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Abstract—It is known that by means of minimal values of tolerances one can obtain necessary and sufficient
conditions for the uniqueness of the optimal solution of a combinatorial optimization problem (COP) with an
additive objective function and the set of nonembedded feasible solutions. Moreover, the notion of a tolerance
is defined locally, i.e., with respect to a chosen optimal solution. In this paper we introduce the notion of a
global tolerance with respect to the whole set of optimal solutions and prove that the nonembeddedness
assumption on the set of feasible solutions of the COP can be relaxed, which generalizes the well known rela-
tions for the extremal values of the tolerances. In particular, we formulate a new criterion for the uniqueness
of the optimal solution of the COP with an additive objective function, which is based on certain equalities

between locally and globally defined tolerances.
DOI: 10.1134/S106456241205002X

After an optimal solution to a Combinatorial Opti-
mization Problem (COP) has been found, the next
natural step is to apply the sensitivity analysis, i.e., to
determine how the optimality of the solution depends
on a change of the input data. There are several rea-
sons for performing the sensitivity analysis. (1) The
input data of the COP may be inexact or have a natural
uncertainty. In this case the sensitivity analysis verifies
the credibility of the optimal solution and conclusions
based on this solution. (2) Rather significant proper-
ties of the desired optimal solution in terms of the
COP have not been built into the model due to the dif-
ficulty in formulating them. Having solved the simpli-
fied model, the decision maker wants to know how
well the optimal solution fits in with the other consid-
erations, which were not taken into account during the
reduction procedure. The simplest sensitivity analysis
studies the special case when the value of a single ele-
ment in the optimal solution is subject to change. The
goal of these perturbations is to determine the toler-
ances being defined as the maximum changes of the
given individual cost (weight, distance, time, etc.),
preserving the optimality of the given optimal solution
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under the assumption that the other data of the COP
remain unchanged.

The interest to the notion of a tolerance is con-
nected with the fact that the maximal value of toler-
ances of elements of the problem (called the bottle-
neck tolerance), which is a bound for the stability
radius of the optimal solution, has been applied for
design tolerance-based enumeration algorithms to
solve different COPs. The first implicit application of
tolerances goes back to Vogel’s approximation method
for finding the closest basic solution to the optimal one
in the simplex method for the transportation problem
[10] and to construction of a heuristic for solving the
three-index assignment problem [1]. Among success-
ful instances of application of tolerances [4], let us
mention the algorithms for the exact [2, 12] and
approximate [3, 7] solutions of the asymmetric travel-
ing salesman problem.

It is known that by means of minimal values of tol-
erances one can obtain necessary and sufficient condi-
tions for the uniqueness of the optimal solution of a
COP with an additive objective function and the set of
nonembedded feasible solutions. Moreover, the
notion of a tolerance is defined locally, i.e., with
respect to a chosen optimal solution. In this paper we
introduce the notion of a global tolerance with respect
to the whole set of optimal solutions (Section 2) and
prove that the nonembeddedness assumption on the
set of feasible solutions of the COP can be relaxed
(Section 3), which generalizes the well known rela-
tions for the extremal values of the tolerances. In par-
ticular, we formulate a new criterion for the unique-
ness of the optimal solution of the COP with an addi-
tive objective function, which is based on certain
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equalities between locally and globally defined toler-
ances (Lemmas 2(d) and 3(a)).

1. THE PROBLEM OF COMBINATORIAL
OPTIMIZATION

Let Xbe a finite set of cardinality |X] > 2, called the
ground set, and ¥ < 2¥ be a collection of nonempty
subsets of X. Given a function C: X — [0, «©), called the
cost function, we define the additive objective function
f=f-on ¥ by the rule: f(S) = Z C(x)forall Se &.

xeS

A Combinatorial Optimization Problem, determined
by the quadruple of the input data (X, C, &, f;), abbre-
viated as COP (X, C, &, f), is to minimize or maximize
the function fon &. To be more specific, in what fol-
lows we consider the minimization problem: find $* €
Y such that AS*) <AS) for all S € &. Any such set 5*
is said to be an optimal solution and f* = f(5§%) =
minf(S) —the optimal value of the COP (X, C, &, /).
Sed

In this respect it is convenient to call the collection ¥
the set of feasible solutions and denote by ¥* the set of
all optimal solutions of the COP under consideration.
Clearly ¥* — ¥ and |F*#| > 1. Since f(.5*) = f* for all $*
e &* it is also convenient to set f(F*) = f*.

The union of the collection ¥ and its intersection
are denoted by UY = {x € X: 3S € ¥)x € S} and
N ={x e X (VS € F)x e S}, respectively. Clearly,
uS* c UYL and nF* 5 NY. The equality UF = "S
holds ifand only if || = 1, and the inequality US =S
is equivalent to |f| > 2. The COP is degenerated if
uY = NY (only one feasible solution is available) or
NS e ¥ (Y is always an optimal solution), and so, in
what follows we assume that || > 2 and NS ¢ &.

Let us exhibit examples of COPs defined on a sim-
ple weighted graph G = (V, E, C) with the set of vertices
V={1,2,...,n} (n>3)and the set ofedges EC V'x V'
(or arcs £ = A — V' x Vifthe graph is directed), where
C: E— [0, =) is a cost function of edges (arcs).

1. If X= Eand ¥ is the set of Hamiltonian cycles S,
i.e., cycles of the form S'={(i}, i), ({2, 83), .., (i, _ 1, i),
(i, 1)} < E (where all pairs from S are different), then
the objective function fis of the form f(.S) = Z C(,

(L,j)es
j) for S € &, and the corresponding COP (X, C, &, f) is
the symmetric traveling salesman problem (in the
asymmetric case X = A).

2. If X=Aand ¥ is a collection of sets S, = 4 of the
form S, = {(1, n(1)), (2, ®(2)), ..., (n, n(n))}, corre-
sponding to all permutations ©: V' — V of V, then the

objective function is given by f(5,) = ZC (i, m(i)) for

i=1
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S, € &, and the resulting COP (X, C, ¥, f) is the
assignment problem.

2. GLOBAL TOLERANCES
OF ELEMENTS FROM X

In this section we define numerical characteristics
of elements x € X, which express the degree of invari-
ance of optimal solutions to the COP with respect to a
perturbation of the single cost C(x).

Let the COP (X, C, &, f) be given.

Given x € X and a number o € R, we denote by
C, o: X— Rthe perturbed cost function at the element
x: C, () =C()ify e Xand y#x, and C, ,(x) = C(x) +
a. The global upper tolerance u(x) of x is the least
upper bound of those o > 0, for which any optimal
solution S* of the initial COP (X, C, &, f) with f=fis
also an optimal solution of the perturbed COP (X, C, ,
<, fc_.)- The global lower tolerance €(x) of an ele-

ment x is defined similarly if we replace the perturbed
COP above by the perturbed COP (X, C, _, g, fc‘ B ).
Clearly, 0 < u(x), €(x) < +o , and these values do not
depend upon the concrete optimal solution $* of the
original COP (X, C, ¥, f).

In order to be able to evaluate global tolerances of
elements x € X efficiently, we set y,(y) =0ify € Xand
y#x, and y,(x) = 1, and denote by §,: 2¥ — {0, 1} the
Dirac measure (point mass) concentrated at x (i.e.,
given S c X, we have: 0,(S) =1ifx € §,and 5,(S) =0
if x ¢ S). Note that 5,(5) = ZXX (y) for all S < X.

yes
Since the perturbed cost function is of the form C, , =

C + ay, on X, the perturbed objective function is given
by fc. L= f+ ad,on &. Then the global tolerances of
the efement x € Xare expressed by the formulas:

u(x) =sup{a>0: (f+ ad,)(S¥)

= min(f+ ad,)(S) forall §* € F*};
Sed

€(x) =sup{a>0: (f—ad,)(S*)
= min(f— ad,)(S) forall $* € F*}.
Sed

The following lemmas are preparatory for the main
results from Section 3. Ifx € X, weset &, (x) ={S e &-
xe Stand ¥ (x) = {S e F: x ¢ S}; these subcollec-
tions of & are disjoint and their union is all of &. In the
first lemma we generalize a result from [9].

Lemma 1. Given a COP (X, C, ¥, f) and x € X, we
have:

(a) x € (WIN\(NY) if and only if u(x) <+, and if
min f(S) —f*;

Sed _(x)

this is the case, then u(x) =
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(b) x € (WEPWNNF*) if and only if €(x) < +oo, and

if this is the case, then €(x) = min f(S) —f*.
Se?, (x)

It follows that u(x) = +o is equivalent to x €
XN\(UF*) U (nY), and €(x) = +oo is equivalent to
x e (X\(UY)) U (nF*). In particular, u(x) = +oo =
{(x) for all x € (X\(UY)) U ("Y). Elements from the
set X\(U¥) do not belong to any feasible solution, and
elements from NY belong to all feasible solutions, and
so, taking them into account may result in wasting
efforts and time during the optimization procedure
aiming at solving the COP (X, C, &, f). The following
definition excludes this situation.

The COP (X, C, &, f) is said to be canonical if
uf =Xand NS = .

It can be shown that any COP can be reduced to a
canonical COP with the preservation of the values of
global upper and lower tolerances. If the COP is
canonical, then the subcollections ¥, (x) and ¥_(x)
are nonempty for all x € X. Let us denote by [F,(x)]*
the set of all optimal solutions to the COP (X, C, &, (x), )
and by f([¥,(x)]*) = min f —its optimal value; a sim-

.

ilar meaning applies to the notations [¥_(x)]* and
SUSL_(x)]*). Assertions of Lemma 1 assume the form:

(a) u(x) < +oo ifand only if x € US*, and u(x) =
SUL Z 0)]) —AF*);

(b) €(x) < +oo if and only if x ¢ "F*, and €(x) =
SUL L)) = f(F).

Consequently, u(x) = +ow if x ¢ US*, and €(x) =
+o0ifx € NS*.

Lemma 2. Given a canonical COP (X, C, &, f) and
x € X, we have:

(@) u(x) = 0 ifand only if x € (VFL*N\NF*), which is
equivalent to the condition €(x) = 0 (in this case |*| > 2);

(b) x € NF* ifand only if 0 < u(x) < +oo;

(c) x ¢ US* ifand only if 0 < €(x) < +oo.

The uniqueness of the optimal solution is character-
ized as follows:

(d) |F*| = 1 if and only if 0 < u(x) < +oo for all
x e I,

(e) |9*| = 1 if and only if 0 < €(x) < +oo for all x €
X\ (NF#).

In [5, 6, 8, 11] upper tolerances ug-(x) and lower
tolerances € ¢.(x) of x € X with respect to a given opti-
mal solution $* of the COP (X, C, &, f) under consid-
eration have been studied and applied for different
purposes. At the end of this section we establish their
relationship with global tolerances u(x) and €(x). In

the notation above the tolerances with respect to S*
are expressed by the relations:
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Ug:(x) =sup{a = 0: (f+ ad,)(5¥)
= min(f+a8,)(5)},

Sed

€g(x) =sup{a>0: (f— ad,)(S*)
= min(f-ad,)(S) },

Sed
and in the case of a canonical COP we have the follow-
ing equalities:
u(x) = min ug.(x) and €(x) = min €g.(x)
S*e I* S* e P*
forall x € X.

The uniqueness of the optimal solution can be
characterized by certain relations between tolerances
and global tolerances.

Lemma 3. Given a canonical COP (X, C, &, f), we
have:

(a) |¥*| = 1 if and only if there exists an S* € I*
such that u = ug. and € = €. on X;

(b) |F*| > 2 if and only if for all S* € F*, we find u #
ug.ort #Lgon X.

The above is illustrated by the following simple
example.

Example 1. Let X = {x|, x,, x5}, C(x;) =0, C(x,) =
I, C(x;) =2and & = {S,, S,, S5}, where S| = {x,, x,},
S, = {x,} and 85 = {x3}. Since A(S)) = C(x;) + C(x,) =1,
J(S,) = C(x,) = 1 and A(.S3) = 2, the set of optimal solu-
tions is * = {87, S5}, where ST =8, S& =S, and
f*=1.The values of all types of tolerances are exposed
in the following two tables:

x| x| x| X3
u(x) | 0 |1 |+o0
ug(x)| 0 | 1]+o0
Ugss(x)|+oo| 1 |+00

X x| x|x;
€(x) |0
Cs:(x) |[+o0| +00] 1
ts(x)| 0

3. EXTREMAL VALUES OF TOLERANCES

In this section we gather the main results of the
paper concerning the extremal values of global upper
and lower tolerances.

Assume that the COP (X, C, &, f) is canonical.

We say that the collection of feasible solutions &
consists of nonembedded (into each other) sets pro-

vided S\S, # ¢ forall S}, S, € &, S, # S,
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Theorem 1. (a) If & consists of nonembedded sets
and S¥ € &*, then

min €(y) = min {(y)

y e X\S* y e X\(nF*)

= min u(x) = minu(x).
x e Ud* xed*

(b) If the collection of feasible solutions & is arbi-
trary, then
min €(y) < min u(x)
y e X\(NnF*) xeud*
< min (),
y e N\[(nF*) U (WFy)]
where ¥y ={S, € ¥+ UF* < Sy} (min® = +o0). In par-
ticular, if sets from F are nonembedded, then ¥, = ¢
and min {€(y) = min u(x).
ye X\(NnF*) xeud*
(c) If the cost function C is positive and S* € $* then

( min €(y) < min u(x) < minu(x))
y e X\S* x e Uy x e S*
< min €(y) < min €(y),
e X\(nFH) U (UF,)] ¥ e N[S* U (UFy)]
where £y = F((5*%) = {S, € & §* < S,}.

Appropriate examples show that the assumptions
in Theorem 1 are essential for its validity and all ine-
qualities may be strict.

The case of maximal values of global upper and glo-
bal lower tolerances seems to be more difficult. We
have the following partial result, in which notations
introduced before Lemma 2 are applied.

Theorem 2. Suppose that the collection of feasible
solutions ¥ of the COP (X, C, &, f) consists of nhonem-
bedded sets and S* € $* is the unique optimal solution
of the COP. We have:

@ ¥ (U O @FNS* = NS dhen

xe =

max €(y) < maxu (x);

y e X\S§* x e §*
O S c U X\NOIL.WI¥), then maxu (x) <
y e X\S* x e S*
max €(y).
y e X\S*
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