of the matrix Z
(respectively V ) located above the main diagonal. Let us denote the corresponding subsets of the
index set Ω by

Ω0 = {ii, 1 ≤ i ≤ n}, Ω+ = {ij, 1 ≤ i < j ≤ n}, Ω− = {ij, 1 ≤ i < j ≤ n}, (3.9)

so that
Ω = Ω0 ∪ Ω+ ∪ Ω−. (3.10)

Now it is easy to determine the n2 × n2 matrix Σ for the case of a diagonal matrix

Λ =

⎛

⎜
⎝

λ1 0
. . .

0 λn

⎞

⎟
⎠ . (3.11)

Proposition 3.1. For Λ defined by (3.11) Σ is a diagonal matrix with

σii ii =
1
λi

, σij ij =
1

λi + λj
, σij ij =

1
λi + λj

. (3.12)
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COLORED GRAPHS AND MATRIX INTEGRALS 7

Also it is not hard to present an explicit form of the function U0(X) =
√
−1
6 tr X3.

Proposition 3.2.

U0(X) =
√
−1

(
∑

1≤i≤j≤k≤n

1
{ijk}!xijxjkxik +

∑

1≤i≤j≤n

∑

k �=i, k �=j

(

± 1
{ij}!xijxjkxik

))

, (3.13)

where the sign in the second sum is minus if k is located between i and j and plus otherwise.
Corollary 3.1. 1. ag,N = 0 if g �= 0 or |N | �= 3.
2. For g = 0 and |N | = 3 all nonzero values of the coefficients ag,N are as follows:

a0,N =

{√
−1 for N = {ij jk ik} ∀i, j, k,

±
√
−1 for N = {ij jk ik} ∀i, j, k, i �= k, j �= k,

(3.14)

where the sign in the second line is minus if k is located between i and j and plus otherwise.
From now on we will use the shortened notations suggested in Remark 2.1: we will write a{αβγ}

instead of a0,{αβγ}, α, β, γ ∈ Ω.
The fact that Σ is diagonal means that in our case both half-edges of any edge have the same

color and therefore we obtain a coloring of edges with the same set Ω:

μ : E(Γ) → Ω. (3.15)

According to Corollary 3.1, such a coloring must satisfy the following condition: any three edges
meeting at one vertex should be colored either with

ij, jk, and ik for certain i, j, k (3.16)

or with
ij, jk, and ik for certain i, j, k, i �= k �= j. (3.17)

We will also use reduced colorings

κ : E(Γ) → Ω0 ∪ Ω+ (3.18)

that should satisfy condition (3.16).
For any coloring μ (3.15) we define a reduced coloring κμ as

κμ(e) =

{
μ(e) if μ(e) ∈ Ω0 ∪ Ω+,

ij if μ(e) = ij ∈ Ω−.
(3.19)

Note that according to (3.12) σμ(e) = σκμ(e).
A reduced coloring κ defines a subgraph Δ(κ) ⊂ Γ that has the same set of vertices

V (Δ(κ)) = V (Γ) and all edges that are colored by Ω+: E(Δ(κ)) = κ
−1(Ω+). Of course, Δ(κ) is

not necessarily connected; according to (3.16) and (3.17), Δ may have three-valent, two-valent, and
null-valent (isolated) vertices.

Using a coloring μ let us define a subgraph η(μ) ⊂ Δ(κμ) as a minimal subgraph containing
all the edges from μ−1(Ω−). According to (3.17) all vertices of η(μ) are two-valent, and therefore
η(μ) consists of a finite number of disjoint cycles and thus represents an element of H1(Δ(κμ), Z2).
Evidently the coloring κμ and the cycle η(μ) define μ uniquely.
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8 I.V. ARTAMKIN

Proposition 3.3. The mapping μ 
→ (κμ, η(μ)) is a natural bijection between the set of all
colorings μ (3.15) satisfying (3.16) and (3.17) and the set of all pairs (κ, η), where κ is a reduced
coloring (3.18) satisfying (3.16) and η is an arbitrary cycle in H1(Δ, Z2).

Let us denote the coloring μ defined by a reduced coloring κ and a cycle η ∈ H1(Δ(κ), Z2)
by μ(κ, η).

Therefore, the asymptotic expansion (3.6) looks as follows:

log
∫

exp
(√

−1
6�

tr X3

)

dμ̃Λ(X) ∼
∑

All trivalent
graphs Γ

∑

All colorings
μ of E(Γ)

�
g(Γ)−1

|Aut(Γ, μ)|
∏

e∈E(Γ)

σμ(e)

∏

v∈V (Γ)

aν(v)

=
∑

All trivalent
graphs Γ

∑

All reduced
colorings κ

of E(Γ)

∏

e∈E(Γ)

σκ(e)

∑

All colorings μ
of E(Γ) such
that κμ=κ

�
g(Γ)−1

|Aut(Γ, μ)|
∏

v∈V (Γ)

aν(v). (3.20)

For our further considerations it would be more convenient to use the corrected values

āN =
aN√
−1

, (3.21)

so that according to Corollary 3.1

āN =

{
1 for N = {ij jk ik} ∀i, j, k,

±1 for N = {ij jk ik} ∀i, j, k, i �= k, j �= k,
(3.22)

where the sign in the second line is minus if k is located between i and j and plus otherwise. Since a
genus g trivalent graph has 2g−2 vertices, the expansion can be expressed in terms of the values āN

as follows:

log
∫

exp
(√

−1
6�

tr X3

)

dμ̃Λ(X)

∼
∑

All trivalent
graphs Γ

(−�)g(Γ)−1
∑

All reduced
colorings κ

of E(Γ)

∏

e∈E(Γ)

σκ(e)

∑

All colorings μ
of E(Γ) such
that κμ=κ

1
|Aut(Γ, μ)|

∏

v∈V (Γ)

āν(v). (3.23)

Note that all the values of āν(v) are ±1 and according to (3.22) negative factors may arise only
from vertices of η(μ):

∏

v∈V (Γ)

āν(v) =
∏

Vertices of η(μ)

āν(v). (3.24)

Since any cycle η ∈ H1(Δ(κ), Z2) can be represented as a union of disjoint simple cycles,
∏

v∈V (Γ)

āν(v) =
∏

Simple cycles
c⊂η(μ)

∏

Vertices of c

āν(v). (3.25)

We will see that for a simple cycle c the sign of the product
∏

Vertices of c

āν(v) (3.26)
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12

12

13

13

23

23

A nonorientable coloring corresponding to the embedding of the graph in the real projective plane.
The borders of the three 2-cells are the three 4-cycles of this graph; the three 2-cells are colored by 1,
2, and 3.

can be expressed in topological terms arising from the consideration of embeddings of the graph
Γ in a compact surface S. By definition (see [5]) this means that there is a cell decomposition of
the surface S and an isomorphism of the graph (considered as a one-dimensional cell complex) and
the one-dimensional skeleton of the cell decomposition of the surface. Denote by F (S) the set of
two-dimensional cells of the cell decomposition; the elements of F (S) will be called faces.

Consider some coloring of faces

ϕ : F (S) → {1, . . . , n}. (3.27)

Obviously the coloring ϕ defines a reduced coloring κ(ϕ) of the set of edges of Γ (with the color set
Ω0 ∪ Ω+) satisfying (3.16): for an edge e incident to faces i and j we put

κ(ϕ)(e) = ij. (3.28)

In the next section we prove that any reduced coloring κ is generated by some embedding; but in
general such an embedding is not unique.

Proposition 3.4. 1. Any reduced coloring κ : E(Γ) → Ω0 ∪ Ω+ satisfying (3.16) is generated
by some embedding of the graph Γ in a surface S and by some coloring ϕ of faces (3.27).

2. The embedding and the coloring ϕ (3.27) are determined by κ uniquely if and only if
Γ = Δ(κ).

Fix some coloring of edges μ satisfying (3.16) and (3.17) and an embedding of the graph Γ in a
compact surface S generating the coloring κμ. Consider a simple cycle c ∈ H1(Δ(κμ), Z2). Then
the neighborhood of the cycle c in S is homeomorphic either to a cylinder (orientable case) or to
a Möbius strip (nonorientable case). In the next section we prove that this determines the sign of
the product in (3.26) and therefore does not depend on the embedding.

Proposition 3.5. For a simple cycle c ⊂ η

∏

Vertices of c

āν(v) =
{

1 if the neighborhood of c is orientable,
−1 if the neighborhood of c is nonorientable.

(3.29)

Corollary 3.2. Fix a reduced coloring κ. For each cycle η ∈ H1(Δ(κ), Z2) consider the
coloring μ(κ, η) defined in Proposition 3.3 and the corresponding values of āN . Then the mapping

ε : H1(Δ(κ), Z2) → {±1} (3.30)

defined by

ε(η) =
∏

Vertices of η

āν(v) (3.31)

is a homomorphism.
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10 I.V. ARTAMKIN

Let us call a reduced coloring κ orientable if the neighborhoods of all cycles c ∈ H1(Δ(κ), Z2)
are orientable; otherwise the coloring will be called nonorientable. Thus a coloring is orientable
if and only if the homomorphism (3.30) is trivial. (A simple example of a nonorientable reduced
coloring for n = 3 is presented in the figure.)

Now let us fix a reduced coloring κ. Consider the action of Aut(Γ, κ) on H1(Δ(κ), Z2). The
orbits of this action are in one-to-one correspondence with the colorings μ such that κμ = κ. The
sign of ε(c) is constant on the orbits of the action, and therefore

1
|Aut(Γ, κ)|

∑

c∈H1(Δ,Z2)

ε(c) =
∑

Orbits Aut(Γ,κ)·c
of the action of Aut(Γ,κ)

on H1(Δ(κ),Z2)

ε(c)
|Aut(Γ, κ) · c|
|Aut(Γ, κ)|

=
∑

Orbits Aut(Γ,κ)·c
of the action of Aut(Γ,κ)

on H1(Δ(κ),Z2)

ε(c)
1

|Aut(Γ, κ, c)| =
∑

All colorings μ
of E(Γ) such
that κμ=κ

1
|Aut(Γ, μ)|

∏

Vertices of η(μ)

āν(v). (3.32)

Corollary 3.3.

∑

All colorings μ
of E(Γ) such
that κμ=κ

1
|Aut(Γ, μ)|

∏

Vertices v
of η(μ)

āν(v) =

⎧
⎪⎨

⎪⎩

2b1(Δ(κ))

|Aut(Γ, κ)| for an orientable coloring κ,

0 for a nonorientable coloring κ.

(3.33)

Here b1(Δ(κ)) is the first Betti number of the graph Δ(κ).
This provides the following asymptotic expansions of the matrix integral.
Theorem 3.1.

log
∫

exp
(√

−1
6�

tr X3

)

dμ̃Λ(X) ∼
∑

All trivalent
graphs Γ

∑

All orientable
colorings μ

of E(Γ)

(−�)g(Γ)−1

|Aut(Γ, μ)|
∏

e∈E(Γ)

σμ(e)

=
∑

All trivalent
graphs Γ

∑

All orientable
reduced

colorings κ

of E(Γ)

(−�)g(Γ)−1 · 2b1(Δ(κ))

|Aut(Γ, κ)|
∏

e∈E(Γ)

σκ(e). (3.34)

Here b1(Δ(κ)) means the first Betti number of the graph Δ(κ).
Of course, the terms in (3.34) are homogeneous in Λ and �: the terms corresponding to genus g

graphs have degree −3g + 3 in Λ.
For convenience we rewrite these expansions once more after the substitution inverse to (3.5):

log
∫

exp
(√

−1
6

tr X3

)

dμΛ(X) ∼
∑

All trivalent
graphs Γ

(−1)g(Γ)−1
∑

All orientable
colorings μ

of E(Γ)

1
|Aut(Γ, μ)|

∏

e∈E(Γ)

σμ(e)

=
∑

All trivalent
graphs Γ

(−1)g(Γ)−1
∑

All reduced
orientable
colorings κ

of E(Γ)

2b1(Δ(κ))

|Aut(Γ, κ)|
∏

e∈E(Γ)

σκ(e). (3.35)
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COLORED GRAPHS AND MATRIX INTEGRALS 11

In [4] the same asymptotic expansion is described in terms of ribbon graphs. By definition a ribbon
graph is a graph Γ with fixed cyclic order of half-edges at each vertex; let us denote this additional
data by D. The pair (Γ,D) defines a unique embedding of the graph in an orientable surface and
a choice of one side of this surface. A coloring of the faces ϕ (3.27) defines a coloring κ(ϕ) (3.28)
of E(Γ), and therefore the factors σκ(ϕ)(e) are defined for the edges of Γ. The description of [4] in
these terms looks as follows.

Theorem 3.2 [4].

log
∫

exp
(√

−1
6

tr X3

)

dμΛ(X)

∼
∑

All trivalent
ribbon graphs (Γ,D)

(
√
−1)|V (Γ)|

∑

All colorings
of faces ϕ

2|E(Δ(κ(ϕ)))|−|V (Γ)|

|Aut(Γ,D, ϕ)|
∏

e∈E(Γ)

σκ(ϕ)(e). (3.36)

Now it is not hard to recognize in (3.35) a refinement of (3.36). The connection is given by
the following class formula involving automorphisms of colored ribbon graphs and colored ordinary
graphs.

Proposition 3.6. Let Γ be a trivalent graph and

κ : E(Γ) → Ω0 ∪ Ω+ (3.37)

be an orientable reduced coloring satisfying (3.16). Then

2b0(Δ(κ))

Aut(Γ, κ)
=

∑

All ribbon graph
structures D on Γ

∑

All colorings
of faces ϕ such
that κ(ϕ)=κ

1
Aut(Γ,D, ϕ)

, (3.38)

where b0(Δ(κ)) is the zero Betti number (the number of connected components) of the graph Δ(κ).

We prove this formula in the next section; since

|E(Δ(κ))| − |V (Γ)| = b1(Δ(κ)) − b0(Δ(κ)), (3.39)

formula (3.38) provides a proof of Theorem 3.2 that is independent of [4].

Remark. Let us indicate two extremal special cases of formula (3.38).
In the case of a proper coloring κ each edge separates two faces colored by different colors; this

means that Δ(κ) = Γ and therefore b0(Δ(κ)) = 1. According to Proposition 3.4 the embedding and
the coloring in this case are determined uniquely and so the right-hand side of (3.38) has at most
two summands, which correspond to two possible choices of a side of the orientable surface S. If
the two corresponding ribbon graphs are different, each of them has the same automorphism group
as (Γ, κ). If these two ribbon graphs are isomorphic, then the right-hand side of (3.38) has only
one summand.

In the opposite case n = 1 we in fact have no colorings at all. So on the right-hand side we have
the sum over all possible ribbon graph structures D on Γ. For this case (3.38) yields

2|V (Γ)|

Aut(Γ)
=

∑

All ribbon graph
structures D on Γ

1
Aut(Γ,D)

. (3.40)
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12 I.V. ARTAMKIN

4. RIBBON GRAPHS AND COLORED GRAPHS

In this section we prove all the topological statements from the previous section that concern
colored graphs and ribbon graphs. To this end recall the notion of (discrete) connection on a graph
(see [6]). Let us fix the following notations. Directed edges of the graph will be denoted by −→e ;
the same edge with the opposite orientation will be denoted by ←−e . The two vertices incident to −→e
are denoted by s(−→e ) and t(−→e ) so that −→e is directed from s(−→e ) to t(−→e ). A path

−→
l is a sequence

of directed edges
−→
l = [−→e1, . . . ,

−→em] such that t(−→ei) = s(−→ei+1) and −→ei �= ←−ei+1; for a closed path
we also need to claim −→e 1 �= ←−e m and t(−→em) = s(−→e1). For a path

−→
l we define s(

−→
l ) = s(−→e1) and

t(
−→
l ) = t(−→em). A path is called simple if all the edges e1, . . . , em are different; a simple path in a

trivalent graph is evidently a simple directed cycle.
For a graph without tails it is natural to identify the set of half-edges incident to a vertex v with

the set of oriented edges directed from v. We will denote this set by St(v). For a trivalent graph
all the sets St(v) have three elements.

By definition a connection ∇ on a graph Γ is a collection of identifications

∇−→e : St(s(−→e )) → St(t(−→e )) (4.1)

such that
∇−→e (−→e ) = ←−e (4.2)

and
∇−1−→e = ∇←−e . (4.3)

Then for any path
−→
l = [−→e1, . . . ,

−→em] we can define

∇−→
l

= ∇−→em
◦ . . . ◦ ∇−→e1 : St(s(

−→
l )) → St(t(

−→
l )); (4.4)

for a closed path
−→
l with s(

−→
l ) = t(

−→
l ) = v there is a monodromy map

∇−→
l
: St(v) → St(v). (4.5)

A path
−→
l = [−→e1, . . . ,

−→em] is called geodesic if

∇−→ei+1
(←−ei) = −→ei+2; (4.6)

evidently the inverse path
←−
l = [←−em, . . . ,←−e1] is then geodesic too.

It is not hard to prove (see [6]) that all maximal geodesic paths are closed; any two half-edges
incident to one vertex define a geodesic uniquely (up to orientation); each edge appears in exactly
two different geodesic paths or twice in the same geodesic path. Therefore, gluing the border of a
2-cell to each maximal geodesic, we obtain a compact surface S∇ with an embedding of the graph Γ
in S∇. Evidently the collection of closed geodesics defines the connection uniquely, and therefore
an embedding of the graph in a compact surface defines the connection uniquely.

Now we start with a graph Γ with a reduced coloring of edges

κ : E(Γ) → Ω0 ∪ Ω+. (4.7)

Our goal is to construct a connection ∇ on Γ satisfying the following property:

For any closed geodesic there exists i such that all the edges of this geodesic are colored
with ij for some j (j may be different for different edges of this geodesic). (4.8)
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For any edge e ∈ E colored with ij ∈ Ω+ (i.e., i �= j), condition (4.8) defines ∇−→e uniquely: the
remaining two edges incident to s(−→e ) are colored with ik and jk for some k, and the edges incident
to t(−→e ) are colored with il and jl for some l. Therefore, ∇−→e must map the ik-edge to the il-edge
and the jk-edge to the jl-edge. On the contrary, for i = j both ways of defining ∇−→e satisfy (4.8).
Thus we obtain the following.

Proposition 4.1. Let Γ be a trivalent graph with reduced coloring of edges κ (4.7) satisfy-
ing (3.16).

1. There is a one-to-one correspondence between embeddings of Γ in a compact surface S
together with colorings of faces

ϕ : F (S) → {1, . . . , n} (4.9)

generating κ and connections on Γ satisfying (4.8).
2. A connection ∇ on Γ satisfying (4.8) is defined uniquely on Δ(κ) and may be defined in an

arbitrary way on the edges colored with Ω0. Such a connection is unique if and only if Γ = Δ(κ).
As a consequence we obtain Proposition 3.4.
Next let us prove Proposition 3.5. Consider the coloring

μ : E(Γ) → Ω (4.10)

defined by the coloring κ (4.7) and by a cycle η ∈ H1(Δ(κ), Z2). Recall (see Proposition 3.3) that μ
is obtained from κ by changing the colors for edges of η from ij to ij. In turn, the coloring μ defines
the values of aν(v) for vertices of the graph according to formula (3.22). Consider an embedding of
the graph Γ in a compact surface S together with a coloring ϕ (4.9) satisfying (3.28). The cycle η
is a sum of simple cycles; pick one of these cycles c and fix an orientation on it. Consider a small
neighborhood Sc of the cycle c in the surface S; for a face f ∈ F (S) denote its intersection with Sc

by f̄ = f ∩ Sc. For each edge −→e of the cycle −→c consider the two faces f ′, f ′′ ∈ F (S) incident to e;
denote We = f̄ ′ ∪ f̄ ′′. Since e ∈ η, μ(e) ∈ Ω− and therefore ϕ(f ′) �= ϕ(f ′′), say, ϕ(f ′) > ϕ(f ′′).
Then let us choose an orientation on We in such a way that the orientation of −→e is induced by the
orientation of f ′.

Take any vertex v of c and consider the three edges e1, e2, and e3 incident to v and the three faces
f1, f2, and f3 meeting at v, so that em is not incident to f̄m for m = 1, 2, 3. Let e1, e2 ∈ c and e3 /∈ c;
then We1 ∩ We2 = f̄3. Evidently the defined orientations on We1 and We2 coincide on f̄3 if and
only if ā{μ(e1)μ(e2)μ(e3)} = 1, and the orientations are opposite if and only if ā{μ(e1)μ(e2)μ(e3)} = −1.
Therefore, the neighborhood Sc is orientable if and only if c contains an even number of negative
vertices, which proves Proposition 3.5.

Thus we have proved that if at least for one choice of c ∈ H1(Δ(κ), Z2) the product (3.26) is
negative, then the surface S is nonorientable. In the previous section we called the corresponding
colorings nonorientable. Unfortunately, an orientable coloring may also sometimes be generated by
an embedding of the graph in a nonorientable surface. Nevertheless, it is not hard to enumerate
the corresponding embeddings in orientable surfaces.

Proposition 4.2. Let Γ be a trivalent graph with a reduced orientable coloring of edges κ (3.18).
Then there are exactly

2b0(Δ(κ))−1 (4.11)

connections ∇ on Γ satisfying (4.8) such that the surface S∇ is orientable.
Corollary 4.1. There are exactly

2b0(Δ) (4.12)

ribbon graph structures (together with a coloring of faces) on Γ generating the coloring of edges κ.
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Recall that a ribbon graph structure D on a graph Γ is a collection of cyclic permutations δv of
half-edges of St(v) for all the vertices of the graph:

D =
{
δv : St(v) → St(v), δv is cyclic, v ∈ V (Γ)

}
. (4.13)

A ribbon graph structure D defines an embedding of the graph in an orientable surface S together
with a choice of one side of this surface and is defined uniquely by these data. Therefore, D defines
a connection ∇D on Γ; the opposite ribbon graph structure D−1 = {δ−1

v , v ∈ V (Γ)} corresponding
to the choice of another side of the same surface S defines the same embedding and therefore the
same connection: ∇D = ∇D−1 . The cycles δv for adjacent vertices are anti-conjugate under the
connection: for a directed edge −→e

δt(−→e ) = ∇−→e δ−1
s(−→e )

∇−1−→e . (4.14)

Evidently the converse is also true: any ribbon structure D satisfying (4.14) for all edges defines
exactly the embedding S∇.

For each vertex v ∈ V (Γ) let us denote by Jv the set of all cyclic orders on St(v); for a trivalent
graph Jv has exactly two elements. Define the action ∇∗ of ∇ on J according to (4.14):

∇−→e ∗ : Js(−→e ) → Jt(−→e ), (4.15)

∇−→e ∗(δ) = ∇−→e δ−1∇−1−→e . (4.16)

Then for any edge e ∈ E(Γ) the composition ∇←−e ∗ ◦∇−→e ∗ is the identity mapping on Js(−→e ). Now for
any path

−→
l = [−→e1, . . . ,

−→em] we can define

∇−→
l ∗ = ∇−→em∗ ◦ . . . ◦ ∇−→e1∗ : J

s(
−→
l )

→ J
t(
−→
l )

; (4.17)

for a closed path
−→
l with s(

−→
l ) = t(

−→
l ) = v there is a monodromy map

∇−→
l ∗ : Jv → Jv. (4.18)

A connection ∇ is called flat1 if for any closed path
−→
l the monodromy is identical:

∇−→
l ∗ = IdJ

s(
−→
l )

. (4.19)

Evidently a connection is flat if (4.19) holds for any simple cycle
−→
l .

Proposition 4.3. 1. A connection ∇ is flat if and only if the surface S∇ is orientable.
2. Let ∇ be a flat connection on Γ. The two possible ribbon structures on Γ arising from the

embedding in S∇ are defined by a choice of a cyclic order δ0 ∈ Jv0 at one fixed vertex v0 ∈ V (Γ);
the corresponding cyclic order at any other vertex v ∈ V (Γ) is defined by ∇−→

l ∗(δ0), where
−→
l is an

arbitrary path connecting v0 and v (i.e., v0 = s(
−→
l ) and v = t(

−→
l )).

This proposition is a trivial consequence of our definitions; the following trivial lemma describes
the extension of a flat connection defined on a subgraph to a larger subgraph.

Lemma 4.1. 1. Let Γ′ be a connected subgraph of Γ. Consider an edge e ∈ E(Γ), e /∈ E(Γ′),
that connects two vertices of Γ′ and is colored with ii ∈ Ω0. Let ∇ be a flat connection on Γ′

satisfying (4.8). Then ∇ can be uniquely extended to a flat connection on the graph Γ′ ∪ {e}
satisfying the color property (4.8).

1Note that our definition of a flat connection is different from the one given in [6].
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2. Let Γ′ and Γ′′ be two connected subgraphs of Γ, Γ′ ∩ Γ′′ = ∅. Consider an edge e ∈ E(Γ),
e /∈ E(Γ′), e /∈ E(Γ′′), that connects a vertex from Γ′ with a vertex from Γ′′ and is colored with
ii ∈ Ω0. Let ∇ be a flat connection on Γ′ ∪ Γ′′ satisfying (4.8). Then each of the two possible ways
of extending ∇ to e provides a flat connection on Γ′ ∪ Γ′′ ∪ {e} satisfying the color property (4.8).

We have seen that for an edge e colored with Ω0 each of the two possible ways to define ∇e

satisfies (4.8), and thus we only need to ensure the flatness of the extension. For assertion 2 of
the lemma, e cannot be included in any simple cycle on Γ′ ∪ Γ′′ ∪ {e} and therefore each of the
two possible ways of extension is automatically flat. For assertion 1 there are two possibilities: e is
either a loop or not a loop. In the former case the flatness condition means that ∇−→e ∗ is the identity
mapping; therefore ∇−→e is a transposition of the two half-edges of the loop. Evidently this provides
a flat connection on Γ′ ∪ {e}. In the latter case there is a simple path

−→
l in Γ′ connecting the ends

of the edge e. Direct −→e in such a way that s(−→e ) = s(
−→
l ) and t(−→e ) = t(

−→
l ); then the flatness

condition requires
∇−→e ∗ = ∇−→

l ∗. (4.20)

Since ∇ is flat on Γ′, the right-hand side is independent of the choice of the path
−→
l and there-

fore (4.20) defines the required flat extension; it is not hard to see that ∇−→e is defined by (4.20)
uniquely.

Lemma 4.1 provides an explicit description of all possible flat connections on Γ satisfying (4.8).
First, recall that we have seen that the connection is uniquely determined on Δ(κ). (Δ(κ) was
defined as a subgraph having the same set of vertices V (Γ) but containing only those edges that
are colored with Ω+.) Consider one connected component Γ′ of Δ(κ); we have seen that ∇ is
defined on Γ′ uniquely. Pick another connected component Γ′′ of Δ(κ) such that there is an edge
connecting Γ′ and Γ′′; part 2 of Lemma 4.1 states that there are exactly two ways of extending ∇
to Γ′ ∪ Γ′′ ∪ {e}. Now take the latter graph as Γ′ and find another connected component of Δ(κ)
that is connected with it by an edge. We will repeat the above procedure until we join all the
components of Δ(κ). Clearly the number of possible flat connections is

2b0(Δ(κ))−1. (4.21)

It remains to extend ∇ to all the remaining edges colored with Ω0; according to assertion 1 of the
lemma this extension exists and is unique. Thus we have proved the following.

Proposition 4.4. A trivalent graph Γ with a reduced orientable coloring of its edges

κ : E(Γ) → Ω0 ∪ Ω+ (4.22)

satisfying (3.16) admits exactly
2b0(Δ(κ))−1 (4.23)

flat connections satisfying the color property (4.8). Each such flat connection defines an embedding
of Γ in a compact orientable surface S∇ together with a coloring of the faces

ϕ : F (S∇) → {1, . . . , n} (4.24)

generating the coloring of edges κ (i.e., satisfying (3.28)).
Since each embedding corresponds to exactly two ribbon structures, we obtain the following

corollary.
Corollary 4.2. There are exactly

2b0(Δ(κ)) (4.25)

ribbon structures D on Γ (together with colorings of the faces ϕ (4.24)) generating the reduced
orientable coloring of edges κ.
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16 I.V. ARTAMKIN

Now the proof of Proposition 3.6 becomes trivial. The group Aut(Γ, κ) acts on the set of all
ribbon structures on Γ, and the orbits of this action correspond to all ribbon graphs with a coloring
of faces (4.24) compatible with the coloring κ.

5. THE FIRST TERM

In the table we list all genus 2 colored graphs corresponding to the first term of the expan-
sion (3.34). There are only two stable genus 2 graphs, and it is not hard to see that all reduced
colorings of these graphs are orientable.

Table

Graph Γ |Aut(Γ, κ)| b1(Δ(κ))
2b1(Δ(κ))

|Aut(Γ, κ)|
∏

e∈E(Γ)

σκ(e)

ii

ii
ii 12 0

1
12

1
λ3

i

ii iiii 8 0
1
8

1
λ3

i

ii

ik

ik

4 1
1
2

1
λi

1
(λi + λk)2

i �= k

iiik ik 8 2
1
2

1
λi

1
(λi + λk)2

i �= k

ii ii ik 4 1
1
2

1
λ2

i

1
λi + λk

i �= k

ik
ij

jk

2 2
2

(λi + λj)(λi + λk)(λj + λk)

i �= j, i �= k, j �= k

ii ikij 4 2
1

λi(λi + λj)(λi + λk)

i �= j, i �= k, j �= k
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The edges of the graph Δ(κ) are drawn by thick lines. Of course, it is not hard to see that the
sum of the entries of the last column in accordance with [4] is

1
6

(∑ 1
λi

)3

+
1
24

∑ 1
λ3

i

. (5.1)
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