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Finite Sample Bernstein – von Mises Theorem
for Semiparametric Problems

Maxim Panov∗ and Vladimir Spokoiny†

Abstract. The classical parametric and semiparametric Bernstein – von Mises
(BvM) results are reconsidered in a non-classical setup allowing finite samples and
model misspecification. In the case of a finite dimensional nuisance parameter we
obtain an upper bound on the error of Gaussian approximation of the posterior
distribution for the target parameter which is explicit in the dimension of the nui-
sance and target parameters. This helps to identify the so called critical dimension
pn of the full parameter for which the BvM result is applicable. In the important
i.i.d. case, we show that the condition “p3n/n is small” is sufficient for the BvM
result to be valid under general assumptions on the model. We also provide an
example of a model with the phase transition effect: the statement of the BvM
theorem fails when the dimension pn approaches n1/3 . The results are extended
to the case of infinite dimensional parameters with the nuisance parameter from
a Sobolev class.

Keywords: prior, posterior, Bayesian inference, semiparametric, critical
dimension.

1 Introduction
The prominent Bernstein – von Mises (BvM) theorem claims that the posterior mea-
sure is asymptotically normal with the mean close to the maximum likelihood estimator
(MLE) and the posterior variance is nearly the inverse of the total Fisher information
matrix. The BvM result provides a theoretical background for Bayesian computations
of the MLE and its variance. Also it justifies usage of elliptic credible sets based on the
first two moments of the posterior. The classical version of the BvM Theorem is stated
for the standard parametric setup with a fixed parametric model and large samples; see
Le Cam and Yang (1990); van der Vaart (2000) for a detailed overview. However, in
modern statistics applications one often faces very complicated models involving a lot
of parameters and with a limited sample size. This requires an extension of the classical
results to this non-classical situation. We mention Cox (1993); Freedman (1999); Ghosal
(1999); Johnstone (2010) and references therein for some special phenomena arising in
the Bayesian analysis when the parameter dimension increases. Already consistency of
the posterior distribution in nonparametric and semiparametric models is a nontrivial
problem; cf. Schwartz (1965) and Barron et al. (1996). Asymptotic normality of the
posterior measure for these classes of models is even more challenging; see e.g. Shen
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(2002). Some results for particular semi and nonparametric problems are available from
Kim and Lee (2004); Kim (2006); Leahu (2011); Castillo and Nickl (2013). Cheng and
Kosorok (2008) obtained a version of the BvM statement based on a high order expan-
sion of the profile sampler. The recent paper by Bickel and Kleijn (2012) extends the
BvM statement from the classical parametric case to a rather general i.i.d. framework.
Castillo (2012) studies the semiparametric BvM result for Gaussian process functional
priors. In Rivoirard and Rousseau (2012) a semiparametric BvM theorem is derived
for linear functionals of density and in forthcoming work (Castillo and Rousseau, 2013)
the result is generalized to a broad class of models and functionals. However, all these
results are limited to the asymptotic setup and to some special classes of models like
i.i.d. or Gaussian.

In this paper we reconsider the BvM result for the parametric component of a gen-
eral semiparametric model. An important feature of the study is that the sample size is
fixed, we proceed with just one sample. A finite sample theory is especially challenging
because most notions, methods and tools in the classical theory are formulated in the
asymptotic setup with growing sample size. Only a few finite sample general results are
available; see e.g. the recent paper by Boucheron and Massart (2011). This paper focuses
on the semiparametric problem when the full parameter is large or infinite dimensional
but the target is low dimensional. In the Bayesian framework, the aim is the marginal
of the posterior corresponding to the target parameter; cf. Castillo (2012). Typical ex-
amples are provided by functional estimation, estimation of a function at a point, or
simply by estimating a given subvector of the parameter vector. An interesting feature
of the semiparametric BvM result is that the nuisance parameter appears only via the
effective score and the related efficient Fisher information; cf. Bickel and Kleijn (2012).
The methods of study heavily rely on the notion of the hardest parametric submodel.
In addition, one assumes that an estimate of the nuisance parameter is available which
ensures a certain accuracy of estimation; see Cheng and Kosorok (2008) or Bickel and
Kleijn (2012). This essentially simplifies the study but does not allow to derive a quali-
tative relation between the full dimension of the parameter space and the total available
information in the data.

Some recent results study the impact of a growing parameter dimension pn on the
quality of Gaussian approximation of the posterior. We mention Ghosal (1999, 2000),
Boucheron and Gassiat (2009), Johnstone (2010) and Bontemps (2011) for specific ex-
amples. See the discussion after Theorem 4 below for more details.

In this paper we show that the bracketing approach of Spokoiny (2012) can be
used for obtaining a finite sample semiparametric version of the Bernstein – von Mises
theorem even if the full parameter dimension grows with the sample size. The ultimate
goal of this paper is to quantify the so called critical parameter dimension for which
the BvM result can be applied. Our approach neither relies on a pilot estimate of
the nuisance and target parameter nor involves the notion of the hardest parametric
submodel. In the case of finite dimensional nuisance the obtained results only require
some smoothness of the log-likelihood function, its finite exponential moments, and some
identifiability conditions. Further we specify this result to the i.i.d. setup and show that
the imposed conditions are satisfied if p3n/n is small. We present an example showing
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that the dimension pn = O(n1/3) is indeed critical and the BvM result starts to fail
if pn grows over n1/3 . If the nuisance is infinite dimensional then additionally some
smoothness of the nonparametric part is required. We state the general BvM results
and show the validity of the BvM result for linear and generalized linear models with
the nuisance parameter from the Sobolev class and a uniform sieve prior distribution
on the parameter space.

Now we describe our setup. Let Y denote the observed random data, and IP denote
the data distribution. The parametric statistical model assumes that the unknown data
distribution IP belongs to a given parametric family (IPυ) :

Y ∼ IP = IPυ∗ ∈ (IPυ, υ ∈ Υ ),

where Υ is some parameter space and υ∗ ∈ Υ is the true value of parameter. In the
semiparametric framework, one attempts to recover only a low dimensional component

θ of the whole parameter υ . This means that the target of estimation is θ∗ def
= Π0υ

∗

for some mapping Π0 : Υ → IRq , and q ∈ N stands for the dimension of the target.
Usually in the classical semiparametric setup, the vector υ is represented as υ = (θ,η) ,
where θ is the target of analysis while η is the nuisance parameter. We refer to this
situation as the (θ,η) -setup and our presentation follows this setting. An extension to
the υ -setup with θ = Π0υ is straightforward. Also for simplicity we first develop our
results for the case when the total parameter space Υ is a subset of the Euclidean space
of dimensionality p .

Another issue addressed in this paper is the model misspecification. In the most of
practical problems, it is unrealistic to expect that the model assumptions are exactly
fulfilled, even if some rich nonparametric models are used. This means that the true
data distribution IP does not belong to the considered family (IPυ ,υ ∈ Υ ) . The “true”
value υ∗ of the parameter υ can defined by

υ∗ def
= argmax

υ∈Υ
IEL(υ), (1)

where L(υ) = log dIPυ

dμ0
(Y ) is the log-likelihood function of the family (IPυ) for some

dominating measure μ0 . Under model misspecification, υ∗ defines the best parametric
fit to IP by the considered family; cf. Chernozhukov and Hong (2003), Kleijn and
van der Vaart (2006, 2012) and references therein. The target θ∗ is defined by the
mapping Π0 :

θ∗ def
= Π0υ

∗.

Now we switch to the Bayesian set-up. Let π be a prior measure on the parameter
set Υ . Below we study the properties of the posterior measure which is the random
measure on Υ describing the conditional distribution of υ given Y and obtained by
normalization of the product exp

{
L(υ)

}
π(dυ) . This relation is usually written as

υ | Y ∝ exp
{
L(υ)

}
π(dυ). (2)
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An important feature of our analysis is that L(υ) is not assumed to be the true log-
likelihood. This means that a model misspecification is possible and the underlying data
distribution can be beyond the considered parametric family. In this sense, the Bayes
formula (2) describes a quasi posterior ; Chernozhukov and Hong (2003). Below we
show that smoothness of the log-likelihood function L(υ) ensures a kind of a Gaussian
approximation of the posterior measure. Our focus is to describe the accuracy of such
approximation as a function of the parameter dimension p and the other important
characteristics of the model.

We suppose that the prior measure π has a positive density π(υ) w.r.t. to the
Lebesgue measure on Υ : π(dυ) = π(υ)dυ . Then (2) can be written as

υ | Y ∝ exp
{
L(υ)

}
π(υ). (3)

The famous Bernstein – von Mises (BvM) theorem claims that the posterior centered
by any efficient estimator υ̃ of the parameter υ∗ (for example the MLE) and scaled
by the total Fisher information matrix is nearly standard normal:

D0(υ − υ̃) | Y w−→ N(0, IIp) ,

where IIp is an identity matrix of dimension p .

An important feature of the posterior distribution is that it is entirely known and
can be numerically assessed. If we know in addition that the posterior is nearly normal,
it suffices to compute its mean and variance for building the concentration and credible
sets. The BvM result does not require the prior distribution to be proper and the
phenomenon can be observed in the case of improper priors as well (for examples, see
Bochkina and Green (2014)).

In this work we investigate the properties of the posterior distribution for the target
parameter ϑ

∣∣Y = Π0υ
∣∣Y . In this case (3) can be written as

ϑ | Y ∝
∫

exp
{
L(υ)

}
π(υ)dη. (4)

The BvM result in this case transforms into

D̆0(ϑ− θ̃) | Y w−→ N(0, IIq) ,

where IIq is an identity matrix of dimension q , θ̃ = Π0υ̃ , and D̆2
0 is given in (6).

We consider two important classes of priors, namely non-informative and flat Gaus-
sian priors. Our goal is to show under mild conditions that the posterior distribution
of the target parameter (4) is close to a prescribed Gaussian law even for finite sam-
ples. The other important issue is to specify the conditions on the sample size and the
dimension of the parameter space for which the BvM result is still applicable.
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2 BvM Theorem with a finite dimensional nuisance

This section presents our main results for the case of a finite dimensional parameter υ ,
i.e. dim(Υ ) = p < ∞ . One of the main elements of our construction is a p× p matrix
D2

0 which is defined similarly to the Fisher information matrix:

D2
0

def
= −∇2IEL(υ∗). (5)

Here and in what follows we work under conditions which are close to the classical
conditions of a regular parametric family (see Ibragimov and Khas’minskij (1981)) and
assume that the log-likelihood function L(υ) is sufficiently smooth in υ , ∇L(υ) stands
for its gradient and ∇2IEL(υ) for the Hessian of the expectation IEL(υ) , and the true
value υ∗ is due to (1). Also define the score

ξ
def
= D−1

0 ∇L(υ∗).

Under our conditions we can permute expectation and differentiation of the likelihood
and thus the definition of υ∗ implies ∇IEL(υ∗) = 0 and hence, IEξ = 0 .

For the (θ,η) -setup, we consider the block representation of the vector ∇L(υ∗)
and of the matrix and D2

0 from (5):

∇L(υ∗) =

(
∇θ

∇η

)
, D2

0 =

(
D2

0 A0

A�
0 H2

0

)
.

Define also the q × q matrix D̆2
0 and random vectors ∇̆θ, ξ̆ ∈ IRq as

D̆2
0

def
= D2

0 −A0H
−2
0 A�

0 , (6)

∇̆θ
def
= ∇θ −A0H

−2
0 ∇η,

ξ̆
def
= D̆−1

0 ∇̆θ. (7)

The q×q matrix D̆2
0 is usually called the efficient Fisher information matrix, while the

random vector ξ̆ ∈ IRq is the efficient score. Everywhere in the text for a vector a we
denote by ‖a‖ its Euclidean norm and for a matrix A we denote by ‖A‖ its operator
norm.

2.1 Conditions

Our results assume a number of conditions to be satisfied. The list is essentially as in
Spokoiny (2012), one can find there some discussion and examples showing that the
conditions are not restrictive and are fulfilled in most classical models used in statistical
studies like i.i.d., regression or generalized linear models. The conditions are split into
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local and global. The local conditions only describe the properties of the process L(υ)
for υ ∈ Υ0(r0) with some fixed value r0 :

Υ0(r0)
def
=

{
υ ∈ Υ : ‖D0(υ − υ∗)‖ ≤ r0

}
.

The global conditions have to be fulfilled on the whole Υ . Define the stochastic com-
ponent ζ(υ) of L(υ) :

ζ(υ)
def
= L(υ)− IEL(υ)

and introduce the notation

L(υ,υ∗)
def
= L(υ)− L(υ∗)

for the (quasi) log-likelihood ratio. We start with some exponential moments conditions.

(ED0) There exists a constant ν0 > 0 , a positive symmetric p×p matrix V2
0 satisfying

Var{∇ζ(υ∗)} ≤ V2
0 , and a constant g > 0 such that

sup
γ∈IRp

log IE exp

{
μ
〈∇ζ(υ∗),γ〉

‖V0γ‖

}
≤ ν20μ

2

2
, |μ| ≤ g.

(ED2) There exists a constant ν0 > 0 , a constant ω > 0 and for each r > 0 a
constant g(r) > 0 such that for all υ ∈ Υ0(r) :

sup
γ1,γ2∈IRp

log IE exp

{
μ

ω

γ�
1 ∇2ζ(υ)γ2

‖D0γ1‖ · ‖D0γ2‖

}
≤ ν20μ

2

2
, |μ| ≤ g(r).

The next condition is needed to ensure some smoothness properties of expected
log-likelihood IEL(υ) in the local zone υ ∈ Υ0(r0) . Define

D2
0(υ)

def
= −∇2IEL(υ).

Then D2
0 = D2

0(υ
∗) .

(L0) There exists a constant δ(r) such that it holds on the set Υ0(r) for all r ≤ r0∥∥D−1
0 D2

0(υ)D
−1
0 − IIp

∥∥ ≤ δ(r).

The global identification condition is:

(Lr) For any r there exists a value b(r) > 0 , such that rb(r) → ∞ , r → ∞ and

−IEL(υ,υ∗) ≥ r2b(r) for all υ with r = ‖D0(υ − υ∗)‖.
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Finally we specify the identifiability conditions. We begin by representing the infor-
mation and the covariance matrices in block form:

D2
0 =

(
D2

0 A0

A�
0 H2

0

)
, V2

0 =

(
V 2
0 B0

B�
0 Q2

0

)
.

The identifiability conditions in Spokoiny (2012) ensure that the matrix D2
0 is positive

and satisfied a2D2
0 ≥ V2

0 for some a > 0 . Here we restate these conditions in the special
block form which is specific for the (θ,η) -setup.

(I) There are constants a > 0 and ν < 1 such that

a2D2
0 ≥ V 2

0 , a2H2
0 ≥ Q2

0, a2D2
0 ≥ V2

0. (8)

and

‖D−1
0 A0H

−2
0 A�

0 D
−1
0 ‖ ≤ ν. (9)

The quantity ν bounds the angle between the target and nuisance subspaces in the
tangent space. The regularity condition (I) ensures that this angle is not too small and
hence, the target and nuisance parameters are identifiable. In particular, the matrix D̆2

0

from (6) is well posed under (I) . The bounds in (8) are given with the same constant
a only for simplifying the notation. One can show that the last bound on D2

0 follows
from the first two and (9) with another constant a′ depending on a and ν only.

2.2 The main results

First we state the BvM result about the properties of the ϑ -posterior given by (4) in
the case of a uniform prior that is, π(υ) ≡ 1 on Υ . Define

ϑ
def
= IE

(
ϑ
∣∣Y )

, S2 def
= Cov(ϑ

∣∣Y )
def
= IE

{
(ϑ− ϑ)(ϑ− ϑ)�

∣∣Y }
. (10)

Also define

θ◦ def
= θ∗ + D̆−1

0 ξ̆,

where D̆0 and ξ̆ are defined by (6) and (7) respectively. The random point θ◦ can

be viewed as a first order approximation of the profile MLE θ̃ . Below we present a
version of the BvM result in the considered nonasymptotic setup which claims that ϑ
is close to θ◦ , S2 is nearly equal to D̆−2

0 , and D̆0

(
ϑ− θ◦) is nearly standard normal

conditionally on Y .

We suppose that a large constant x is fixed which specifies random events Ω(x)
of dominating probability. We say that a generic random set Ω(x) is of dominating
probability if

IP
(
Ω(x)

)
≥ 1− Ce−x.
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The notation C is for a generic absolute constant and x is for a positive value ensuring
that e−x is negligible. The exact values of C will be specified in each particular case.
The formulation of the results also involve the radius r0 and the spread Δ(r0, x) . The
radius r0 separates the local zone Υ◦(r0) which is a vicinity of the central point υ∗ ,
and its complement Υ \ Υ◦(r0) for which we establish a large deviation result. The
spread value Δ(r0, x) measures the quality of local approximation of the log-likelihood
L(υ,υ∗) by a quadratic process L(υ,υ∗) :

Δ(r0, x)
def
=

{
δ(r0) + 6ν0 zH(x)ω

}
r20.

Here the term δ(r0)r
2
0 measures the error of a quadratic approximation of the expected

log-likelihood L(υ) due to (L0) , while the second term 6ν0 zH(x)ω r20 controls the
stochastic term and involves the entropy of the parameter space which is involved in
the definition of zH(x) . A precise formulation is given in Theorem 9 below.

Theorem 1. Suppose the conditions of Section 2.1. Let the prior be uniform on Υ .
Then there exists a random event Ω(x) of probability at least 1 − 4e−x such that it
holds on Ω(x)

‖D̆0(ϑ− θ◦)‖2 ≤ 4Δ(r0, x) + 16e−x,∥∥IIq − D̆0S
2D̆0

∥∥ ≤ 4Δ(r0, x) + 16e−x,

where ϑ and S2 are from (10).

Moreover, on Ω(x) for any measurable set A ⊆ IRq

exp
(
−2Δ(r0, x)− 8e−x

)
IP

(
γ ∈ A

)
− e−x

≤ IP
(
D̆0(ϑ− θ◦) ∈ A

∣∣Y )
≤ exp

(
2Δ(r0, x) + 5e−x

)
IP

(
γ ∈ A

)
,

where γ is a standard Gaussian vector in R
q .

The condition “Δ(r0, x) is small” yields the desirable BvM result, that is, the pos-
terior measure after centering and standardization is close in total variation to the stan-
dard normal law. The classical asymptotic results immediately follow for many classical
models (see discussion in Section 4). The next corollary extends the previous result by
using empirically computable objects.

Corollary 1. Under the conditions of Theorem 1 for any measurable set A ⊆ IRq a
random event Ω(x) of a dominating probability at least 1− 4e−x

exp
(
−2Δ(r0, x)− 8e−x

){
IP

(
γ ∈ A

)
− τ

}
− e−x

≤ IP
(
S−1(ϑ− ϑ) ∈ A

∣∣Y )
≤ exp

(
2Δ(r0, x) + 5e−x

){
IP

(
γ ∈ A

)
+ τ

}
,



M. Panov and V. Spokoiny 673

where γ is a standard Gaussian vector in R
q and

τ
def
=

1

2

(
qΔ2(r0, x) +

{
1 +Δ(r0, x)

}2
Δ2(r0, x)

)
.

This corollary is important as in practical applications we do not know matrix
D̆0 and vector θ◦ , but matrix S−1 and vector ϑ can be computed by numerical
computations. If dimension q is fixed the result becomes informative under the condition
“Δ(r0, x) is small”. Moreover, the statement can be extended to situations when the
target dimension q grows but Δ(r0, x) q

1/2 is still small.

2.3 Extension to a flat Gaussian prior

The previous results for a non-informative prior can be extended to the case of a flat
prior Π(dυ) . To be more specific we restrict ourselves to the case of a Gaussian prior.
This is a prototypic situation because any smooth prior can be locally approximated by
a Gaussian one. Without loss of generality the prior mean will be set to zero:

Π = N(0, G−2)

with the density

π(υ) ∝ exp
{
−‖Gυ‖2/2

}
for some positive symmetric matrix G2 .

The non-informative prior can be viewed as a limiting case of a Gaussian prior
as G → 0 . We are interested in quantifying this relation. How small should G be
to ensure the BvM result? To explain the result, we first consider the Gaussian case
when IPυ = N(υ,D−2

0 ) and υ∗ is the true point. It is well known that in this situa-
tion the non-informative prior leads to the Gaussian posterior N(υ∗,D−2

0 ) , while the
Gaussian prior Π yields again the Gaussian posterior with the covariance D−2

G for
D2

G = D2
0 +G2 and mean υ∗

G = D−2
G D2

0υ
∗ . Therefore, the prior does not significantly

affect the posterior if two Gaussian measures N(υ∗,D−2
0 ) and N(υ∗

G,D
−2
G ) are nearly

equivalent. The corresponding condition is represented in Lemma 8. It requires the val-
ues ‖D−1

0 D2
GD

−1
0 −IIq‖ = ‖D−1

0 G2D−1
0 ‖ , tr(D−1

0 D2
GD

−1
0 −IIq)

2 = tr(D−1
0 G2D−1

0 )2 and
‖DG(υ

∗ − υ∗
G)‖ � ‖D−1

G G2υ∗‖ to be small.

Theorem 2. Suppose the conditions of Theorem 1. Let also Π = N(0, G−2) be a
Gaussian prior measure on IRp such that

‖D−1
0 G2D−1

0 ‖ ≤ ε ≤ 1/2, tr
(
D−1

0 G2D−1
0

)2 ≤ δ2, ‖D−1
G G2υ∗‖ ≤ β,

where δ and β are given constants. Then it holds on a set Ω(x) of probability 1−5e−x

IP
(
D̆0(ϑ− θ◦) ∈ A

∣∣Y )
≥ exp

(
−2Δ(r0, x)− 8e−x

){
IP

(
γ ∈ A

)
− τ

}
− e−x,

IP
(
D̆0(ϑ− θ◦) ∈ A

∣∣Y )
≤ exp

(
2Δ(r0, x) + 5e−x

){
IP

(
γ ∈ A

)
+ τ

}
+ e−x,
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where

τ
def
=

1

2

√
(1 + ε)

(
3β + εzB(x)

)2
+ δ2

and the quantile function zB(x) is defined in (33).

Similar conditions and results can be found in the literature for more specific models.
In particular, Bontemps (2011) or Johnstone (2010) explored the Gaussian case; see
Section 5.1 below for a more detailed comparison.

3 Infinite dimensional nuisance

This section describes how previous results can be extended to the case where the
nuisance is infinite dimensional. More specifically, we consider the (θ,f) -setup, where
θ ∈ Θ ⊆ R

q and f ∈ H for some Hilbert space H . Suppose that in H exists a
countable basis e1, e2, . . . . Then

f = f(φ) =

∞∑
j=1

φjej ∈ H,

where a vector φ = {φj}∞j=1 ∈ �2 and φj = 〈f , ej〉 .
Let the likelihood for the full model be L(θ,f) . Denote with υ = (θ,φ)

L(υ) = L(θ,φ) = L(θ,f(φ)).

The underlying full and target parameters can be defined by maximizing the expected
log-likelihood:

υ∗ def
= argmax

υ=(θ,φ)

IEL(υ), θ∗ def
= Π0υ

∗. (11)

Also define the information matrix D2
0 for the full parameter υ and the efficient infor-

mation matrix D̆2 for the target θ :

D2
0

def
= ∇2IE[L(υ∗)] ∈ Lin(�2, �2),

D̆2
0

def
=

(
Π0D

−2
0 Π�

0

)−1 ∈ IRq×q,

where Lin(�2, �2) is the space of linear operators from �2 to �2 .

We apply the sieve approach and use an uninformative finite dimensional prior for
the parameters θ and φ . The question under consideration is how the sieve truncation
affects the posterior properties.
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Let η = {ηj}mj=1 be the sieve projection of the full parameter φ . For notational
convenience represent φ = (η,κ) and the sieve approximation corresponds to κ ≡ 0.
Write the “true” point υ∗ in the form υ∗ = (θ∗,η∗,κ∗) . Approximation of the func-
tional nuisance parameter φ by the m -dimensional parameter η leads to two sources
of bias due to projection of the functional parameter onto the finite dimensional space
spanned by the first m basis functions. The first one is caused by ignoring the trimmed
component κ . The “sieved” target θ∗

s defined as

θ∗
s

def
= argmax

θ
max
η

IEL(θ,η, 0),

can be different from the truth θ∗ . The other one is caused by change of the efficient
Fisher information D̆2 by its sieve counterpart D̆2

s . The bias terms can be bounded
under smoothness assumptions on the model and on the functional nuisance parameter
f using the standard methods of approximation theory. To avoid tedious calculus we
simply assume a kind of consistency of the sieve approximation. The notation simplifies
if we also assume that the basis em in the space H is selected to provide orthogonality
of the corresponding block H2 of the Fisher information matrix, that is, H2 = IIf . Of
course, this implies the same structure of its blocks H2

η and H2
κ
. Note that the general

situation can be reduced to this orthogonal case by a simple linear transformation of
the nuisance parameter φ . This allows to represent the total Fisher matrix in the form

D2
0 =

⎛⎜⎝ D2
θ Aθη Aθκ

A�
θη IIη 0

A�
θκ 0 IIκ

⎞⎟⎠ . (12)

First we specify the required conditions. The first one is a kind of semi parametric iden-
tifiability and it allows to separate the target and the nuisance parameters. Formally it
requires that the angle between two tangent subspaces for these parameters is separated
away from zero:

(Is) For ν < 1 , it holds

‖D−1
θ AθηA

�
θηD

−1
θ ‖ ≤ ν.

The smoothness conditions on θ and φ are expressed via the component κ
∗ of

υ∗ and the block Aθκ of D2
0 .

(B) It holds with ρs , bs ≤ 1/2

‖D−1
θ Aθκκ

∗‖ ≤ ρs,

‖D−1
θ AθκA

�
θκD

−1
θ ‖ ≤ bs ≤ 1/2.



676 Finite Sample BvM Theorem for Semiparametric Problems

For validity of our results we will need that the value of m is fixed in a proper way
ensuring that the values of ρs and bs are sufficiently small. These values can be upper
bounded under the usual smoothness conditions on f , e.g. if f belongs to a Sobolev
ball with a certain regularity; cf. Bontemps (2011); Bickel and Kleijn (2012); Castillo
(2012). See also an example of computing the quantities ρs and bs in Section 5.3 below.

Consider a non-informative sieve prior which is uniform on (θ,η) sieve component
of the full parameter and puts singular mass at point 0 for the remaining components of
the nuisance parameter {ηj}∞j=m+1 . We focus on the posterior distribution of the target
parameter. It is assumed that the conditions of Theorem 1 and Corollary 1 are fulfilled
for the sieve prior. For the efficient Fisher information matrix D̆2

s and the vectors θ∗
s

and θ◦
s defined as

D̆2
s

def
= D2

θ −AθηA
�
θη,

θ◦
s

def
= θ∗

s + D̆−1
s ξ̆s = θ∗

s + D̆−1
s

(
∇θ −Aθη∇η

)
,

Theorem 1 ensures the BvM result for the sieve non-informative prior on θ and η : the
θ -posterior is approximated by the Gaussian measure N(θ◦

s , D̆
−2
s ) . The main question

is whether the side truncation introduces a significant bias in the posterior distribution.
For the full semiparametric model, define

D̆2 def
= D2

θ −AθφA
�
θφ,

θ◦ def
= θ∗ + D̆−1ξ̆ = θ∗ + D̆−1(∇θ −Aθφ∇φ).

The vector θ◦ is the efficient score and D̆2 is the efficient Fisher matrix and they
naturally appear in the infinite dimensional Gaussian case as the posterior mean and
influence matrix for the improper non-informative prior. The next result accomplishes
Theorem 1. Under our identifiability condition (Is) and the smoothness condition (B) ,
it allows to measure the distance between the Gaussian measure N(θ◦

s , D̆
−2
s ) which

approximates the sieve posterior, with the Gaussian measure N(θ◦, D̆−2) corresponding
to the full-dimensional prior. Due to Lemma 8 these two measures are close to each other
if the ratio of two matrices D̆−1

s D̆2D̆−1
s is close to identity and the normalized mean

difference D̆(θ◦ − θ◦
s) is small.

Theorem 3. Consider a semiparametric model with a quasi log-likelihood L(θ,φ) . The

true value (θ∗,φ∗) is given by (11). Let D2
0

def
= −∇2IEL(θ∗,φ∗) be the corresponding

Fisher operator. Suppose that the nuisance parameter φ is rescaled to ensure that the
corresponding φ -block of D2

0 is identity. Let (η, 0) be a sieve approximation of the
functional nuisance parameter φ = (η,κ) , and (12) be the related block representation
of D2

0 . Suppose the identifiability condition (Is) and the smoothness condition (B) .
Then the efficient Fisher information matrices D̆2 = D2

θ − AθφA
�
θφ and D̆2

s = D2
θ −

AθηA
�
θη in the full and sieve models are related by∥∥D̆−1

s D̆2D̆−1
s − IIq

∥∥ ≤ (1− ν)−1ρs,

tr
{
(D̆−1

s D̆2D̆−1
s − IIq)

2
}
≤ (1− ν)−2q ρ2s.
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The target parameter θ∗ and its sieve counterpart θ∗
s are related by∥∥D̆(θ∗ − θ∗

s)
∥∥ ≤ (1− ν)−1bs + δ(rs)rs , (13)

where rs = ‖κ∗‖ . Moreover, if θ◦ = θ∗ + D̆−1ξ̆ and θ◦
s = θ∗

s + D̆−1
s ξ̆s , then it holds

with ξ
κ

def
= ρ−1

s D−1
θ Aθκ∇κ∥∥D̆(θ◦ − θ◦

s)
∥∥ ≤ (1− ν)−1ρs

(
‖ξ̆s‖+ ‖ξ

κ
‖
)
+ (1− ν)−1bs + δ(rs)rs . (14)

Finally, under (ED0) and (I) , it holds on a set Ω(x) with IP
(
Ω(x)

)
≥ 1− 4ex∥∥D̆(θ◦ − θ◦

s)
∥∥ ≤ 2a(1− ν)−1ρs

(
q1/2 + 2x

)
+ (1− ν)−1bs + δ(rs)rs . (15)

We conclude that the sieve prior does a good job if the quantities q1/2ρs and bs
are small and ‖κ∗‖ is not large.

4 The i.i.d. case and critical dimension

This section comments on how the previously obtained general results can be linked
to the classical asymptotic results in the statistical literature. The nice feature of the
whole approach based on the local bracketing is that all the results are stated under
the same list of conditions: once checked one can directly apply any of the mentioned
results. Typical examples include i.i.d., generalized linear models (GLM), and median
regression models. Here we briefly discuss how the BvM result can be applied to one
typical case, namely, to an i.i.d. experiment.

Let Y = (Y1, . . . , Yn)
� be an i.i.d. sample from a measure P . Here we suppose the

conditions of Section 5.1 in Spokoiny (2012) on P and (Pυ) to be fulfilled. We admit
that the parametric assumption P ∈ (Pυ,υ ∈ Υ ) can be misspecified and consider the
asymptotic setup with the full dimension p = pn which depends on n and grows to
infinity as pn → ∞ .

Theorem 4. Suppose the conditions of Section 5.1 in Spokoiny (2012). Let also pn →
∞ and p3n/n → 0 . Then the result of Theorem 1 holds with Δ(r0, x) = C

√
p3n/n ,

D2
0 = nFυ∗ , where Fυ∗ is the Fisher information of (Pυ) at υ∗ .

A similar result about asymptotic normality of the posterior in a linear regression
model can be found in Ghosal (1999). However, the convergence is proved under the
condition p4n log(pn)/n → 0 which appears to be too strong. Ghosal (2000) showed that
the dimensionality constraint can be relaxed to p3n/n → 0 for exponential models with
a product structure. Boucheron and Gassiat (2009) proved the BvM result in a specific
class of i.i.d. model with discrete probability distribution under the condition p3n/n →
0 . Further examples and the related conditions for Gaussian models are presented in
Johnstone (2010).
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4.1 Critical dimension

This section discusses the issue of a critical dimension. Namely we show that the condi-
tion pn = o(n1/3) in Theorem 4 for the validity of the BvM result cannot be dropped or
relaxed in a general situation. Namely, we present an example for which p3n/n ≥ β2 > 0
and the posterior distribution does not concentrate around MLE.

Let n and pn be such that Mn = n/pn is an integer. We consider a simple Pois-

sonian model with Yi ∼ Poisson(υj) for i ∈ Ij , where Ij def
= {i : �i/Mn� = j} for

j = 1, . . . , pn and �x� is the nearest integer greater or equal to x . Let also uj = log υj
be the canonical parameter. The log-likelihood L(u) with u = (u1, . . . , upn) reads as

L(u) =

pn∑
j=1

(
Zjuj −Mne

uj
)
,

where

Zj
def
=

∑
i∈Ij

Yi .

We consider the problem of estimating the mean of the uj ’s:

θ =
1

pn

(
u1 + . . .+ upn

)
.

Below we study this problem in the asymptotic setup with pn → ∞ as n → ∞ when
the underlying measure IP corresponds to u∗

1 = . . . = u∗
pn

= u∗ for some u∗ yielding
θ∗ = u∗ . The value u∗ will be specified later. We consider an i.i.d. exponential prior
on the parameters υj of Poisson distribution:

υj ∼ Exp(μ).

Below we allow that μ may depend on n . Our results are valid for μ ≤ C
√

n
logn . The

posterior is Gamma distributed:

υj
∣∣Y ∼ Gamma(αj , μj),

where αj = 1 +
∑

i∈Ij
Yi , μj =

μ
Mnμ+1 .

First we describe the profile maximum likelihood estimator θ̃n of the target param-
eter θ . The MLE for the full parameter υ reads as υ̃ = (υ̃1, . . . , υ̃pn)

� with

υ̃j = Zj/Mn.

Thus, the profile MLE θ̃n reads as

θ̃n =
1

pn

pn∑
j=1

log(υ̃j).
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Figure 1: Posterior distribution of β−1
n pn

(
θ − θ̃n

)
for βn = 1/ log(pn) , βn = 1 , and

βn = log(pn) . Solid line is for posterior mean and dashed line is for true mean.

Furthermore, the efficient Fisher information D̆2
0 is equal to p−1

n n ; see Lemma 11 below.

As θ̃n is the profile MLE it is efficient with the asymptotic variance equal to D̆−2
0 .

Theorem 5. Let Yi ∼ Poisson(υ∗) for all i = 1, . . . , n , υ∗ = 1/pn . Then

1. If p3n/n → 0 as pn → ∞ , then

p1/2n n1/2
(
θ − θ̃n

) ∣∣Y w−→ N(0, 1).

2. Let p3n/n ≡ β > 0 . Then

p1/2n n1/2
(
θ − θ̃n

) ∣∣Y w−→ N(β/2, 1).

3. If p3n/n → ∞ , but p4n/n
3/2 → 0 , then

p1/2n n1/2
(
θ − θ̃n

) ∣∣Y w−→ ∞.

We carried out a series of experiments to numerically demonstrate the results of
Theorem 5. The dimension of parameter space was fixed pn = 10000 . Three cases were
considered:

1. p
3/2
n /n1/2 = 1

log pn
, which corresponds to p3n/n → 0, n → ∞ .

2. p
3/2
n /n1/2 ≡ 1 .

3. p
3/2
n /n1/2 = log pn , which corresponds to p3n/n → ∞, n → ∞ .

For each sample 10000 realizations of Y were generated from the exponential distribu-
tion Exp(υ∗) and so were corresponding posterior values θ

∣∣Y . The resulting posterior
distribution for three cases is demonstrated in Figure 1. It can be easily seen that the
results of Theorem 5 are numerically confirmed.
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5 Examples

This section presents a number of examples illustrating the general results of Section 2.

5.1 Linear Gaussian regression and a flat Gaussian prior

Let Y = (Y1, . . . , Yn)
� be a random vector in R

n following the equation

Y = f + ε = Ψ�υ∗ + ε, (16)

where the errors ε = (ε1, . . . , εn)
� are independent zero mean, and Ψ is a given

p × n design matrix. The mean vector f ∈ R
n is unknown and the second equation

in (16) means that it belongs to some given p -dimensional linear subspace in R
n :

f = Ψ�υ∗ for an unknown target vector υ∗ ∈ R
p . We write the matrix Ψ in the form

Ψ = {Ψ1, . . . , Ψn} , so that fi = Ψ�
i υ∗ . Below we suppose that n > p and the rank of

Ψ is p , or, equivalently, the rows of Ψ are linearly independent vectors in R
n .

First, we consider the Gaussian case, i.e. εi ∈ N(0, σ2
nIIn) , i = 1, . . . , n , with IIn

being the n × n identity matrix. The variance of observations σ2
n is known but may

depend on sample size n . For ease of comparison, we assume that the design matrix Ψ
fulfills Ψ�Ψ = IIp . In our notation, this implies D2

0 = σ−2
n IIp .

For a Gaussian prior, the posterior is exactly Gaussian and the Fisher and Wilks
approximations are also exact. If a non-informative prior is used then the only necessary
condition for validity of the BvM result is p = pn = o(n) ; see Bontemps (2011).
Johnstone (2010) showed that the BvM result can be extended to the situation with
a growing parameter dimension p = pn and a flat Gaussian prior with a covariance
matrix τ2nIIn under the condition “ (σn/τn)

4pn is small” and “ (σn/τ
2
n)‖υ∗‖ is small”.

Our results from Section 2 cover the case of a flat Gaussian prior and the only conditions
to check for the BvM Theorem are that “ tr(D−2

0 G2) = (σn/τn)
4pn is small” and

“ ‖D−1
G G2υ∗‖ = (σn/τ

2
n)‖υ∗‖ is small”. One can see that our general results well apply

to the case of growing dimension and are as sharp as the existing results obtained for a
very special Gaussian case.

5.2 Linear non-Gaussian regression

Now consider a more general situation, when errors εi in (16) follow a general distri-
bution with a given density f(·) : εi ∼ Pf . Denote h(x) = log f(x) . The log-likelihood
function for this problem reads as

L(υ) =

n∑
i=1

log f(Yi − Ψ�
i υ) =

n∑
i=1

h(Yi − Ψ�
i υ). (17)

Suppose that h(z) is twice continuously differentiable and let

h2
def
=

∫
h′′(z)f(z)dz < ∞.
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If the model is correctly specified, then

D2
0 = −∇2IE

n∑
i=1

h(Yi − Ψ�
i υ∗) =

∫
h′′(z)f(z)dz ·

n∑
i=1

ΨiΨ
�
i = h2

n∑
i=1

ΨiΨ
�
i . (18)

Similarly,

D2(υ) = −∇2IE

n∑
i=1

h(Yi − Ψ�
i υ) =

n∑
i=1

ΨiΨ
�
i

∫
h′′(z − Ψ�

i (υ − υ∗))f(z)dz.

Conditions from Section 2.1 need to be checked in order to apply general results from
Section 2.2. We assume some exponential moment conditions on distribution Pf :

(e0) There exist some constants ν0 and g1 > 0 such that for ε ∼ Pf it holds

log IE exp
(
μh′(ε)/h

)
≤ ν20μ

2/2, |μ| ≤ g1.

Condition (e0) effectively means that the distribution of error ε has exponentially
decreasing tail. Under e0 condition (ED0) is satisfied due to the following lemma.

Lemma 1. Assume (e0) and let V2
0 = D2

0 = h2
∑n

i=1 ΨiΨ
�
i . Then condition (ED0)

follows from (e0) with this V2
0 and g = g1N

1/2
1 , where

N
−1/2
1

def
= max

i
sup

γ∈IRp

h|Ψ�
i γ|

‖D0γ‖
. (19)

(L0) and (Lr) are also valid under the Lipschitz continuity assumption on h′′(·) .
Lemma 2. Let

|h′′(z)− h′′(z0)| ≤ L|z − z0|, z, z0 ∈ R.

Then

δ(r) ≤ L r

hN
1/2
1

,

where N1 is defined by (19).

The next interesting question is checking the condition (ED2) . The stochastic part
of the likelihood reads as follows:

ζ(υ) =
n∑

i=1

h(Yi − Ψ�
i υ)− IEh(Yi − Ψ�

i υ).
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To check the condition (ED2) we need to compute the Hessian of the ζ(υ) :

∇2ζ(υ) =

n∑
i=1

{
h′′(Yi − Ψ�

i υ)− IEh′′(Yi − Ψ�
i υ)

}
ΨiΨ

�
i .

Finally, we need to impose the mild condition on marginal likelihood:

(e2) There exists some constant ν0 and for every r > 0 there exists g(r) > 0 , such

that for all numbers δ with |δ| ≤ N
−1/2
2 r

log IE exp

(
μ

si

{
h′′(Yi + δ)− IEh′′(Yi + δ)

})
≤ ν20μ

2

2
, |μ| ≤ g(r),

where si are some known values and

N
−1/2
2

def
= max

i
sup

γ∈IRp

si|Ψ�
i γ|

‖D0γ‖
.

Then

sup
γ1,γ2∈IRp

log IE exp

{
μ

ω

γ�
1 ∇2ζ(υ)γ2

‖D0γ1‖ · ‖D0γ2‖

}

= sup
γ1,γ2∈IRp

log IE exp

{
μ

ω

∑n
i=1(h

′′(Yi − Ψ�
i υ)− IEh′′(Yi − Ψ�

i υ))γ�
1 ΨiΨ

�
i γ2

‖D0γ1‖ · ‖D0γ2‖

}

≤ sup
γ1,γ2∈IRp

ν20μ
2

2ω2

∑n
i=1 s

2
i |Ψ�

i γ1|2 · |Ψ�
i γ2|2

‖D0γ1‖2 · ‖D0γ2‖2

≤ ν20μ
2

2ω2

n

N2
2

.

It easily follows that ω =
√
n

N2
does the job, and (ED2) follows. In regular situations

N2 is of order of sample size n and then ω ∼ n−1/2 .

Finally, turn to the semiparametric setup with υ = (θ,η) ∈ R
p . Assume the iden-

tifiability condition (I) from Section 2.1. Then our general results yield the following
semiparametric BvM Theorem for the linear model (16).

Theorem 6. Let (e0) , (e2) , conditions of Lemma 2 and condition (I) for matrix
D2

0 from (18) hold. Then the results of Theorem 1 hold for linear model (16) with
r20 ≥ C(p+ x) and

Δ(r0, x) =
{
δ(r0) + 6ν0 zH(x)ω

}
r20 ≤

{
L

h2
r0

N
1/2
1

+ 6ν0 zH(x)

√
n

N2

}
r20.
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5.3 Semiparametric non-Gaussian linear regression

This section specifies the obtained results for the linear non-Gaussian model (16) with
a semiparametric regression function

f∗ = Ψ�θ∗ + g∗, (20)

where θ∗ ∈ R
q is an unknown target vector and Ψ = (Ψ1, . . . , Ψn) is a q × n matrix

with Ψi = (ψ1(Xi), . . . , ψq(Xi))
� ∈ R

q for given basis functions {ψj(·), j = 1, . . . , q}
and the design points Xi , i = 1, . . . , n . Without loss of generality we can assume that
these basis functions are design orthonormal:∑

i

ψj(Xi)ψj′(Xi) = δj,j′ . (21)

The general case can be reduced to this one by usual rotation and rescaling. Similarly,
we suppose that the entries of the nuisance vector g∗ = {g∗(X1), . . . , g

∗(Xn)}� are the
values at the design points Xi of a function g∗ which is an element of a functional
space. This means that g∗ = g(x) =

∑∞
k=1 ηkϕk(x) for a given functional basis {ϕk}∞k=1

(e.g. Fourier, wavelet, etc.) and an infinite dimensional nuisance parameter vector η =
{η1, η2, . . . , ηm, . . . }� .

Furthermore, we assume that g∗ is smooth, that is, it can be well approximated by
finite sums g∗m(·) =

∑m
k=1 ηkϕk(·) in the sense that

‖g∗ − g∗m‖ ≤ γm. (22)

For instance, if Fs is a Sobolev ball, that is,

g∗ ∈ Fs(C)
def
=

{
g(x) =

∞∑
k=1

ηkϕk(x) :

∞∑
k=1

η2kk
2s ≤ C

}
,

then γm ≤ (m+ 1)−s .

In addition we suppose the same smoothness condition for each basis function ψj

for j = 1, . . . , q , that is,

‖ψj − ψj,m‖ ≤ γm, (23)

where ϕj,m = Πmϕj and Πm is the projector on the spaced spanned by the first m
basis functions ϕ1, . . . , ϕm .

To avoid the identifiability problem, we restrict the expansion of the function g
to the first M coefficients for a large number M which may depend on the sample
size n . For instance, one can take M = n/ log(n) . Alternatively, M = na for some
a < 1 . Also, to simplify the presentation, we suppose that basis functions ϕk(·) are
orthonormal in the sense that∑

i

ϕk′(Xi)ϕk(Xi) = δk′,k. (24)
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Define also Φi = {ϕ1(Xi), . . . , ϕq(Xi)}� ∈ R
q for i = 1, 2, . . . , n . Then the full param-

eter of the model is υ = (θ,η) ∈ IRp for p = q +M , and the decomposition (20) can
be rewritten as

f = Ξυ,

where Ξi = (Ψ�
i , Φ�

i )
� , i = 1, . . . , n , and Ξ = (Ξ1, . . . , Ξn)

� . The full Fisher infor-
mation matrix reads as

D2
0 =

(
D2

0 A0

A�
0 H2

0

)
= h2

(∑n
i=1 ΨiΨ

�
i

∑n
i=1 ΨiΦ

�
i∑n

i=1 ΦiΨ
�
i

∑n
i=1 ΦiΦ

�
i

)
.

Due to the orthogonality conditions (21) and (24), the blocks D2
0 and H2

0 are propor-
tional to identity: D2

0 = h2IIq , H2
0 = h2IIM . In what follows, we assume h = 1 , the

extension to the general case is trivial. The identifiability condition (9) can be written
as

‖A0A
�
0 ‖ ≤ ν. (25)

The condition (22) implies by orthogonality of the basis functions ϕm

‖Aθκκ
∗‖2 = ‖g∗ − g∗m‖2 ≤ γ2

m.

Similarly, the smoothness condition (23) implies that each row of Aθκ is bounded in
norm by γm . Therefore, ∥∥AθκA

�
θκ

∥∥ ≤ tr(AθκA
�
θκ) ≤ qγ2

m.

Theorem 7. Consider the model (16) with the log-likelihood (17) and the semi para-
metric regression function from (20). Suppose the indentifiability condition (25) and the
smoothness conditions (22), (23). Then the result of Theorem 3 holds with ρs = bs =
(1− ν)−1q1/2γ2

m .

Remark 1. In the case where all the functions g∗, ψj , j = 1, . . . , q are from the Sobolev
ball with smoothness s , we can conclude that γm ≤ (m + 1)−s and ρs = bs ≤ (1 −
ν)−1q1/2(m+ 1)−2s .

5.4 Generalized linear modeling

Now we consider a generalized linear modeling (GLM) which is often used for describing
categorical data. Let P = (Pw, w ∈ Υ ) be an exponential family with a canonical
parametrization; see e.g. McCullagh and Nelder (1989). The corresponding log-density
can be represented as �(y, w) = yw − d(w) for a convex function d(w) . The popular
examples are given by the binomial (binary response, logistic) model with d(w) =
log

(
ew + 1

)
, the Poisson model with d(w) = ew , the exponential model with d(w) =

− log(w) . Note that linear Gaussian regression is a special case with d(w) = w2/2 .
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A GLM specification means that every observation Yi has a distribution from the
family P with the parameter wi which linearly depends on the regressor Ψi ∈ IRq :

Yi ∼ PΨ�
i υ∗ . (26)

The corresponding log-density of a GLM reads as

L(θ) =
∑{

YiΨ
�
i υ − d(Ψ�

i υ)
}
.

Under IPθ∗ each observation Yi follows (26), in particular, IEYi = d′(Ψ�
i υ∗) . How-

ever, similarly to the previous sections, it is accepted that the parametric model (26)

is misspecified. Response misspecification means that the vector f
def
= IEY cannot be

represented in the form d′(Ψ�υ) whatever υ is. The other sort of misspecification con-
cerns the data distribution. The model (26) assumes that the Yi ’s are independent and
the marginal distribution belongs to the given parametric family P . In what follows,
we only assume independent data having certain exponential moments. The target of
estimation υ∗ is defined by

υ∗ def
= argmax

υ
IEL(υ).

The quasi MLE υ̃ is defined by maximization of L(υ) :

υ̃ = argmax
υ

L(υ) = argmax
υ

∑{
YiΨ

�
i υ − d(Ψ�

i υ)
}
.

Convexity of d(·) implies that L(υ) is a concave function of υ , so that the optimization
problem has a unique solution and can be effectively solved. However, a closed form
solution is only available for the constant regression or for the linear Gaussian regression.
The corresponding target υ∗ is the maximizer of the expected log-likelihood:

υ∗ = argmax
υ

IEL(υ) = argmax
υ

∑{
fiΨ

�
i υ − d(Ψ�

i υ)
}

with fi = IEYi . The function IEL(υ) is concave as well and the vector υ∗ is also well
defined.

Define the individual errors (residuals) εi = Yi − IEYi . Below we assume that these
errors fulfill some exponential moment conditions.

(e0) There exist some constants ν0 and g1 > 0 , and for every i a constant si such

that IE
(
εi/si

)2 ≤ 1 and

log IE exp
(
μεi/si

)
≤ ν20μ

2/2, |μ| ≤ g1. (27)
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A natural candidate for si is σi where σ2
i = IEε2i is the variance of εi . Under (27),

introduce a q × q matrix V0 defined by

V2
0

def
=

∑
s2iΨiΨ

�
i . (28)

Condition (e0) effectively means that each error term εi = Yi−IEYi has some bounded

exponential moments: for |λ| ≤ g1 , it holds f(λ)
def
= log IE exp

(
λεi/si

)
< ∞ . In words,

condition (e0) requires a light (exponentially decreasing) tail for the marginal distri-
bution of each εi .

Define also

N
−1/2
1

def
= max

i
sup

γ∈IRp

si|Ψ�
i γ|

‖V0γ‖
. (29)

Now conditions are satisfied due to following lemma, see Spokoiny (2012) for proof.

Lemma 3. Assume (e0) and let V2
0 be defined by (28) and N1 by (29). Then condition

(ED0) follows from (e0) with this V2
0 and g = g1N

1/2
1 . Moreover, the stochastic

component ζ(υ) is linear in υ and the condition (ED2) is fulfilled with ω(r) ≡ 0 .

It only remains to bound the error of quadratic approximation for the mean of the
process L(υ,υ∗) in a vicinity of υ∗ . An interesting feature of the GLM is that the
effect of model misspecification disappears in the expectation of L(υ,υ∗) .

Lemma 4. It holds

−IEL(υ,υ∗) =
∑{

d(Ψ�
i υ)− d(Ψ�

i υ∗)− d′(Ψ�
i υ∗)Ψ�

i (υ − υ∗)
}
= K

(
IPυ∗ , IPυ

)
,

where K
(
IPυ∗ , IPυ

)
is the Kullback-Leibler divergence between measures IPυ∗ and IPυ .

Moreover,

−IEL(υ,υ∗) = ‖D(υ◦)(υ − υ∗)‖2/2,

where υ◦ ∈ [υ∗,υ] and

D2(υ◦) =
∑

d′′(Ψ�
i υ◦)ΨiΨ

�
i .

The proof of this lemma can also be found in Spokoiny (2012). Define now the matrix
D2

0 by

D2
0

def
= D2(υ∗) =

∑
d′′(Ψ�

i υ∗)ΨiΨ
�
i .

Let also V2
0 be defined by (28). Note that the matrices D2

0 and V2
0 coincide if the model

Yi ∼ PΨ�
i υ∗ is correctly specified and s2i = d′′(Ψ�

i υ∗) . The matrix D2
0 describes a local
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elliptic neighborhood of the central point υ∗ in the form Υ0(r) = {υ : ‖D0(υ−υ∗)‖ ≤
r} . If the matrix function D2(υ) is continuous in this vicinity Υ0(r) then the value
δ(r) measuring the approximation quality of −IEL(υ,υ∗) by the quadratic function
‖D0(υ − υ∗)‖2/2 is small and the identifiability condition (L0) is fulfilled on Υ0(r) .
The following lemma gives bounds for δ(r) .

Lemma 5. Let d′′(z) be Lipschitz continuous:

|d′′(z)− d′′(z0)| ≤ L|z − z0|, z, z0 ∈ R

Then
δ(r) ≤ L

r

N
1/2
2

,

where

N
−1/2
2

def
= max

i
sup

γ∈IRp

|Ψ�
i γ|

d′′(Ψ�
i υ∗) · ‖D0γ‖

.

Now we are prepared to state the local results for the GLM estimation.

Theorem 8. Let (e0) and conditions of Lemma 5 hold. Then the results of Theorem 1
hold for GLM with

Δ(r0, x) ≤ L
r30

N
1/2
2

.

If the function d(w) is quadratic then the approximation error δ vanishes as well
and then quadratic approximation is valid globally, a localization step is not required.
However, if d(w) is not quadratic, the result applies only locally and it has to be
accomplished with a large deviation bound. The GLM structure is helpful in the large
deviation zone as well. Indeed, the identifiability condition (Lr) easily follows from
Lemma 4: it suffices to bound from below the matrix D(υ) for υ ∈ Υ0(r) :

D(υ) ≥ b(r)D0, υ ∈ Υ0(r).

An interesting question, similarly to the i.i.d. case, is the minimal radius r0 of the
local vicinity Υ0(r0) ensuring the desirable concentration property. The required value
conditions are fulfilled for r2 ≥ r20 = C(x+ p) , where C only depends on ν0, b , and g .
Thus, the results are valid if

δ(r0)r
2
0 = C

r30

N
1/2
1

= C
(x+ p)3/2

N
1/2
1

is small.

The GLM model also allows a semiparametric extension, i.e.

wi = Ψ�
i θ∗ + g∗(Xi),
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where g∗(·) is from a Sobolev class. This setup differs from Section 5.3 only by few
technicalities and leads to similar theoretical results.

6 Supplementary

This section contains the imposed conditions and some supplementary statements which
are of some interest by themselves.

6.1 Bracketing and upper function devices

This section briefly overviews the main constructions of Spokoiny (2012) including the
bracketing bound and the upper function results. The bracketing bound describes the
quality of quadratic approximation of the log-likelihood process L(υ) in a local vicinity
of the point υ∗ , while the upper function method is used to show that the full MLE
υ̃ belongs to this vicinity with a dominating probability. Given r > 0 , define the local
set

Υ0(r)
def
=

{
υ : (υ − υ∗)�D2

0(υ − υ∗) ≤ r2
}
. (30)

Define the quadratic processes L(υ,υ∗) :

L(υ,υ∗)
def
= (υ − υ∗)�∇L(υ∗)− ‖D0(υ − υ∗)‖2/2.

The next result states the local bracketing bound. The formulation assumes that
some value x is fixed such that e−x is sufficiently small. If the dimension p is large,
one can select x = C log(p) . We assume that a value r = r0 is fixed which separates
the local and global zones.

Theorem 9. Suppose the conditions (ED0) , (ED2) , (L0) , and (I) from Section 2.1
hold for some r0 > 0 . Then on a random set Ωr0(x) of dominating probability at least
1− e−x

|L(υ,υ∗)− L(υ,υ∗)| ≤ Δ(r0, x), υ ∈ Υ0(r0), (31)

where

Δ(r0, x)
def
=

{
δ(r0) + 6ν0 zH(x)ω

}
r20,

zH(x)
def
= 2p1/2 +

√
2x+ g−1(g−2x+ 1)4p, (32)

and Υ0(r0) is defined in (30). Moreover, the random vector ξ = D−1
0 ∇L(υ∗) fulfills

on a random set ΩB(x) of dominating probability at least 1− 2e−x

‖ξ‖2 ≤ z2B(x), (33)
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where z2B(x)
def
= pB + 6λBx ,

B
def
= D−1

0 V2
0D

−1
0 , pB

def
= tr

(
B
)
, λB

def
= λmax

(
B
)
.

Furthermore, assume (Lr) with b(r) ≡ b yielding

−IEL(υ,υ∗) ≥ b ‖D0(υ − υ∗)‖2

for each υ ∈ Υ \ Υ0(r0) . Let also

r ≥ 2

b

{
zB(x) + 6ν0 zH

(
x+ log(2r/r0)

)
ω
}
, r ≥ r0

with zH(x) from (32). Then,

L(υ,υ∗) ≤ −b ‖D0(υ − υ∗)‖2/2, υ ∈ Υ \ Υ0(r0). (34)

holds on a random set Ω(x) of probability at least 1− 4e−x .

The result (31) is an improved version of the approximation bound obtained in
Spokoiny (2012), Theorem 3.1. The result (33) can be found in the supplement to
Spokoiny (2012). The result (34) is very similar to Theorem 4.2 from Spokoiny (2012).

6.2 Tail posterior probability for full parameter space

The next step in our analysis is to check that υ concentrates in a small vicinity Υ0(r0)
of the central point υ∗ with a properly selected r0 . The concentration properties of
the posterior will be described by using the random quantity

ρ∗(r0) =

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ∫

Υ0(r0)
exp

{
L(υ,υ∗)

}
dυ

.

Theorem 10. Suppose the conditions of Theorem 9. Then it holds on Ωr0(x)

ρ∗(r0) ≤ exp{2Δ(r0, x) + ν(r0)} b−p/2IP
(
‖γ‖2 ≥ br20

)
, (35)

with

ν(r0)
def
= − log IP

(∥∥γ + ξ
∥∥ ≤ r0

∣∣Y )
.

If r0 ≥ zB(x) + z(p, x) , then on Ω(x)

ν(r0) ≤ 2e−x. (36)

This result together with Theorem 10 and Lemma 7 yields simple sufficient condi-
tions on the value r0 which ensures the concentration of the posterior on Υ0(r0) .
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Corollary 2. Assume the conditions of Theorem 10. Then the additional inequality
br20 ≥ z2(p, x+ p

2 log
e
b ) ensures on a random set Ω(x) of probability at least 1− 4e−x

ρ∗(r0) ≤ exp{2Δ(r0, x) + 2e−x − x}.

6.3 Tail posterior probability for target parameter

The next major step in our analysis is to check that θ concentrates in a small vicinity
Θ0(r0) =

{
θ : ‖D̆0(θ − θ∗)‖ ≤ r0

}
of the central point θ∗ = Π0υ

∗ with a properly
selected r0 . The concentration properties of the posterior will be described by using
the random quantity

ρ(r0)
def
=

∫
Υ
exp

{
L(υ,υ∗)

}
π(υ) 1I

{
θ /∈ Θ0(r0)

}
dυ∫

Υ
exp

{
L(υ,υ∗)

}
π(υ) 1I

{
θ ∈ Θ0(r0)

}
dυ

.

In what follows we suppose that prior is uniform, i.e. π(υ) ≡ 1 , υ ∈ Υ . This results in
the following representation for ρ(r0) :

ρ(r0) =

∫
Υ
exp

{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ∫

Υ
exp

{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ

. (37)

Obviously IP
(
ϑ �∈ Θ0(r0)

∣∣Y )
≤ ρ(r0) . Therefore, small values of ρ(r0) indicate a

small posterior probability of the large deviation set {ϑ /∈ Θ0(r0)} .

Theorem 11. Suppose (31). Then for br20 ≥ z2(p, x+ p
2 log

e
b ) on Ω(x) of probability

at least 1− 4e−x

ρ(r0) ≤ ρ∗(r0) ≤ exp{2Δ(r0, x) + 2e−x − x}.

6.4 Local Gaussian approximation of the posterior: upper bound

It is convenient to introduce local conditional expectation: for a random variable η ,
define

IE◦η
def
= IE

[
η 1I

{
ϑ ∈ Θ0(r0)

} ∣∣Y ]
.

The following theorem gives an exact statement about the upper bound of this posterior
expectation. Let ξ̆ be from (7) and θ◦ = θ∗ + D̆−1

0 ξ̆.

Theorem 12. Suppose (31). Then for any f : Rq → R+ it holds on Ωr0(x)

IE◦f
(
D̆0(ϑ− θ◦)

)
≤ exp

{
Δ+(r0, x)

}
IEf(γ), (38)
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where γ ∼ N(0, IIq) and

Δ+(r0, x)
def
= 2Δ(r0, x) + ν(r0) + ρf (r0),

ρf (r0)
def
=

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ∫

Υ0(r0)
exp

{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

.

Define for random event η ∈ A ⊆ R
q :

IP ◦(η ∈ A) = IE◦ 1I{η ∈ A}.

The next result considers a special case with f(u) =
∣∣λ�u

∣∣2 and f(u) = 1I(u ∈ A) for
any measurable set A .

Corollary 3. For any λ ∈ IRq , it holds on Ωr0(x)

IE◦∣∣λ�D̆0(ϑ− θ◦)
∣∣2 ≤ exp

{
Δ+(r0, x)

}
‖λ‖2.

For any measurable set A ⊆ R
q , it holds on Ωr0(x)

IP ◦(D̆0(ϑ− θ◦) ∈ A
)
≤ exp

{
Δ+(r0, x)

}
IP

(
γ ∈ A

)
. (39)

On Ω(x) one obtains

Δ+(r0, x) ≤ 2Δ(r0, x) + 2e−x + 2 exp
{
Δ(r0, x) + 4e−x − x

}
.

The next corollary describes an upper bound for the posterior probability in case of
changing of scaling.

Corollary 4. Let D1 be a symmetric q × q matrix such that ‖II −D−1
1 D̆2

0D
−1
1 ‖ ≤ α.

Let also θ̂ ∈ R
q be such that ‖D̆0(θ

◦− θ̂)‖ ≤ β . Then for any measurable set A ⊆ IRq,

it holds on Ω(x) with δ0
def
= D1(θ

◦ − θ̂)

IP ◦(D1(ϑ− θ̂) ∈ A
)
≤ exp

{
Δ+(r0, x)

}
IP

(
D1D̆

−1
0 γ + δ0 ∈ A

)
(40)

≤ exp
{
Δ+(r0, x)

}(
IP

(
γ ∈ A

)
+

1

2

√
α2q + (1 + α)2β2

)
.

6.5 Local Gaussian approximation of the posterior: lower bound

Now we present a local lower bound for the posterior measure.

Theorem 13. Suppose (31). Then for any f : Rq → R+ it holds on Ωr0(x)

IE◦f
(
D̆0(ϑ− θ◦)

)
≥ exp

{
−Δ−(r0, x)

}
IE

{
f(γ) 1I

(
‖γ + ξ̆‖ ≤ r0

)}
, (41)
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where

Δ−(r0, x)
def
= 2Δ(r0, x) + ν(r0) + ρ∗(r0) + 2ρ̃f (r0),

ρ̃f (r0)
def
=

∫
Rp\Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ∫

Υ0(r0)
exp

{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

. (42)

This result means that posterior measure can be bounded from below by the standard
normal law up to (small) multiplicative and additive constants. As a corollary, we state
the result for quadratic and indicator functions f(u) . The proof is similar to Corollary 4
and Corollary 3.

Corollary 5. For any λ ∈ IRq , it holds on Ωr0(x)

IE◦∣∣λ�D̆0(ϑ− θ◦)
∣∣2 ≥ exp

{
−Δ−(r0, x) + e−x

}
‖λ‖2.

For any measurable set A ⊆ R
q , it holds on Ωr0(x)

IP ◦(D̆0(ϑ− θ◦) ∈ A
)
≥ exp

{
Δ−(r0, x)

}
IP

(
γ ∈ A

)
− e−x. (43)

Let D2
1 be a symmetric q× q matrix such that ‖II −D−1

1 D̆2
0D

−1
1 ‖ ≤ α and let θ̂ ∈ R

q

be such that ‖D̆0(θ
◦ − θ̂)‖ ≤ β . Define δ0

def
= D1(θ

◦ − θ̂) . Then for any measurable
subset A in IRq , it holds on Ω(x)

IP ◦(D1(ϑ− θ̂) ∈ A
)
≥ exp

{
Δ−(r0, x)

}
IP

(
D1D̆

−1
0 γ + δ0 ∈ A

)
− e−x

≥ exp
{
Δ−(r0, x)

}{
IP

(
γ ∈ A

)
− 1

2

√
α2q + (1 + α)2β2

}
− e−x,

Δ−(r0, x) ≤ 2Δ(r0, x) + 3e−x + 4 exp
{
Δ(r0, x) + 4e−x − x

}
.

7 Proofs

This appendix collects the proofs of the results.

7.1 Some inequalities for the normal law

This section collects some simple but useful facts about the properties of the multivariate
standard normal distribution. Many similar results can be found in the literature, we
present the proofs to keep the presentation self-contained. Everywhere in this section
γ means a standard normal vector in IRq .

Lemma 6. For any u ∈ IRq , any unit vector a ∈ IRq , and any z > 0 , it holds

IP
(
‖γ − u‖ ≥ z

)
≤ exp

{
−z2/4 + q/2 + ‖u‖2/2

}
, (44)

IE
{
|γ�a|2 1I

(
‖γ − u‖ ≥ z

)}
≤ (2 + |u�a|2) exp

{
−z2/4 + q/2 + ‖u‖2/2

}
. (45)
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Proof. By the exponential Chebyshev inequality, for any λ < 1

IP
(
‖γ − u‖ ≥ z

)
≤ exp

(
−λz2/2

)
IE exp

(
λ‖γ − u‖2/2

)
= exp

{
−λz2

2
− q

2
log(1− λ) +

λ

2(1− λ)
‖u‖2

}
.

In particular, with λ = 1/2 , this implies (44). Further, for ‖a‖ = 1

IE
{
|γ�a|2 1I(‖γ − u‖ ≥ z)

}
≤ exp

(
−z2/4

)
IE

{
|γ�a|2 exp

(
‖γ − u‖2/4

)}
≤ (2 + |u�a|2) exp

(
−z2/4 + q/2 + ‖u‖2/2

)
and (45) follows.

The next result explains the concentration effect for the norm ‖ξ‖2 of a Gaussian
vector. We use a version from Spokoiny (2012).

Lemma 7. For each x ,

IP
(
‖γ‖ ≥ z(q, x)

)
≤ exp

(
−x

)
, IP

(
‖γ‖ ≤ z1(q, x)

)
≤ exp

(
−x

)
,

where

z2(q, x)
def
= q +

√
6.6qx ∨ (6.6x), z21(q, x)

def
= q − 2

√
qx.

The next lemma bounds from above the Kullback-Leibler divergence between two
normal distributions.

Lemma 8. Let IP = N(b, Σ) and IP ◦ = N(b◦, Σ◦) for some non-degenerate matrices
Σ and Σ◦ . If

‖Σ−1/2Σ◦Σ−1/2 − IIq‖ ≤ ε ≤ 1/2, tr
(
Σ−1/2Σ◦Σ−1/2 − IIq

)2 ≤ δ2,

then

K(IP, IP ◦) = −IE0 log
dIP ◦

dIP
≤ δ2

2
+

1

2
(b− b◦)�Σ◦(b− b◦)

≤ δ2

2
+

1 + ε

2
(b− b◦)�Σ(b− b◦).

For any measurable set A ⊂ IRq , it holds

∣∣IP (A)− IP ◦(A)
∣∣ ≤ √

K(IP, IP ◦)/2 ≤ 1

2

√
δ2 + (1 + ε)(b− b◦)�Σ(b− b◦).
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Proof. The change of variables u = Σ−1/2(x − b) reduces the general case to the
situation when IP is standard normal in IRq while P1 = N(β, B) with β = Σ1/2(b◦−
b) and B

def
= Σ−1/2Σ◦Σ−1/2

2 log
dIP ◦

dIP
(γ) = log det(B)− (γ − β)�B(γ − β) + ‖γ‖2

with γ standard normal and

2K(IP, IP ◦) = −2IE0 log
dIP ◦

dIP
= − log det(B) + tr(B − IIq) + β�Bβ.

Let aj be the j th eigenvalue of B − IIq . From ‖B − IIq‖ ≤ 1/2 it follows |aj | ≤ 1/2
and

2K(IP, IP ◦) = β�Bβ +

q∑
j=1

{
aj − log(1 + aj)

}
≤ β�Bβ +

q∑
j=1

a2j

≤ β�Bβ + tr(B − IIq)
2 ≤ β�Bβ + δ2.

This implies by Pinsker’s inequality

sup
A

|IP (A)− IP ◦(A)| ≤
√

1

2
K(IP, IP ◦) ≤ 1

2

√
δ2 + β�Bβ

as required.

7.2 Proof of Theorem 10

Define u(υ) = b ‖D0(υ − υ∗)‖2/2 . Now, by a change of variables, one obtains

bp/2 det(D0)

(2π)p/2

∫
Υ\Υ0(r0)

exp
{
−u(υ)

}
dυ

≤ bp/2 det(D0)

(2π)p/2

∫
Υ\Υ0(r0)

exp
{
−b ‖D0(υ − υ∗)‖2/2

}
dυ = IP

(
‖γ‖2 ≥ br20

)
.

For the integral in the numerator of (37), it holds on Ω(x) by (34)∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ ≤

∫
Υ\Υ0(r0)

exp
{
−u(υ)

}
dυ.

For the integral in the denominator it holds∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

≥ exp{−Δ(r0, x)−m(ξ)}
∫
Υ0(r0)

exp
{
L(υ,υ∗) +m(ξ)

}
dυ. (46)
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Inequality (46) implies by definition of ν(r0) :∫
Υ0(r0)

exp{L(υ,υ∗)} dυ ≥ exp
{
−Δ(r0, x)−m(ξ)− ν(r0)

}
. (47)

The bound (47) for the local integral
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ implies that

ρ∗(r0) ≤ exp
{
Δ(r0, x) + ν(r0) +m(ξ)

}∫
Υ\Υ0(r0)

exp
{
−u(υ)

}
dυ.

Finally

exp
{
m(ξ)

}
= exp

{
−‖ξ‖2/2

}
(2π)−p/2 det(D0) ≤ (2π)−p/2 det(D0)

and the assertion (35) follows. The bound (36) is also straightforward:

ν(r0) = − log IP
(
‖γ + ξ‖ ≤ r0

∣∣Y )
≤ − log IP

(
‖γ‖+ ‖ξ‖ ≤ r0

∣∣Y )
≤ − log IP

(
‖γ‖ ≤ z(p, x)

∣∣Y )
≤ 2e−x.

7.3 Proof of Theorem 11

Obviously
{
θ /∈ Θ0(r0), υ ∈ Υ

}
⊂

{
Υ \ Υ0(r0)

}
. Therefore, it holds for the integral in

the numerator of (37) in view of (34)∫
Υ

exp
{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ ≤

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ.

For the denominator, the inclusion Υ0(r0) ⊂
{
θ ∈ Θ0(r0),υ ∈ Υ

}
and (34) imply∫

Υ

exp
{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ ≥

∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ.

Finally

ρ(r0) =

∫
Υ
exp

{
L(υ,υ∗)

}
1I
{
θ /∈ Θ0(r0)

}
dυ∫

Υ
exp

{
L(υ,υ∗)

}
1I
{
θ ∈ Θ0(r0)

}
dυ

≤
∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ∫

Υ0(r0)
exp

{
L(υ,υ∗)

}
dυ

= ρ∗(r0),

and the assertion follows from Theorem 10.

7.4 Proof of Theorem 12

We use that L(υ,υ∗) = ξ�D0(υ−υ∗)−‖D0(υ−υ∗)‖2/2 is proportional to the density
of a Gaussian distribution. More precisely, define

m(ξ)
def
= −‖ξ‖2/2 + log(detD0)− p log(

√
2π).



696 Finite Sample BvM Theorem for Semiparametric Problems

Then

m(ξ) + L(υ,υ∗) = −‖D0(υ − υ∗)− ξ‖2/2 + log(detD0)− p log(
√
2π)

is (conditionally on Y ) the log-density of the normal law with the mean υ0 = υ∗ +
D−1

0 ξ and the covariance matrix D−2
0 . If we perform integration and leave only θ part

of υ then m(ξ) + L(υ,υ∗) is (conditionally on Y ) the log-density of the normal law

with the mean θ◦ = D̆−1
0 ξ̆+θ∗ and the covariance matrix D̆−2

0 . So, for any nonnegative
function f : Rq → R+ we get∫

Υ

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦)

)
dυ

=

∫
Υ0(r0)

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦) dυ

+

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦)

)
dυ

=
(
1 + ρf (r0)

) ∫
Υ0(r0)

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦)

)
dυ

≤ eΔ(r0,x)+ρf (r0)

∫
Υ0(r0)

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦)

)
dυ

≤ eΔ(r0,x)+ρf (r0)

∫
Rp

exp
{
L(υ,υ∗) +m(ξ)

}
f
(
D̆0(θ − θ◦)

)
dυ

= eΔ(r0,x)+ρf (r0) IEf(γ).

Thus,∫
Υ

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ ≤ exp{Δ(r0, x)−m(ξ) + ρf (r0)} IEf(γ). (48)

Now (48) and (47) imply∫
Υ
exp

{
L(υ,υ∗)

}
f
(
D̆ε(θ − θε)

)
dυ∫

Υ
exp

{
L(υ,υ∗)

}
dυ

≤ exp
{
2Δ(r0, x) + ν(r0) + ρf (r0)

}
IEf(γ)

and (38) follows by definition of Δ+(r0, x) .

7.5 Proof of Corollary 3

As a direct implication of (38) one easily gets

IE◦∣∣λ�D̆0(ϑ− θ◦)
∣∣2 ≤ exp(Δ+(r0, x))‖λ‖2.
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The only important step is to show that ρx2(r0) is small. Denote

λ0 = D−1
0

(
D̆0λ
0

)

and 0 is a zero vector of dimension (p− q) . We proceed separately with the numerator
and denominator. For the numerator by (44) and (45) on Ω(x)∫

Υ\Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
L(υ,υ∗)

}
dυ

≤
∫
Υ\Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
−b‖D0(υ − υ∗)‖2/2

}
dυ

=

∫
Υ\Υ0(r0)

∣∣λ�
0 D0(υ − υ0)

∣∣2 exp
{
−b‖D0(υ − υ∗)‖2/2

}
dυ

= exp
{
(−(p/2 + 2) log b− log(detD0) + p log(

√
2π)

}
IE

∣∣λ�
0 (γ + ξ)

∣∣2 1I(‖γ‖2 ≥ br20)

≤ (4 + 2‖ξ‖2) exp
{
−(p/2 + 2) log b− log(detD0) + p log(

√
2π)− br20/4 + p/2

}∥∥λ0

∥∥2
≤ exp

{
‖ξ‖2/2 + (p/2 + 2) log(e/b)− log(detD0) + p log(

√
2π)− br20/4

}∥∥λ0

∥∥2

≤ exp
{
− log(detD0) + p log(

√
2π)− x

}∥∥λ0

∥∥2

for br20 ≥ (2p+ 4) log(e/b) + 2zB(x) + 4x . For the denominator, it holds on Ω(x)∫
Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
L(υ,υ∗)

}
dυ

≥ e−Δ(r0,x)

∫
Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
L(υ,υ∗)

}
dυ

= e−Δ(r0,x)

∫
Υ0(r0)

∣∣λ�
0 D0(υ − υ0)

∣∣2 exp
{
L(υ,υ∗)

}
dυ

= e−Δ(r0,x)−m(ξ)IE
∣∣λ�

0 (γ + ξ)
∣∣2 1I(‖γ + ξ‖2 ≤ r20)

= e−Δ(r0,x)−m(ξ)
{
IE

∣∣λ�
0 (γ + ξ)

∣∣2 − IE
∣∣λ�

0 (γ + ξ)
∣∣2 1I(‖γ + ξ‖2 ≥ r20)

}
≥ e−Δ(r0,x)−m(ξ)

{∥∥λ0

∥∥2 + ∣∣λ�
0 ξ

∣∣2 − 2
∥∥λ0

∥∥2 exp{−r20/4 + p/2 + ‖ξ‖2/2
}}

≥ e−Δ(r0,x)−m(ξ)
∥∥λ0

∥∥2{1− 2e−x} ≥ exp
{
−Δ(r0, x)−m(ξ)− 4e−x

}∥∥λ0

∥∥2



698 Finite Sample BvM Theorem for Semiparametric Problems

for r20 ≥ 2p+ 2zB(x) + 4x on Ω(x) . This yields on Ω(x)

ρx2(r0) =

∫
Υ\Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
L(υ,υ∗)

}
dυ∫

Υ0(r0)

∣∣λ�D̆0(θ − θ◦)
∣∣2 exp

{
L(υ,υ∗)

}
dυ

≤
2 exp

{
− log(detD0) + p log(

√
2π)

}
− x

}∥∥λ0

∥∥2

exp
{
−Δ(r0, x) +m(ξ)− 4e−x

}∥∥λ0

∥∥2

= 2 exp
{
Δ(r0, x)− ‖ξ‖2/2 + 4e−x − x

}
≤ 2 exp

{
Δ(r0, x) + 4e−x − x

}
.

7.6 Proof of Corollary 4

The first statement follows from Theorem 12 with f(u) = 1I
(
D1D̆

−1
0 u + δ0 ∈ A

)
.

Further, it holds on Ω(x) for δ0
def
= D1(θ

◦ − θ̂)

‖δ0‖2 = ‖D1(θ
◦ − θ̂)‖2 ≤ (1 + α)‖D̆0(θ

◦ − θ̂)‖2 ≤ (1 + α)β2.

For proving (40), we apply Pinsker’s inequality to two normal distributions. Let γ be
standard normal in IRq . The random variable D1D̆

−1
0 γ + δ0 is normal with mean

N(δ0, B
−1
1 ) with B−1

1
def
= D1D̆

−2
0 D1 . Obviously ‖IIq −B1‖ = ‖IIq −D−1

1 D̆2
0D

−1
1 ‖ ≤ α .

Thus, by Lemma 8 for any measurable set A , it holds

IP
(
D1D̆

−1
0 γ + δ0 ∈ A

∣∣Y )
≤ IP

(
γ ∈ A

)
+

1

2

√
α2q + (1 + α)2β2.

7.7 Proof of Theorem 13

As in the proof of Theorem 12, for any nonnegative function f : Rq → R+ , it holds∫
Υ

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
1I
{
θ ∈ Θ0(r0)

}
dυ

≥
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

≥ exp{−Δ(r0, x)−m(ξ)}
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

≥ exp{−Δ(r0, x)−m(ξ)}
∫
Rp

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

− exp{−Δ(r0, x)−m(ξ)}
∫
Rp\Υ0(r0)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

= exp{−Δ(r0, x)−m(ξ)}(1− ρ̃f (r0))

∫
Rp

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ.
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The definition (42) implies∫
Υ

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
1I
{
θ ∈ Θ0(r0)

}
dυ

≥ exp{−Δ(r0, x)−m(ξ)}(1− ρ̃f (r0))

∫
Θ0(r0)×R(p−q)

exp
{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ

≥ exp{−Δ(r0, x)−m(ξ)− 2ρ̃f (r0)} IEf(γ) 1I{‖γ + ξ̆‖ ≤ r0}. (49)

Here we used that 1− α ≥ e−2α for 0 ≤ α ≤ 1
2 . Similarly,∫

Υ

exp
{
L(υ,υ∗)

}
dυ =

∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ +

∫
Υ\Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

= {1 + ρ∗(r0)}
∫
Υ0(r0)

exp
{
L(υ,υ∗)

}
dυ

≤ {1 + ρ∗(r0)} exp{Δ(r0, x)−m(ξ)} IP
(∥∥γ + ξ

∥∥ ≤ r0
∣∣Y )

,

and finally∫
Υ

exp
{
L(υ,υ∗)

}
dυ ≤ exp{Δ(r0, x)−m(ξ) + ν(r0) + ρ∗(r0)}. (50)

The bounds (49) and (50) imply∫
Υ
exp

{
L(υ,υ∗)

}
f
(
D̆0(θ − θ◦)

)
dυ∫

Υ
exp

{
L(υ,υ∗)

}
dυ

≥ exp{−Δ(r0, x)−m(ξ)− 2ρ̃f (r0)} IEf(γ) 1I{‖γ + ξ̆‖ ≤ r0}
exp

{
Δ(r0, x)−m(ξ) + ν(r0) + ρ∗(r0)

}
≥ exp{−2Δ(r0, x)− 2ρ̃f (r0)− ν(r0)− ρ∗(r0)}IEf(γ) 1I{‖γ + ξ̆‖ ≤ r0}.

This yields (41).

7.8 Proof of Theorem 1

Due to our previous results, it is convenient to decompose the r.v. ϑ in the form

ϑ = ϑ 1I
{
ϑ ∈ Θ0(r0)

}
+ ϑ 1I

{
ϑ �∈ Θ0(r0)

}
= ϑ◦ + ϑc.

The large deviation result yields that the posterior distribution of the part ϑc is neg-
ligible provided a proper choice of r0 . Below we show that ϑ◦ is nearly normal which
yields the BvM result. Define

ϑ◦ def
= IE◦ϑ, S2

◦
def
= Cov(ϑ◦)

def
= IE◦{(ϑ− ϑ◦)(ϑ− ϑ◦)�

}
.



700 Finite Sample BvM Theorem for Semiparametric Problems

It suffices to show that holds on Ω(x)

‖D̆0(ϑ
◦ − θ◦)‖2 ≤ 2Δ∗∥∥IIq − D̆0S

2
◦D̆0

∥∥ ≤ 2Δ∗,

where Δ∗ = max
{
Δ+, Δ−} .

Consider η
def
= D̆0(ϑ− θ◦) . Corollaries 3 and 5 yield for any λ ∈ IRq that

‖λ‖2 exp(−Δ−) ≤ IE◦∣∣λ�η
∣∣2 ≤ ‖λ‖2 exp(Δ+). (51)

Define the first two moments of η :

η
def
= IE◦η, S2

◦
def
= IE◦{(η − η)(η − η)�

}
= D̆0S

2
◦D̆0.

Use the following technical statement.

Lemma 9. Assume (51). Then with Δ∗ = max
{
Δ+, Δ−} ≤ 1/2

‖η‖2 ≤ 2Δ∗, ‖S2
◦ − IIq‖ ≤ 2Δ∗. (52)

Proof. Let u be any unit vector in IRq . We obtain from (51)

exp(−Δ−) ≤ IE◦∣∣u�η
∣∣2 ≤ exp(Δ+).

Note now that

IE◦∣∣u�η
∣∣2 = u�S2

◦u+ |u�η|2.

Hence

exp(−Δ−) ≤ u�S2
◦u+ |u�η|2 ≤ exp(Δ+). (53)

In a similar way with u = η/‖η‖ and γ ∼ N(0, IIq)

IE◦∣∣u�(η − η)
∣∣2 ≥ e−Δ−

IE
∣∣u�(γ − η)

∣∣2 = e−Δ−(
1 + ‖η‖2

)
yielding

u�S2
◦u ≥

(
1 + ‖η‖2

)
exp(−Δ−).

This inequality contradicts (53) if ‖η‖2 > 2Δ∗ > 1 , and (52) follows.
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The bound for the first moment implies with ϑ◦ = IE◦ϑ∥∥D̆0(ϑ
◦ − θ◦)

∥∥2 ≤ 2Δ∗

while the second bound yields with∥∥D̆0S
2
◦D̆0 − IIq

∥∥ ≤ 2Δ∗.

The last result follows from (39) and (43) with an additional assumption that x is large
enough to ensure Δ+(r0, x) ≤ 2Δ(r0, x) + 5e−x and Δ−(r0, x) ≥ 2Δ(r0, x)− 8e−x .

7.9 Proof of Theorem 2

Define LG(υ) = L(υ)− ‖Gυ‖2/2 . The stochastic component of LG(υ) coincides with
one of L(υ) . Also the quadratic term ‖Gυ‖2/2 does not deteriorate the smoothness
properties of the expected process IELG(υ) . In particular, one can locally approximate

IELG(υ
◦
G,υ) by a quadratic function

∥∥DG(υ − υ◦
G)

∥∥2
/2 with

υ◦
G

def
= υ∗

G +D−1
G ξG, ξG

def
= D−1

G ∇IELG(υ
∗) = D−1

G ∇IEL(υ∗) +D−1
G G2υ∗,

υ∗
G

def
= argmax

υ
IELG(υ), D2

G
def
= −∇2IEL(υ∗) +G2 = D2

0 +G2.

Now one can easily see that all the conditions of Theorem 1 are fulfilled for the process
LG(υ) when υ◦ is replaced by υ◦

G and D0 by DG . The result approximates the
posterior υ

∣∣Y for the Gaussian prior Π by the normal law N(υ◦
G,D

−2
G ) . Now the

final result follows by Lemma 8 if we can bound ‖D−1
0 D2

GD
−1
0 −IIp‖ and ‖DG(υ

◦−υ◦
G)‖ .

By definition

D−1
0 D2

GD
−1
0 − IIp = D−1

0 G2D−1
0 .

Further, the definition ensures ∇IELG(υ) = ∇IEL(υ) − G2υ for any υ and also
∇IEL(υ∗) = ∇IELG(υ

∗
G) = 0 . This implies

∇IELG(υ
∗
G)−∇IELG(υ

∗) = D2
G(ῠ)(υ

∗
G − υ∗),

where ῠ is a point from the interval connecting υ∗ and υ∗
G and D2

G(ῠ) = −∇2IEL(ῠ)+
G2 . Therefore,

D2
G(ῠ)(υ

∗
G − υ∗) = G2υ∗. (54)

Let rG = ‖DG(υ
◦ − υ◦

G)‖ . It holds by (L0) and (54) with probability ≥ 1− 2e−x

rG = ‖DG(υ
◦ − υ◦

G)‖ ≤ ‖DG(υ
∗ − υ∗

G)‖+ ‖ξG −DGD
−1
0 ξ‖

≤ ‖DGD
−2
G (ῠ)DG D−1

G G2υ∗‖+ ‖D−1
G D0ξ +D−1

G G2υ∗ −DGD
−1
0 ξ‖

≤
{
1− δ(rG)

}−1
β + β + ‖D−1

G

(
D2

0 −D2
G

)
D−1

0 ‖ · ‖ξ‖

≤
{
1− δ(rG)

}−1
β + β + εzB(x),
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where zB(x) is defined by (33). In particular, δ(rG) ≤ 1/2 and ε ≤ 1/2 imply rG ≤
3β + εzB(x) . This yields by Lemma 8 for any A∗ ⊂ R

p :

∣∣IP0(A
∗)− IPG(A

∗)
∣∣ ≤ 1

2

√
δ2 + (1 + ε)(3β + εzB(x)), (55)

where measure IP0 stands for Gaussian measure N(υ◦,D−2
0 ) and measure IPG stands

for Gaussian measure N(υ◦
G,D

−2
G ) . Now we can take A∗ = A×R

(p−q) . This yields by
(55):

∣∣IP0(A
∗)− IPG(A

∗)
∣∣ = ∣∣ĬP 0(A)− ĬPG(A)

∣∣ ≤ 1

2

√
δ2 + (1 + ε)(3β + εzB(x)),

where measure ĬP 0 stands for Gaussian measure N(θ◦, D̆−2
0 ) and measure ĬPG stands

for Gaussian measure N(θ◦
G, D̆

−2
G ) . This yields the result of the theorem.

7.10 Proof of Theorem 3

First we compare the deterministic quantities D̆2 and θ∗ with their sieve counterparts.
The identifiability condition (Is) guarantees for D̆2

s = D2
θ −AθηA

�
θη that

‖D−1
θ D̆2

sD
−1
θ ‖ ≥ 1− ν. (56)

Further D̆2 = D2
θ −AθφA

�
θφ and D̆2

s = D2
θ −AθηA

�
θη

D̆2
s − D̆2 = D2

θ −AθηA
�
θη − (D2

θ −AθφA
�
θφ) = AθκA

�
θκ .

The use of the smoothness condition (B) implies∥∥D−1
θ (D̆2

s − D̆2)D−1
θ

∥∥ =
∥∥D−1

θ AθκA
�
θκD

−1
θ

∥∥ ≤ ρs,∥∥D̆−1
(
D̆2

s − D̆2
)
D̆−1

∥∥ ≤ (1− ν)−1
∥∥D−1

θ AθκA
�
θκD

−1
θ

∥∥ ≤ (1− ν)−1ρs. (57)

Next we bound the bias θ∗ − θ∗
s introduced in θ∗ by truncation. Consider first the

Gaussian likelihood with

IEL(υ∗,κ∗)− IEL(υ,κ) = ‖D0

{
(υ,κ)− (υ∗,κ∗)

}
‖2/2.

Define υ∗
s = (θ∗

s ,η
∗
s) as the minimizer of the quadratic function ‖D0

(
(υ, 0)−(υ∗,κ∗)

)
‖2

over the set of parameters (υ, 0) = (θ,η, 0) :

υ∗
s = argmin

υ=(θ,η)

‖D0

(
(υ, 0)− (υ∗,κ∗)

)
‖2

= argmin
(θ,η)

{
(θ − θ∗)�D2

θ(θ − θ∗) + ‖η − η∗‖2

+2(θ − θ∗)�Aθη(η − η∗)− 2(θ − θ∗)�Aθκκ
∗}.



M. Panov and V. Spokoiny 703

This implies by direct calculus that υ∗
s = (θ∗

s ,η
∗
s) fulfills

η∗
s − η∗ = −A�

θη(θ
∗
s − θ∗),

θ∗
s − θ∗ =

(
D2

θ −AθηA
�
θη

)−1
Aθκκ

∗ = D̆−2
s Aθκκ

∗ .
(58)

The identifiability condition (56) and the smoothness conditions (22), (23) imply

‖D̆s(θ
∗
s − θ∗)‖ = ‖D̆−1

s Aθκκ
∗‖

≤ (1− ν)−1
∥∥D−1

θ Aθκκ
∗‖ ≤ (1− ν)−1bs. (59)

In the general non-Gaussian case, we use that∥∥D−1
0

{
∇IEL(υ∗,κ∗)−∇IEL(υ∗

s , 0)
}
−D0

{
(υ∗,κ∗)− (υ∗

s , 0)
}∥∥ ≤ δ(rs)rs

with

rs =
∥∥D0

{
(υ∗,κ∗)− (υ∗

s , 0)
}∥∥ ≤

∥∥D0

{
(υ∗,κ∗)− (υ∗, 0)

}∥∥ = ‖κ∗‖ .

The definition of (θ∗,η∗,κ∗) and υ∗
s imply that ∇υIEL(θ∗,η∗,κ∗) = 0 and

∇υIEL(υ∗
s , 0) = 0 . Now, projecting on the θ -subspace implies similarly to (58)∥∥D̆s(θ

∗ − θ∗
s)− D̆−1

s Aθκκ
∗∥∥ ≤ δ(rs)rs .

This implies by (59) ∥∥D̆s(θ
∗ − θ∗

s)
∥∥ ≤ (1− ν)−1bs + δ(rs)rs ,

which completes the proof of (13).

Now we consider the stochastic part D̆−1
s ξ̆s − D̆−1ξ̆ of θ◦ − θ◦

s . The bounds (57)

and (56) imply for ξ̆ = ∇θ −Aθη∇η −Aθκ∇κ and ξ̆s = ∇θ −Aθη∇η∥∥∥D̆{
D̆−1

s ξ̆s − D̆−1ξ̆
}∥∥∥ =

∥∥∥D̆D̆−2
s (∇θ −Aθη∇η)− D̆−1(∇θ −Aθη∇η −Aθκ∇κ)

∥∥∥
=

∥∥∥{D̆D̆−2
s − D̆−1

}
(∇θ −Aθη∇η) + D̆−1Aθκ∇κ

∥∥∥
≤

∥∥∥{IIq − D̆−1D̆2
sD̆

−1
}
D̆D̆−2

s (∇θ −Aθη∇η)
∥∥∥+

∥∥D̆−1Aθκ∇κ

∥∥
≤ (1− ν)−1ρs‖ξ̆s‖+ (1− ν)−1

∥∥D−1
θ Aθκ∇κ

∥∥
= (1− ν)−1ρs

(
‖ξ̆s‖+ ‖ξ

κ
‖
)
.

Here ξ
κ
= ρ−1

s D−1
θ Aθκ∇κ and we have also used that D̆2

s ≥ D̆2 . This proves (14). It

remains to check (15). If the full model is true then Var(ξ̆s) = IIq and under (ED0) , it
holds on a set of probability at least 1− 2e−x

‖ξ̆s‖ ≤ √
q + 2x; (60)
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see Spokoiny (2012). Similarly, under the correct model specification, it holds Var(∇κ) =
IIκ . For ξ

κ
= ρ−1

s D−1
θ Aθκ∇κ , it holds by (B)

Var(ξ
κ
) ≤ ρ−2

s

∥∥D−1
θ AθκA

�
θκD

−1
θ

∥∥ ≤ 1,

and hence, the use of (ED0) implies with a dominating probability 1− 2e−x

∥∥ξ
κ

∥∥ ≤ √
q + 2x

similarly to (60). In the general situation, if the parametric assumption is not exactly

true, we still can use (ED0) . It ensures Var(ξ̆s) ≤ a2IIq , Var(ξ
κ
) ≤ a2IIq , and

‖ξ̆s‖ ≤ a
(√

q + 2x
)
, ‖ξ

κ
‖ ≤ a

(√
q + 2x

)
.

This yields the last claim of the theorem.

7.11 Proof of Theorem 5

First we check that the required conditions of Section 2.1 are fulfilled in the considered
example. This can be easily done if we slightly change the definition of the local set
Υ0(r0) . Namely, for u∗ = (u∗

1, . . . , u
∗
pn
)� , define Υ0(

√
z) as a rectangle

Υ0(
√
z)

def
=

{
u : MnK(uj , u

∗
j ) ≤ z, j = 1, . . . , pn

}
.

Here K(u, u∗) is the Kullback-Leibler divergence for the Poisson family:

K(u, u∗) = eu(u− u∗)− eu + eu
∗
.

Lemma 10. Let zn be such that 2pne
−zn ≤ 1/2 . Then it holds

IP
(
ũ ∈ Υ0(

√
zn)

)
≥ 1− 4pne

−zn . (61)

In particular, the choice zn = xn + log(pn) with xn = C log n provides

IP
(
ũ ∈ Υ0(

√
zn)

)
≥ 1− 4e−xn . (62)

Proof. We use the bound from Polzehl and Spokoiny (2006)

IP
(
MnK(ũj , u

∗
j ) > zn

)
≤ 2e−zn .

This yields

IP
(
ũ ∈ Υ0(

√
zn)

)
≥

(
1− 2e−zn

)pn
.
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Now the elementary inequalities log(1 − α) ≥ −2α for 0 ≤ α ≤ 1/2 and e−δ ≥ 1− δ
for δ ≥ 0 applied with αn = 2e−zn and δn = 2αnpn imply

(1− αn)
pn = elog(1−αn)pn ≥ e−2αnpn ≥ 1− 2αnpn

and (61) follows.

In the special case u∗
1 = . . . = u∗

pn
= u∗ , the set Υ0(

√
z) is a cube which can be also

viewed as a ball in the sup-norm. Moreover, if zn/(Mne
u∗
) ≤ 1/2 , this cube is contained

in the cube
{
u : ‖u − u∗‖ ≤

√
zn/(Mneu

∗)
}

in view of ex − 1 − x ≤ a2 ≤ 1/2 for
|x| ≤ a ≤ 1 . The concentration bound (62) enables us to check the local conditions
only on the cube Υ0(

√
zn) . Especially the condition (ED1) is trivially fulfilled because

ζ(u) = L(u)−IEL(u) is linear in u and θ is a linear functional of u . Condition (L0)
can be checked on Υ0(

√
zn) with δ(zn) =

√
zn/(Mneu

∗) .

It remains to compute the value D̆2
0 . Define βn = pn/M

1/2
n = p

3/2
n /n1/2 . If n = p3n ,

then βn = 1 .

Lemma 11. Let v∗ = 1/pn . Then it holds

D̆2
0 = p2nβ

−2
n .

Now we are ready to finalize the proof Theorem 5.

Proof. Let βn be bounded. The definition implies

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
υj

Zj/Mn

)
.

The posterior distribution υj
∣∣Y is Gamma(αj , μj) with αj = 1 + Zj and μj =

μ
Mnμ+1 . We use following decomposition

υj
Zj/Mn

=
Mnμjαj

αj − 1

(
1 + α

−1/2
j γj

)
,

where

γj
def
= (αjμ

2
j )

−1/2
(
υj − αjμj

)
has zero mean and unit variance. We can use the Taylor expansion

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
1− 1

Mnμ+ 1

)
+

pn∑
j=1

log

(
1 +

1

αj − 1

)
+

pn∑
j=1

log

(
1 + α

−1/2
j γj

)
.
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Now take into account properties of the real data distribution.

αj =
Mn

pn

(
1 +

√
pn
Mn

δj

)
,

where δj is asymptotically standard normal.

Suppose now that β3
n/

√
pn → 0 as pn → ∞ . Then Mn/pn =

(√
pn/β

3
n

)2/3
p
2/3
n →

∞ as pn → ∞ . Thus for pn sufficient large, αj ≈ Mn/pn . Moreover, it holds for pn

sufficiently large that maxj=1,...,pn α
−1/2
j |γj | ≤ 1/2 with a high probability. Below we

can restrict ourselves to the case when α
−1/2
j |γj | ≤ 1/2 . This allows to use the Taylor

expansion

pn
(
θ − θ̃n

)
=

pn∑
j=1

log

(
1− 1

Mnμ+ 1

)
+

pn∑
j=1

log

(
1 +

1

αj − 1

)
+

pn∑
j=1

log
(
1 +

γj√
αj

)

=

pn∑
j=1

1

αj − 1
+

pn∑
j=1

1
√
αj

γj −
pn∑
j=1

1

2αj
γ2
j +R.

One can easily check that the remainder R is of order β3
n/

√
pn → 0 . Moreover,

p
−1/2
n

∑pn

j=1 γj is asymptotically standard normal, while p−1
n

∑pn

j=1 γ
2
j

IP−→ 1 . The cen-
tral limit theorem here can be easily checked because of the Lyapunov condition being

valid. Also
∑pn

j=1(αj − 1)−1 =
p2
n

Mn
+ on(β

2
n) . Now check what happens if βn → 0 :

β−1
n pn

(
θ − θ̃n

)
= βn +

1
√
pn

pn∑
j=1

γj −
βn

2pn

pn∑
j=1

γ2
j + on(1)

w−→ N(0, 1).

Similarly, with βn ≡ β ,

β−1pn
(
θ − θ̃n

)
= β +

1
√
pn

pn∑
j=1

γj −
βn

2pn

pn∑
j=1

γ2
j + on(1)

w−→ N(β/2, 1).

This proves the result for βn ≡ β . Finally in the case when βn grows to infinity, but

β3
n/

√
pn → 0 , then β−1

n (θ − θ̃n)
IP−→ ∞ .

7.12 Proof of Lemma 11

Let uj = uj − u∗
j . Then

L(u,u∗) = L(u)− L(u∗) =

pn∑
j=1

{
Zjuj −Mnp

−1
n (euj − 1)

}
.
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The expected value of Zj is Mn/pn which leads to the following expectation of likeli-
hood:

IEL(u,u∗) =
Mn

pn

pn∑
j=1

(
uj − (euj − 1)

)
= −Mn

pn

pn∑
j=1

u2
j

2
+O

(
‖u‖3

)
.

Then we substitute u1 = pnθ −
∑pn

j=2 uj , where θ = θ − θ∗ . Thus we get

IEL(u,u∗) = −Mn

pn

1

2

(
pnθ −

pn∑
j=2

uj

)2 − Mn

pn

pn∑
j=2

u2
j

2
+O

(
‖u‖3

)
.

This Taylor expansion allows us to compute components of the Fisher information
matrix:

D2
0 = −∇2IEL(u∗) =

Mn

pn

⎛⎜⎜⎜⎜⎜⎜⎝

p2n −pn . . . . . . −pn
−pn 2 1 . . . 1
... 1

. . .
. . .

...
...

...
. . .

. . . 1
−pn 1 . . . 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Fisher information for the target parameter θ can be computed as follows:

D̆2
0 = Mnpn

(
1− e�H−1e

)
,

where e = (1, . . . , 1)� and H = II +E with E = ee� being the matrix of ones of size
(pn − 1)× (pn − 1) . It follows

e�H−1e = tr
(
e�H−1e

)
= tr

(
H

−1ee�
)
= tr

(
(E + II)−1E

)
.

Further, (E + II)−1E = II − (E + II)−1 yielding

e�H−1e = tr
{
II − (E + II)−1

}
= (pn − 1)− tr

{
(E + II)−1

}
= (pn − 1)−

pn∑
j=1

λj ,

where λj are eigenvalues of matrix (E + II)−1 . It is easy to see that λ1 = p−1
n while

λ2 = · · · = λpn−1 = 1 . Thus

e�H−1e = (pn − 1)−
{
p−1
n + (pn − 2)

}
= 1− p−1

n ,

D̆2
0 = Mnpn

(
1− e�H−1e

)
= Mnpn

{
1− (1− p−1

n )
}
= Mn = p2nβ

−2
n ,

which completes the proof.
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7.13 Proof of Lemma 1

It holds

sup
γ∈IRp

log IE exp

{
μ
γ�∇ζ(υ∗)

‖D0γ‖

}

= sup
γ∈IRp

log IE exp

{
μ

∑n
i=1(h

′(Yi − Ψ�
i υ∗)− IEh′(Yi − Ψ�

i υ∗))γ�Ψi

‖D0γ‖

}

= sup
γ∈IRp

log IE exp

{
μh

∑n
i=1 γ

�Ψi

‖D0γ‖
h′(ε)/h

}
.

By definition h|γ�Ψi|/‖D0γ‖ ≤ N
−1/2
1 and hence μh|γ�Ψi|/‖D0‖γ ≤ g1 . Thus,

sup
γ∈IRp

log IE exp

{
μ
γ�∇ζ(υ∗)

‖D0γ‖

}
≤ sup

γ∈IRp

ν20μ
2h2

2

∑n
i=1 |Ψ�

i γ|2
‖D0γ‖2

=
ν20μ

2

2
.

7.14 Proof of Lemma 5

It holds

‖D−1
0 (D2(υ)−D2

0)D
−1
0 ‖ = sup

γ∈Rp : ‖γ‖=1

|γ�D−1
0 (D2(υ)−D2

0)D
−1
0 γ|

≤ sup
γ∈Rp : ‖γ‖=1

∣∣∣ n∑
i=1

(d′′(Ψ�
i υ)− d′′(Ψ�

i υ∗))γ�D−1
0 ΨiΨ

�
i D−1

0 γ
∣∣∣

≤ sup
γ∈Rp : ‖γ‖=1

n∑
i=1

|d′′(Ψ�
i υ)− d′′(Ψ�

i υ∗)|γ�D−1
0 ΨiΨ

�
i D−1

0 γ

≤ sup
γ∈Rp : ‖γ‖=1

n∑
i=1

L|Ψ�
i (υ − υ∗)|γ�D−1

0 ΨiΨ
�
i D−1

0 γ

≤ LN−1/2‖D0(υ − υ∗)‖ sup
γ∈Rp : ‖γ‖=1

γ�D−1
0

( n∑
i=1

d′′(Ψ�
i υ∗)ΨiΨ

�
i

)
D−1

0 γ

≤ L
r

N
1/2
2

.
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