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Difficulties related to the notion of infinity cannot be completely solved within the framework of
nonstandard analysis. After the appearance of this theory, the great mathematician Godel! also thought
that the issue remains open when he told his colleague Academician S. I. Adian® that mathematics
would have taken the correct path if it had followed the path designated by Leibniz rather than that
paved by Newton. He said that if mathematics had developed along a different path at the same rate,
there would not be any need to overcome established methods. They struck root in the traditions and
conscience of mathematicians in such a way that it is hard to change the established notions.

The prominent physicist Ya. Frenkel spoke more critically about physics and the notions established
in physics: “We easily get used to the monotonous and unchanging, we stop noticing it. What we are
used to seems natural to us, things we are not used to seem unnatural and non-understandable. ...
Essentially, we are unable to understand, we can only get used to.”3

The simplest problem involving infinity is the arithmetic mean of the natural series. Mathematicians
cannot “calculate” it, but physicists can. The spectrum of the Hamiltonian operator for the oscillator
coincides, up to a constant, with the natural series. The mean value of the series is its mean energy.

Physicists identify mean energy with temperature. Van der Waals proposed to normalize temperature
as follows: Tyeq = T/T., Where T,..q is the reduced temperature and 7, is the critical temperature.

The critical temperature T, was called the absolute boiling temperature by D. Mendeleev. What
he meant was that the liquid state is impossible above this temperature. What is temperature on
the Kelvin scale? It is counted off from absolute zero. However, the absolute zero temperature is
unattainable in the sense that however small the absolute (Kelvin) temperature is, it is nevertheless
infinitely far-off from absolute zero. In this context, it is more useful to consider the logarithm of the
temperature. Then log T'|r—g = —o0, and it is easy to see that the distance between the arbitrarily small
absolute temperature and absolute zero is infinite. Hence, in mathematics, we deal with an analog of
“nonstandard analysis” and an infinitely large temperature, although it can be equal to, for example, one
hundredth of a degree on the Kelvin scale.

*The article was submitted by the author for the English version of the journal.

"E-mail: v.p.maslovemail .ru

!'As is well known, Godel’s Imcompleteness Theorem in logic for the natural numbers affected the famous mathematician
Hilbert, destroying his conception about the “elements” of mathematics, in such a way that he suffered from depression
for two weeks. Albert Einstein remarked towards the end of his career that he only went to his office at Princeton “just to
have the privilege of walking home with Kurt Gédel” (P. Yourgrau, The Forgotten Legacy of Gddel and Einstein).

2Qral communication.

3B. Ya. Frenkel, Yakov Il'ich Frenkel (Nauka Publ., Moscow—Leningrad, 1966)[in Russian], p. 63).
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TRANSITION TO NEGATIVE PRESSURES OF THE NEW IDEAL LIQUID 403

If we consider the relative quantities T, = T/T. and P,.q = P/P,, then we can see that, in these
coordinates, isotherms, isochores, and isobars for different gases strongly differing by their critical
temperature T, exhibit similar behavior in all coordinate planes (pressure—volume), (temperature—
density), etc. (the Van der Waals “law of corresponding states”). This is valid for nitrogen, argon,
carbon dioxide, methane, and other gases.

Example 1. Consider the standard Hilbert space of functions H defined on the closed interval [0, 7] and
the basic collection of orthogonal functions

{e™ =%, (1)
as well as two self-adjoint operators
~ 0 ~ 0
Ay = —ih— Ay = —2ih— 2
1 ih 3’ 2 1hax (2)

depending on the parameter h = 1/k, where k is an integer.
The initial reference points in the basis {e?"*} are n = 1.

Consider ngl) =k and n(()2) = k/2. We find that

7~ Ve T iy
Aeto ~1, Aqe'™o ~ 1.

Obviously,
S e B CLUCE Kt
are isomorphic to

{einx }”:00 .
n=—00

Thus, as h — 0, the reference point of the infinite basis shifts from the point n =1 to the point
n = 1/h in the first case A; and to the point n = 1/(2h) in the second case A2. On the closed interval
[0, 7], acting on the functions x expanded in the basis (1), the operators A; and A, will behave in exactly

the same way as the usual function numbering operator A, Shifting the numbering by n — k and n — k/2,
we obtain rapidly oscillatory functions. As h — 0, these spaces are orthogonal to each other and to the
original Hilbert space H in the sense that

/sin%gp(:c)dm—w) as h — 0, o(x) € H.

Denoting e’ = W, and e**/2* = ., we find that the space of functions corresponding to a basis of
the form ¥,, /¥, where ¥,, = €, is isomorphic to the space of functions ¥,, /. as h — 0, (h = 0 and
k = oo in “nonstandard analysis”).

A similar pattern is observed for Dirichlet series and the collection of eigenfunctions of the
Schrédinger equation (of the Hamiltonian operator ﬁ) for an oscillator, etc. (cf. [1]).

This isomorphism of infinitely large quantities of “nonstandard analysis” accounts, to a certain extent,
for the empirical law of corresponding states of Van der Waals, who discovered a similar “almost”
isomorphism.

For a mathematician, it is difficult to explain ideas of the new thermodynamics to a physicist. But
the most difficult thing is to explain that such a small temperature as 7' = 1/100K, is an infinitely large
quantity.

In the old (Boltzmann—Maxwell) theory of the ideal gas, the number of degrees of freedom depends
on the number of atoms in the molecule and their maximum possible number was calculated. However,
in[2], it was shown that, as temperature decreases, certain degrees of freedom can be “freezed out.” This
means that the number of degrees of freedom of a molecule depends on its energy. Temperature is the
mean energy. Along with temperature, it is also natural to consider the mean (noninteger) number of
degrees of freedom.
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404 MASLOV

The author pointed out in several papers that an instrument measuring the density inside some
volume in the vessel, small compared to the volume of the whole vessel, cannot register the renumbering
of particles. Therefore, for such an instrument (and for the experimenter working with it) statistics
of Bose—Einstein type, not the Boltzmann statistics, is valid. For classical gas, the degeneracy
temperature Ty corresponds to the critical temperature T, and the mean number of degrees of freedom
at the critical point T, P,, p. can be calculated by the formula

P.  ((v+2)
c = - 5 3
T.pe  C(v+1) )

where « is related to the number of degrees of freedom by the relation
D=2(y+1).

For each pure gas, the number Z, is known from experiments (real ones or numerical simulation). This
yields the value of the parameter - together with the number of degrees of freedom. By the parameter ~
we mean the fractional dimension in a distribution of Bose—Einstein type.

For~ =0, we have D = 2 and Z. = oo. As was previously shown, D = 2 corresponds to the growth
of energy levels proportional to the natural series.

As the prominent mathematician Yu. I. Manin puts it in his book [3], “there is an obvious tendency
to (at least) admit number theory to the world of ideas of modern theoretical physics.” (p. 209 (Russian
transl.)).

This relationship (including the relation N/log N given by Manin for the number of primes not
exceeding N ) was studied in greater detail in [4].

We are concerned with the extension of the compressibility factor Z to the domain « < 0 for classical
gas. The question is: How to extend “analytically” to the negative domain? First, note that the
main logical difficulties involving infinity occur for v = 0, i.e., for the natural series. The natural series
corresponds to quantum oscillators, i.e., photons. Only, for v = 0, there is no negative number. The only
particle whose antiparticle coincides with it is the photon.

The first extension to negative domains was performed by the author in the case of money: negative
money is debt. 4

To the number of degrees of freedom corresponds the number of degrees of unfreedom. The value
of the maximal number of degrees of unfreedom must be determined experimentally (for a numerical
simulation, see [5]). This value of the minimum pressure allows us to fully determine the missing
constants in the Bose—Einstein distribution.

Indeed, the point of minimum of the negative pressure and the temperature corresponding to this
point determine two constants: one of them is A, while the other is the value of Young’s liquid extension
modulus. But, as was already stated, this critical point of transition from the liquid to the dispersed
phase is very hard to determine experimentally. It is much easier to determine the triple point for a given
pure gas. It is assumed that, below this point, the formula for the old Maxwell ideal gas holds. From
our point of view, this means that the chemical potential of the new ideal gas is equal to —oco. Therefore,
the value of the triple point determines the endpoint of the binodal in the plane {p, T’} and other planes.
The experimental value of this point uniquely determines these two constants. Hence, for the new ideal
liquid, we can also determine the critical point of transition from the liquid phase to “solidified foam” like
pumice.

Let us present the formula for the entropy of a nonequilibrium Bose gas derived in the book [8, 184]
(Formula 54.6):

S =Y G,[(1+n;)In(1 +ny) — 7 Innyl, (4)
J

where the nj, n; = N; /G, are the mean occupation numbers of quantum states.

‘The great chemist D. Mendeleev and the specialist in thermodynamics I. A. Vyshnegradskii, who was appointed Minister
of Finance of Russia in 1887 and interested Mendeleev in financial matters, paid significant attention to the relationship
between thermodynamics and economics; so did the author of the “main law of economics” Irving Fisher, a disciple of
Gibbs.
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TRANSITION TO NEGATIVE PRESSURES OF THE NEW IDEAL LIQUID 405
We have

ZNj:ZGjﬁj:N, Zﬁij:Z€jGjﬁj:E~ (5)
J J J J

Hence, under conditions (5), using the method of indeterminate Lagrange multipliers for the maximum
of the entropy (4), we obtain®

_ 1

nj= eatbe; _1° (6)

Here a = —p/T, b=1/T, T is the temperature, and p <0 is the chemical potential. Thus, the
indeterminate Lagrange multipliers are expressed in terms of the temperature and the chemical potential
of the gas.

Since, by the Bose—Einstein formulas, sums of the form

o) o)
Z)\znz:E’ ZTZZ:N,
=0 1=0

are replaced by integrals, it follows that it is impossible to extract the point ¢ = 0 and the condensate
phenomenon can occur only in a neighborhood of the point ¢ = 0, but not at the point i = 0 itself. Note
that, for D < 2, the Euler—Maclaurin formulas do not apply (i.e., it is impossible to pass from sums to
integrals) and, therefore, the point ¢ = 0 can be isolated.

However, will the superfluous particles for N > N, accumulate particularly at the point i = 0? In
fact, this question is: Will the number of zeros in the problem under consideration be much greater than
the number of 1's as E — oo, i.e., will the relation

ny = o(no)
be valid even for N > N_?
A computer calculation yielded a negative answer. Specialists in number theory also answer in the
negative. Especially for D > 2, when the Euler—Maclaurin estimates can already be applied also for
1 > 1 and we can pass to the integral, it is impossible to consider one point ¢ = 0, as was done in [8].

In fact, the convergence to the integral (for example, in the three-dimensional case) as N — oo and
u — 0 is simultaneously accompanied by an increase of the bell-shaped function of the form

1
\/Ne_N”2, where —— >2>0 (7)
In N
(cf. [9]).
In this general conclusion, it is necessary to understand what G, is in the general case. The
2D-dimensional phase space can be divided into a lattice, and G; is determined by the formula

AijqJ'

Gi= (2rh)D

(8)

Here & is the Planck constant.

In the case of the Laplace operator and the Schrodinger equation, there is no sense in considering
fractional dimensions. In the statistical case, fractional dimensions are meaningful, but in a different
way. They determine the mean number of degrees of freedom, which can be different for molecules with
different velocities, and the mean number of degrees of freedom®, for the whole gas will be fractional.
[t corresponds to the mean energy, i.e., the temperature. For the unbounded probability theory that we
consider, it is the fractional “dimension” (i.e., the mean number of degrees of freedom with respect to the
whole “general” population) that is meaningful.

The author proved that both the degeneracy energy for the Bose gas and the number of particles in the
state of the degeneracy coincide up to normalization with the critical values of N, and E. (i.e., for u = 0)

?We repeat word for word the derivation given in [8].
®The term is taken from sociology and economics.
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406 MASLOV

of the classical noninteracting gas. In the D-dimensional case, the degeneracy energy (degeneration) is

of the form
o Ip? d
= | B, ©)
0 oy
where
Ip|*> dp; ...dpp dVp
de = — 1
T om (2wh)P (10)
Hence we obtain the coefficients C and AL in the formula
Eq=CAPTIY¢(1+ D/2)T(1 + D/2). (11)
It is convenient to consider the other normalization
1
i J— 12
= rorrn * (12)
for the energy and, respectively,
1
de’ = d 1
5 T(D/2) € (13)

for the number of particles N.

After that, it is convenient to pass to the polylogarithm Liay. (e ™#/T) for the energy and to the
polylogarithm Lij .~ (e=#/T) for the number of particles:

E = CAPT*" Ligy(a), (14)
N = CAPT"™ Liy . (a), (15)
where a is the activity (a = e=#/T).
Then the compressibility factor is
_E by (16)
NT  Lijyy(a)
Here the coefficients C' and AP cancel out.
Thus, a and b are the Lagrange multipliers (see (4)—(6)) for determining the maximum of S,:
dS = adN + bd(FE), N =EFE, (17)
1
dE = = dS — L 4N. (18)

b b

Denote the quantity 1/b by T" and the quantity a/b by p (1 < 0). In thermodynamics, we also add the
term P dV, where P is the pressure and V is the volume.

The Hartley entropy S for v > 0 is of the form

S:N[(2+’y)+%} (19)

For p=0and N > N, the entropy S is extended by continuity by a constant (in the particular case
D = 3, this phenomenon is similar to the physical notion of “Bose—Einstein condensate”).

The relation N > N, is equivalent to the relation T" < T,. Further, for N > k > 1 (see (7)), the
number of “supercritical” values is

o0
Zni = NC.
i=k
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TRANSITION TO NEGATIVE PRESSURES OF THE NEW IDEAL LIQUID 407

As N — oo and p — 0, the other numbers N — N, accumulate on the relatively decreasing interval
1 <k < N.Here k> 1isthe support of the bell-shaped function.

The transition to the integral is accompanied by the approximation of the “bell-shaped” function to
the 0-function (“Bose condensate”). Therefore, in formula (19) for N > N, or T' < Ty, the values of dN
and dV can be equated to zero. As a result, the entropy of the liquid phase takes the form

dE = T dS. (20)

In the plane {P, Z = PV /NT}, in the Van der Waals normalization: P. = P/P., T, = T/T., the
gas critical isotherm takes the form

~ Liy 40 (eiu/TC )

. — /T
P=Lhen(e™), 2=
Ye

(21)
and the unknown parameters C' u AP in (14)—(15) must be expressed as A7~ (we retain the same
symbol).

To each pure gas there corresponds

_ C(ye +2)
‘ C(ve+1)°

For argon, Z. = 0.29, for methane, Z. = 0.29, for oxygen and other gases, the value of Z. is also
taken from experiments. The “basic” spinodal (i.e., the set of points for u = 0) in the plane {P, Z}
is the closed interval Z = Z., P ={0,1}. The isotherm 7, <1 is in good agreement on the closed
interval —oo < p < py up to the phase transition “gas—liquid” when the chemical potentials y, of the
gas isotherm and y; of the gas isotherm are equal [14].

On the liquid isotherm, the value N = TQCHC(VC + 1) is constant. Therefore, it is described by a
straight line passing through the points {P = TQCHC(% +2), Z=Z}and{P =0, Z =0}.

The origin, the point v = 0, corresponds to the problem “partitio numerorum” (see formulas (11)-
(14) of [10]). The main difficulty is to determine the chemical potential of the liquid phase y;. To this end,
we continue the isotherms of the liquid phase “analytically” to the domain of negative values of Z and P.

For T' < T, the liquid isotherm passes into the domain v < 0 on the diagram {Z, P} (in thermody-
namics, Z = (PV)/(NT) is the compressibility factor and P is the pressure) and reaches the spinodal
point (the endpoint of the metastable state) for i = 0 (see below). This the point of maximum of the
entropy on the isotherm of the liquid phase. In the extension to the domain v < 0, we attain the domain
of negative values of Z, and hence also the domain of negative pressures.

Remark. There are not many theoretical physicists with classical thermodynamic background who
know what “negative pressure” really is. In [2], this phenomenon was explained as follows. PV is the
energy, while negative energy according to Dirac is represented by holes, i.e., antiparticles. At present,
this field is under study by remarkable experimenters, such as S. Balibar [11], V. G. Baidakov [12],
K. I. Shmulevich [13], and others. At some temperature T,; (the temperature of transition of the liquid
phase to pumice), the minimum of negative energy corresponds to a new critical point.

Assuming that, for T'= T, there is no transition to the liquid phase, we equate the chemical
potentials  and fi for the liquid and gas phase, respectively, on the isotherm T' = T,. Further, we obtain
the point p, the point of transition to the liquid phase for T" < T, by equating the chemical potentials of
the liquid and the gas phase. This scheme is given below.

By an energy gap we mean the difference between the solution of problem (22)
> Ni=N, &) ({"-1)N;=E—Ne (22)
i=0 i=0
and the solution of problem (23)

> Ni=N, &) (i"-1)N;<E- Ne (23)
1=0 i=0
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408 MASLOV
where, for the Schrodinger equation,
h2
E= ——77-
2mV2/D
By passing to the Bose condensate point, the parameter «y of the liquid phase also has a gap in the

domain of negative energies. Let us find the isotherm—isobar point of the liquid as s = —u /T slowly
converges to zero.

First, we take into account the fact that although IV, is large, but finite; therefore, we must still use a
parastatistical correction. Let us recall the relation for the potential €2

- 1— eN(M_ak)/T
k

Hence (see [6, Chap. 2]), for the dimension D = 2(y + 1),

R 5 ki
N=A Z (eijm_ 1 ebijrz)' (25)
j=1

Lemma. The following relation holds:

n

e il kjt o\ AT [0 1 k "
N =A Z (ebj-i—%_ 1 ebk:j-i—u) - y+1 Jo (ebm—i—%_ 1 ebka+s _ 1) d(z” )+ R, (26)
1

where k = N and b= 1/T, while

Ckl=v
< -
R 1+ (kr)l=7’

where C is a constant.

Proof. Set o = + 1. Here the remainder R satisfies the estimate

B < 2 [T p@ldee,  where f(a) = e - o
- 0 zrjaz, where x)= ebrtsx _ 1 ek(br+s) _ 1"
Calculating the derivative, we obtain
bk2 k(bz+3c) pebrtse AY—Ye [ k2 k(y+s2) Y+
f(x) = o — . IRl < : - dy".
(ek(ba}—I—%) _ 1)2 (eszrx _ 1)2 a (ek;(y—f—%) _ 1)2 (ey—I—% _ 1)2
(27)
We also have
ey 1
(ey — 1)2 - ? + w(y)7

where 1(y) is a smooth function and [¢(y)] < C(1+ |y|)~2. Substituting this formula into (27), we
obtain

AV e o0 B Y [e'S) N o0
R < — /0 |9 (k(y + 5)) — ¥(y + )| dy® < A7 <k2 /k [¥(y)l dy +/ [¥(y)l dy)
- Ck.Qfa
T 1+ (k)2
where C is a constant. The lemma is proved. O
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TRANSITION TO NEGATIVE PRESSURES OF THE NEW IDEAL LIQUID 409
For example, if s ~ (log k)~'/4, then |R| has the estimate
Rl ~ O((In k)~ /%),
We have (see [7])

0 SRS S U U6 T S A SRS U o S R .
/O {ebs_l‘ekbs_l}df _ba/o <e£—1 5)‘15 +b°‘/0 (5 5<1+<k/2>5>>d5

k‘l_a o0 k® k< «
T /o {ekﬁ—l‘ksuﬂkm)s)}“

= @(kl—a - 1).

bOé
Since k > 1, for k = N we finally obtain
Nla/m=o) = AT, (28)
where
A) = eV, e) = [ (5 - )€ (29)
0 V& ef—1
We have seen that the relation
N=A""T0*"Li(a),  where a=e AT (30)

is the activity conjugated to the linear relation N = A(~)T, for P, < 0.

We can perform the normalization of the activity a at the point T = T, and find a¢ by conjugating the
liquid and gas branches for T' = T, for a pressure such that there is no phase transition for 7' = T..

Further, for T < T, let us normalize the activity by the value ag calculated below. Then the chemical
potential (in thermodynamics, the Gibbs thermodynamic potentials for the liquid and gas branches) will
coincide and, therefore, for T' = T, there will be no phase transition “gas—liquid.”

Now, for the isochore—isotherm of an incompressible liquid to exist, we must also construct it for
smaller density than N, = {(v. + 1), namely, for

N(T,) = AT (e + 1). (31)
We obtain the value of v(7}.) from the implicit equation
A(y) = AETC(ve + 1),

Thus, for each T,. < 1, we find the “spinodal” curve, (i.e., the points where /T, < 1 (i.e., e.g.,for the
points where ji ~ T;.(In N(7))~*/*) in the domain of negative pressures.

A(y) = A—(w—%)w/(lﬂ)C(,Y)l/(lﬂ) = T7¢(7.+ 1), (32)
N =AMT: = T,77¢(re + 1),
s P Tty 2+
ANTE T +1) T+ 1)
P, = ZT,N = ZT2((7e + 1) = ~T2F((2 + 7). (33)

The values of Py, and Thyi, are known from experiments.
Using (33), let us find the value of v = Yin, Where —1 < ypin < 0:

Puin = —Triji?mmf (2 + Ymin)-
From the formula
A(Ymin) = Tiin¢ (e + 1), (34)
we find the value of A(Tiin, Ymin)-
Now, substituting 7, = 1 into (32), we seek to find the solution for ~.
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410 MASLOV

From the two values of the solution of (32), we choose the largest (the least in absolute value) and
denote it by vo:

A(Tmin"Ymin)_(wo_%)wo/(wo—’—l) = C(’Yc + 1)

The second solution corresponds to the dispersive system into which the liquid has passed at the critical
point Tiin, Pmins Zmin. 1he actual interaction between the particles leads to a significantly greater
deviation of the second solution from ~g (see [13]).

The jump from v = 0 to v = 79 < 0 is the transition gap across the singularity v = 0 (compare with
the gap for p = 0[15],[16]). Such a gap is always formed for media with different moduli (for different
Young compression and extension moduli); see[17]. Its physical meaning is that it characterizes Young’s
liquid extension modulus.

Suppose that a, = e #/T+ is the activity of the gas and a; = e=#/7+ is the activity of the liquid. Let
us present the condition of the equality of £ and the activity at the phase transition point:

. _ . a
T Lz, (ag) = T, T Lig_pyry ) (a_cl]> ’ )
L12+70 (ao) = 1, (36)
where
ap
= —. 7
Qg 0 (37)

These two equalities determine the value of the chemical potential
p=p="Tlna,
at which the phase transition “gas—liquid” occurs.
Suppose that

Trnin = in A(7v).

_uin_ (7)
For A =1, the minimum is attained at the point ypin = —0.39. Thus, for each Ty < T' < T, we find a
spinodal point in the domain of negative pressures and, for

TTQ—I—’)/(TT) Li2+'y(Tr) (al) = T3+7c<(2 + ’YC)y
we obtain the value a, = a;/ag (q; is the activity of the liquid).

Thus, if the values of Ty, and Py, are known from the experiment [11]—[13], then we can find
the values of A u 4% from the above relations. The value T}y, (reduced) is a bound for the value of the
temperature of the binodal constructed in the way described above. Below this temperature (and the
corresponding energy), the Bose condensate effect disappears. Roughly speaking, the decrease in the
internal energy must not attain the energy interval which is the support of the bell-shaped function (7).
Otherwise, the Bose condensate phenomenon disappears. In that case, the condition N = const and
relation (31) are no longer valid. Here, for T}.cq < Tinin, We must set i = —oo, i.e., assume that the
conditions for existence of the Boltzmann ideal gas hold.
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