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Abstract. Autonomous higher order differential equations with scalar non-

linearities, periodic with respect to the main phase variable under appropriate
generic conditions, have an infinite sequence of isolated cycles with amplitudes

growing to infinity and periods converging to some specific value T0.

1. Introduction. 1.1. Investigation of cycles in autonomous systems (exis-
tence, stability, number of cycles, bifurcations, numerical computations, simula-
tions, applications, etc.) by various mathematical (analytical, geometrical, topo-
logical, fixed point method) approaches is the classical part of mathematics, with a
lot of theoretical and applied books and papers devoted to them.

The only simple case is linear: cycles exist if and only if at least one pair of
complex conjugate eigenvalues of some matrix (or a pair of roots of some charac-
teristic polynomial) is situated on the imaginary axis. If such a pair is unique and
the eigenvalues (the roots) are simple, then all the cycles (in the linear case) are
circles, the cycles are not isolated and fill a two dimensional plane in the phase
space. Generic nonlinear non-Hamiltonian equations have isolated cycles only.

If a nonlinear differential equation or a dynamical system has a principal (in some
appropriate sense) linear part, then sometimes it is also possible to find round cycles
(i.e., close to circles). The classical example is Hopf bifurcation at the origin1, a
similar situation (with a two dimensional manifold filled with round cycles) appears
in Hopf bifurcations at infinity.

In [4] we considered single-loop control systems that contain linear parts and
nonlinear bounded scalar feedbacks (with and without delays). The principal re-
sult concerns the existence of unbounded infinite sequences of isolated cycles (for
feedbacks without delays see Statement 1) below. The main condition in [4] has
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1Consider the system x′ = f(x, λ), x ∈ Rd, f : Rd × R → Rd with a real parameter λ. If

f(0, λ) ≡ 0 and f(x, λ) = A(λ)x+o(x) at the origin, and if the matrix A(λ) has a pair of complex

conjugate pure imaginary eigenvalues for some λ = λ0, then under appropriate assumptions on the
spectrum of A(λ) for some sufficiently close to λ0 values of λ (generically, either only for λ < λ0
or only for λ > λ0 depending on the small term o(x)) there exists one small round cycle. In the

space Rd+1 these small cycles and the origin form a two dimensional manifold.
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a formally generic form lim supX > lim inf X, however this condition turns out to
be valid only for a special class of nonlinearities, containing slowly oscillating com-
ponents with exponentially increasing intervals between consecutive zeros (such as
sin(log(1 + |x|)) ). In this paper we present results in the spirit of [4] for equations
with usual periodic nonlinearities. The results are based on sharp asymptotical rep-
resentations of projections of periodic nonlinearities. The most cumbersome part
of the proofs is related to the Kelvin method of stationary phase ([9], §§11-14).

1.2. Consider a traditional for control theory equation2

L

(
d

dt

)
x = M

(
d

dt

)
f(x), (1)

where L and M are fixed real coprime polynomials of degrees ` and m (` > m), the
continuous scalar function f : R→ R is uniformly bounded.

Let a value w0 > 0 be a root of the polynomials =(L(wi)M(−wi)) and L(wi) of
the same odd multiplicity K and let L(kw0i) 6= 0 for k = 0, 2, 3, 4, . . . Put

Ψ(ξ)
def
=

2π∫
0

sin t f(ξ sin t) dt = 4

π/2∫
0

sin t fodd(ξ sin t) dt.

This function is odd and it is defined by the odd part fodd(x) = (f(x)−f(−x))/2 of
the function f . In control theory such functions are called describing functions, they
are used in stability theory and various other applications. The following statement
on the cycles of (1) was proved in [4].

Statement 1. Let

Ψ+ def
= lim sup

ξ→∞
Ψ(ξ) > 0 > lim inf

ξ→∞
Ψ(ξ)

def
= Ψ−. (2)

Then there exists an infinite sequence xn of Tn-periodic solutions for equation (1),
their amplitudes and periods satisfy the relations ‖xn‖C →∞, Tn → T0 = 2π/w0.

Let us emphasize that the main part Ψ+ > Ψ− of condition (2) is valid for rather
specific functions f . For a reasonable f the corresponding describing function Ψ
tends to a constant at infinity, the most typical situation Ψ(ξ) → 0 as ξ → ∞
occurs either if f is even, or if f has a sublinear primitive (e.g., f is periodic or
almost periodic), or if f → 0 at infinity, or if f(x) = sign(x) sin(|x|α), α > 0.
If f has a saturation, i.e., if f(x) → ±F 6= 0 as x → ±∞, then Ψ± = 4F . The
function f0(x) = sign(x) sin(ln(1+ |x|)) mentioned above generates Ψ that oscillates
at infinity, Ψ± = ±Ψ∗ (Ψ∗ ≈ 3.70), and (2) holds. Since the operation f 7→ Ψ is
linear, condition (2) also holds for Ψ generated by various sums of the type f0(x) +
‘even function’ + ‘vanishing at infinity function’ + ‘periodic function’ + ‘function,
oscillating sufficiently fast’ etc.

The distances between consecutive zeros of the function f0 (i.e., between the
points eπk − 1 for k = 1, 2, . . .) are equal to eπk(eπ − 1) and increase exponentially
fast.

Problems on forced periodic oscillations for systems with nonlinearities satisfying
Ψ+ > Ψ− were considered in [6, 7]. In [6] we found conditions for the existence of

2Equation (1) may be rewritten in the equivalent form z′ = Az+f(〈z, c〉)b, where z, b, c ∈ R`,
and A is an `× ` matrix. Solutions x = 〈z, c〉 of (1) are defined for non-smooth f , see manuals on

control theory, e.g., [1–3]. All results presented here are new even for usual ordinary differential
equations (M ≡ 1) of higher order.
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sequences of such oscillations with arbitrarily large amplitudes. In [7] we considered
equations with a parameter and discovered the existence of infinite sequences of so-
called cyclic continuous bounded branches of solutions.

The rest part of the present paper deals with the case of periodic f , in this case
always Ψ+ = Ψ− = 0 and Statement 1 is inapplicable as its main condition (2)
is not valid. The paper is organized in the following way. The main result and
miscellaneous remarks generalizing and continuing it are given in the next section.
Two last sections contain the proofs. The proof of Theorem 2.1 is given in Sec-
tion 3, in the proof we use auxiliary statements (Lemma 3.4 and Lemma 3.5) from
Subsection 3.5, their proofs are presented in the last part of the paper.

2. The main result. 2.1. Let f be a continuous and T -periodic function, let

µ0
def
=

1

T

∫ T

0

f(x) dx = 0. (3)

Put ω = 2π
T and consider the Fourier series of the function f :

f(x) =

∞∑
s=1

µs sin(sω x+ ψs), µs ≥ 0. (4)

Theorem 2.1. Let the following conditions be valid:
1. ` > m+ 1, where ` = degL and m = degM ;
2. The value w0 is a root of the polynomials =(L(wi)M(−wi)) and L(wi) of the

same odd multiplicity K;
3. L(kw0i) 6= 0 for k = 0, 2, 3, . . . ;
4. The Fourier coefficients µs in (4) satisfy

∞∑
s=1

µs
√
s <∞; (5)

5. The function f is not even.
Then there exists an infinite sequence xn of Tn-periodic solutions for equation (1),

their amplitudes and periods satisfy ‖xn‖C →∞, Tn → T0 = 2π/w0.

The uniform convergence of the series in (4) follows from (5).
The simplest example is the equation x′′′ + x′′ + x′ + x = sinx. From Theo-

rem 2.1 it follows the existence of the sequence xn of Tn-periodic solutions satisfy-
ing ‖xn‖C →∞, Tn → 2π. There are two sequences of large-amplitude cycles: the
sequence with stable cycles and the sequence with unstable ones. The stable cycles
can be easily found numerically.

2.2. Remarks.
Remark 1. Instead of periodic f it is possible to consider almost periodic sums of
two or more periodic functions with (maybe) incommensurable periods and, more-
over, Fourier integrals. It is also possible to consider non-periodic f of the form ‘peri-
odic term’ + ‘additional terms’, if the additional terms generate their own describing
functions of the order less than ξ−1/2, (e.g., terms of the form const·x−1/2−σ, σ > 0;
or rapidly oscillating terms of the type sin(x3)). Finally, the equations

L

(
d

dt

)
x = M

(
d

dt

)
f(x(t), x(t−∆)) (6)

with delays containing periodic with respect to the both variables functions f can
be also considered with similar arguments.
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The method of the proof might work for functions f depending on several vari-
ables if f is periodic with respect to each of them and, hence, allows for the Fourier
expansion in several variables and an analog of Lemma 3.5 is valid.
Remark 2. The periodic solutions xn from Theorem 1 have the form

xn(t) = ξn sin(2πt/Tn) + hn(t) (7)

where hn are Tn-periodic, ξn →∞, ‖hn‖C → 0, Tn → T0 = 2π/w0. The values ξn
are close to sufficiently large zeros of the T -periodic function

g(ξ) =

∞∑
s=1

µs
cosψs sin(ωsξ − π

4 )
√
s

. (8)

Moreover, if ξ∗ is an isolated zero of g and g(ξ∗ + 0)g(ξ∗ − 0) < 0, then for any
sufficiently large integer n there exists a periodic solution of the form (7) and |ξn−
ξ∗−nT | → 0 as n→∞. The almost opposite statement is also valid: it is possible to
choose the vicinity3 Ω of the point w0 such that all large-amplitude cycles with the
periods τ = 2π/w , w ∈ Ω have the round form. More exactly, for any sufficiently
small ε > 0 there exists R(ε) such that any periodic solution x(t) of a period
τ = 2π/w , w ∈ Ω, satisfying ‖x‖C ≥ R(ε), has the form x(t) = ξ sin(wt+φ)+h(t),
h(t+ τ) ≡ h(t), where ‖h‖C , | g(ξ)| ≤ ε.

It would be interesting to supplement Theorem 2.1 with conditions of uniqueness
of periodic solution ξ sin(wt) + h(wt) where |w − w0| < ε and |ξ − ξ∗ − nT | < ε.

The function g is not identically zero (µs cosψs 6= 0 at least for one s = 1, 2, . . .)
if and only if Condition 5 is valid. The function g defined by (8) plays essential role
in the proofs below, it defines the principal part of the describing function Ψ:

Ψ(ξ) =
2
√

2πg(ξ)

ω
√
ξ

+ o(ξ−1/2)

at infinity (see Lemma 3.5 below).
The cycles xn in the phase space are close to the circles generated by the functions

ξn sin(wnt) with the same ξn and wn. From the proof below it follows that |wn −
w0| ≤ o(ξ−(2+σ)/K

n ), therefore if K = 1, then the circles ξn sin(wnt) are close to the
circles ξn sin(w0t). These circles for all various n are concentric and belong to the
common plane.
Remark 3. Condition 2 means that

lim
w→w0

|w − w0|−K |<(L(wi)M(−wi))| <∞, (9)

i.e., either w0 is a root of the polynomial <(L(wi)M(−wi)) of a finite multiplicity
K∗ ≥ K, or <(L(wi)M(−wi)) ≡ 0. The assumption K∗ ≥ K may be slightly
weakened; e.g., the inequality 3K ≤ 4K∗ is also sufficient.
Remark 4. Theorem 2.1 can be extended to periodic nonlinearities f with nonzero

mean values. Let (instead of (3)) µ0 6= 0. The change of variables x = µ0
M(0)
L(0) + y

transforms (1) into the equation of the same form, with the same polynomials L

and M and with the new nonlinearity f1(y) = f(µ0
M(0)
L(0) + y) − µ0, that is also

T -periodic (in y) and has zero mean value:

1

T

∫ T

0

f1(y) dy = 0.

3The choice of Ω is given in the end of Section 3.1 explicitly.
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Function (8) for this nonlinearity has the Fourier series

g1(y) =

∞∑
s=1

µs
cos(ψs + ωsµ0

M(0)
L(0) ) sin(ωsy − π

4 )
√
s

,

this function must be not identically zero, i.e., the function f1 must be not even.

3. Proof of Theorem 2.1.

3.1. Time rescaling. Let us linearly rescale the time in (1) and consider the equa-
tion

L(w
d

dt
)x = M(w

d

dt
)f(x). (10)

Every 2π-periodic solution x(t) of (10) defines the (2π/w)-periodic solution x(wt)
of (1). We look for 2π-periodic solutions of equation (10) in the form

x(t) = ξ sin t+ h(t), (11)

the Fourier expansion of h does not contain the harmonics sin t and cos t. We
are going to find sequences ξn → ∞, wn → w0 of real numbers and a sequence
hn(t) of 2π-periodic functions such that formula (11) defines the solutions xn(t) =
ξn sin t+ hn(t) of equation (10) with w = wn. This would imply the conclusion of
Theorem 2.1.

Every non-stationary 2π-periodic solution x(t) of any autonomous equation is
included in the continuum x(t + φ) of shifted solutions; any of them (φ ∈ R or
φ ∈ [0, 2π)) defines the same cycle (as a geometric object) in the phase space R`.
If x contains the first harmonics, then exactly one solution x(t + φ) has the form
ξ sin t+ h(t) with ξ > 0.

The polynomials L and M are coprime, therefore from L(w0i) = 0 it follows that
M(w0i) 6= 0. From Conditions 2 and 3 of Theorem 2.1 it follows that there exists a
vicinity Ω = (w1,w2), w1 < w0 < w2 of the point w0 such that the following two
assumptions are valid:

• w0 is an unique root of both the polynomials =(L(wi)M(−wi)) and L(wi)
on Ω̄;

• L(kwi) 6= 0 for k = 0, 2, 3, . . . and w ∈ Ω̄.

By assumption =(L(w0i)M(−w0i)) = 0, the root w0 has an odd multiplicity K,
therefore

=(L(w1i)M(−w1i)) =(L(w2i)M(−w2i)) < 0, (12)

moreover =(L(wi)M(−wi)) = (w − w0)KN(w), where N(w) 6= 0 for w ∈ Ω̄.

3.2. Linear operators. We use the spaces C, Ck, L2 and W 1
2 of functions x =

x(t) : [0, 2π] → R with the usual norms and scalar products and their subspaces
C0, C

k
0 of periodic functions, ‖x‖W 1

2
= ‖x‖C +‖x′‖L2 . Denote by E ⊂ L2 the linear

span of the functions sin t and cos t, denote by E⊥ ⊂ L2 the orthogonal complement
of the plane E. Then

Px(t) =
1

π

∫ 2π

0

cos(t− s)x(s) ds

and Q = I − P are orthogonal projectors onto the subspaces E and E⊥ of L2.
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For each w ∈ Ω̄ denote by A = Aw the linear operator that maps any function
u ∈ E⊥ ⊂ L2 to an unique solution x = Au ∈ E⊥ of the linear equation

L(w
d

dt
)x = M(w

d

dt
)u. (13)

The existence of the solution x = x(t) follows from the relations u ∈ E⊥ and
L(kwi) 6= 0 for all k 6= ±1, w ∈ Ω̄; the uniqueness follows from x ∈ E⊥. The
projectors P and Q commute with differentiation and with the operators Aw in any
appropriate spaces.

The operators Aw : E⊥ → E⊥ are completely continuous in L2 and in C. The
norms of the operators AwQ : C → C1 are uniformly bounded, moreover, AwQ acts
continuously from C to C`−m0 . The number

α = sup
w∈Ω̄

‖AwQ‖C→C1 <∞ (14)

is well-defined. The operator AwQu : Ω̄×C → C`−m is completely continuous with
respect to the set of its variables (w , u). The operator A′wQ : u(t) 7→ d

dtAwQu(t) is
continuous in C.

Consider a function u ∈ C. If its Fourier coefficients νk satisfy the estimate
|νk| ≤ ζk, then the Fourier coefficients ν̃k and ν̃′k of the functions AwQu and A′wQu
satisfy

|ν̃k| ≤ const km−`ζk, |ν̃′k| ≤ const km−`+1ζk. (15)

3.3. Scalar linear equations.

Lemma 3.1. The functions x(t) = ξ sin t+h(t) (h∈E⊥) and u(t)∈C satisfy (13)
if and only if

π< L(wi)

M(wi)
ξ =

∫ 2π

0

sin t u(t) dt, π= L(wi)

M(wi)
ξ =

∫ 2π

0

cos t u(t) dt,

h = AwQu.

(16)

Proof. By construction equation (13) is equivalent to the system

L
(
w
d

dt

)
(ξ sin t) = M

(
w
d

dt

)
Pu(t), L

(
w
d

dt

)
h = M

(
w
d

dt

)
Qu(t),

The second equation is equivalent to h = AwQu, and the first is equivalent to

π<(L(wi))ξ sin t+ π=(L(wi))ξ cos t

= (<(M(wi)) cos t−=(M(wi)) sin t)

∫ 2π

0

cos s u(s)ds

+ (<(M(wi)) sin t+ =(M(wi)) cos t)

∫ 2π

0

sin s u(s)ds,
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that is

π<(L(wi))ξ =−=(M(wi))

∫ 2π

0

cos s u(s) ds (17)

+ <(M(wi))

∫ 2π

0

sin s u(s) ds, (18)

π=(L(wi))ξ = <(M(wi))

∫ 2π

0

cos s u(s) ds (19)

+ =(M(wi))

∫ 2π

0

sin s u(s) ds. (20)

Multiply (17) by <(M(wi)) and (19) by =(M(wi)), then sum the products and ob-
tain the first of equations (16). Multiply (17) by−=(M(wi)) and (19) by <(M(wi)),
then sum the products and obtain the second of equations (16). Since M(wi) 6= 0
for w ∈ Ω̄ all used transformations are equivalent. �

3.4. Topological lemma. For the sequel, we need the following lemma on the solv-
ability of a system of two scalar equations and an equation in a Banach space H.
This lemma contains the sufficient part of more general statements from [5].

Consider the system

B1(w , ξ, h) = 0, B2(w , ξ, h) = 0, h = B3(w , ξ, h), (21)

where the unknowns w and ξ are scalar, w ∈ Ω̄ = [w1,w2], ξ ∈ Ξ̄ = [ξ1, ξ2], and
h ∈ H. Suppose the operators B1, B2 : Ω̄ × Ξ̄ × H → R are continuous and the
operator B3 : Ω̄× Ξ̄×H → H is completely continuous (with respect to the set of
their arguments). If B3 is uniformly bounded

‖B3(w , ξ, h)‖H ≤ ρ, w ∈ Ω̄, ξ ∈ Ξ̄, h ∈ H,
then from the Schauder fixed point theorem it follows that the set H(w , ξ) = {h :
h = B3(w , ξ, h)} is non-empty for any w ∈ Ω̄, ξ ∈ Ξ̄. Put H =

⋃
w∈Ω̄,ξ∈Ξ̄ H(w , ξ).

Lemma 3.2. Suppose

B1(w1, ξ, h) ·B1(w2, ξ, h) < 0, ξ ∈ Ξ̄, h ∈ H, (22)

B2(w, ξ1, h) ·B2(w, ξ2, h) < 0, w ∈ Ω̄, h ∈ H. (23)

Then system (21) has at least one solution w ∈ Ω̄, ξ ∈ Ξ̄, h ∈ H.

Lemma 3.2 follows from Theorem 2 from [5] that is a generalization of the Ro-
tation Product Formula [8], §7, §23. Under the assumptions of Lemma 3.2 the
rotation γ1 of the infinite dimensional vector field h−B3(w , ξ, h) ∈ H with fixed w ,
ξ on the sphere {‖h‖H = ρ + 1} equals 1. The rotation γ2 of the two-dimensional
vector field {B1(w , ξ, h), B2(w , ξ, h)} with fixed h on the boundary of the rectan-
gular R = {w ∈ (w1,w2), ξ ∈ (ξ1, ξ2)} is either 1 or −1. The rotation γ0 of the
field

{B1(w , ξ, h), B2(w , ξ, h), h−B3(w , ξ, h)}
on the boundary of the domain R × {‖h‖H < ρ + 1} in the space R × R × H
equals γ1γ2 ([5]), i.e., |γ0| = 1. Hence there exists a solution of system (21) in this
domain. �

Let us emphasize that (22) and (23) must be checked for h ∈ H only, this is
the main difference between Lemma 3.2 and more classical variants of the Rotation
Product Formula.
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3.5. Estimates of the component h and the main lemma. In Section 3.6
we rewrite 2π-periodic problem for differential equation (13) in the form of equiv-
alent system (21) of operator equations to apply Lemma 3.2. Lemma 3.5 below
allows to obtain the necessary inequality (23), it follows from sharp asymptotic
representations for the component Pf(x) as ξ → ∞. Lemmas 3.3 and 3.4 presents
the necessary a priori estimates for the component h = Qx. Proofs of Lemma 3.4
and 3.5 are given in the next Section 4.

Consider the functions x(t) = xξ,h(t) = ξ sin t + h(t), ξ ≥ 1, h ∈ E⊥. For ξ ≥ 1
and w ∈ Ω̄ put

H(ξ,w) = {h : h ∈ C, h = AwQf(ξ sin t+ h(t))} ⊂ C1

and H =
⋃

ξ≥1,w∈Ω̄

H(ξ,w).

Lemma 3.3. The inclusion

H ⊂ Bγ = {y ∈ C1 : ‖y‖C1 ≤ γ}, γ = α sup |f |

is valid, where α is the number from (14).

This is a simple lemma: the operator x 7→ f(x(t)) acts in C and maps C into
the ball {y ∈ C : ‖y‖C ≤ max |f |}, the operators AwQ act continuously from C to
C1. �

The operator h(t) 7→ AwQf(ξ sin t + h(t)) is completely continuous in C and
maps C in a ball, from the Leray-Schauder principle it follows that H(ξ,w) 6= ∅ for
any ξ ≥ 1 and w ∈ Ω̄.

Lemma 3.4. For any ε ∈ (0, 1/2) there exists K = K(ε) such that the inclusion

H(ξ,w) ⊂ {y ∈W 1
2 : ‖y‖W 1

2
≤ K(ε)ξ−ε}, ξ ≥ 1

is valid for all w ∈ Ω̄.

Lemma 3.5. For any ρ > 0 and ε ∈ (0, 1/2) there exists K1 = K1(ρ, ε) such that
the estimates

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

sin t f(ξ sin t+ h(t)) dt− 2
√

2π√
ω
g(ξ)

∣∣∣
≤ K1(1 + ρ)ξ−ε (24)

and

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣ξ1+ε

∫ 2π

0

cos t f(ξ sin t+ h(t)) dt
∣∣∣ ≤ √2π ρmax |f | (25)

hold for ξ ≥ 1.

From these lemmas it follows that for any h ∈ H(ξ,w)∣∣∣√ξ ∫ 2π

0

sin t f(ξ sin t+ h(t)) dt− 2
√

2π√
ω
g(ξ)

∣∣∣,∣∣∣ξ ∫ 2π

0

cos t f(ξ sin t+ h(t)) dt
∣∣∣ ≤ c(ε) ξ−ε.
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3.6. Equivalent equations and finalizing of the proof. From Lemma 3.1 it
follows that the function x(t) = ξ sin t + h(t), h ∈ E⊥ is a 2π-periodic solution
of (10) if and only if it satisfies the system

π< L(wi)

M(wi)
ξ=

∫ 2π

0

sin t f(x(t)) dt, π= L(wi)

M(wi)
ξ=

∫ 2π

0

cos t f(x(t)) dt,

h = AwQf(x(t)).

Express the value π(w − w0)Kξ|M(wi)|−2 from the second equation:

π(w − w0)Kξ|M(wi)|−2 =
1

N(w)

∫ 2π

0

cos t f(x(t)) dt,

where N = =(L(wi)M(wi))(w − w0)−K is a polynomial, N(wi) 6= 0. Put this in
the first equation, it takes the form∫ 2π

0

sin t f(x(t)) dt = Y (w)

∫ 2π

0

cos t f(x(t)) dt,

where

Y (w) =
<(L(wi)M(−wi))
=(L(wi)M(−wi))

.

According to Condition 2 of the theorem (see also Remark 2 and (9)) the rational
function Y is continuous (if <(L(wi)M(−wi)) ≡ 0, then it may be identically zero)
and bounded on Ω̄.

The final version of the equivalent system has the form
=(L(wi)M(−wi))= |M(wi)|2

πξ

∫ 2π

0

cos t f(x(t)) dt,∫ 2π

0

sin t f(x(t)) dt= Y (w)

∫ 2π

0

cos t f(x(t)) dt,

h = AwQf(x(t)).

(26)

Consider the T -periodic function g, defined in Remark 2, formula (8). Since g is
not identically zero and has zero mean value there exist values ξ1 and ξ2 such that
ξ1 < ξ2 and g(ξ1)g(ξ2) < 0. Fix an ε ∈ (0, 1/2), choose sufficiently large integer n
(depending on ε), and put ξn1 = ξ1 + Tn, ξn2 = ξ2 + Tn. Of course, g(ξn1 )g(ξn2 ) < 0
for any integer n. Put Ξ = [ξn1 , ξ

n
2 ], Lemmas 3.3 – 3.5 imply∫ 2π

0

sin t f(x(t)) dt =
2
√

2π

ω
g(ξ)ξ−1/2 +O(ξ−1/2−ε),

and ∫ 2π

0

cos t f(x(t)) dt = O(ξ−1−ε),

therefore for any w ∈ Ω̄ and h ∈ H for sufficiently large n we have the inequality(∫ 2π

0

sin t f dt− Y (w)

∫ 2π

0

cos t f dt
)∣∣∣
ξ=ξn1

·
(∫ 2π

0

sin t f dt− Y (w)

∫ 2π

0

cos t f dt
)∣∣∣
ξ=ξn2

< 0;
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and from (12) it follows that (again for sufficiently large integer n)(
=(L(wi)M(−wi))− |M(wi)|2

πξ

∫ 2π

0

cos t f dt
)∣∣∣

w=w1

·
(
=(L(wi)M(−wi))− |M(wi)|2

πξ

∫ 2π

0

cos t f dt
)∣∣∣

w=w2

< 0.

These two inequalities play the role of conditions (22) and (23) for system (26).
From Lemma 3.4 it follows the relation AwQf(x(t)) = o(1) as ξ → ∞ in W 1

2. The
operator (w , ξ, h) 7→ f(x) is completely continuous as an operator from Ω× Ξ× C
to C. For sufficiently large n (i.e., for sufficiently large ξ) Lemma 3.2 is applicable
to system (26) on the set Ω× Ξ× {‖h‖C ≤ γ}, therefore (26) has a solution. �

4. Proofs of Lemmas 3.4 and 3.5.

4.1. Proof of Lemma 3.4. In the proof of Lemma 3.4 we use auxiliary statements
(Lemma 4.1 and Lemma 4.2), their proofs are given in the end of this section.

Lemma 4.1. For any γ > 0 for all k = 0, 1, 2, . . . and ϕ ∈ R the estimate

sup
‖h‖C1≤γ

∣∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣∣ ≤ 20√

ξ
+

4(k + γ) ln ξ

ξ
(27)

holds for any ξ ≥ 1.

From (27) and the trivial relationship∣∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣∣ ≤ 2π (28)

(it is valid for all h, k, ϕ) it follows that

sup
‖h‖C1≤γ

∣∣∣ ∫ 2π

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣∣
≤ min

{
2π,

20√
ξ

+
4(k + γ) ln ξ

ξ

}
(29)

for ξ ≥ 1. Relation (29) is valid for all ξ, k, γ, ϕ, put there ωsξ, ωsh, ωsγ instead of
ξ, h, γ, where ω = 2π

T > 0 is a real number defined in the beginning of Section 2,
s = 1, 2, . . . is positive integer. We see that the relation

sup
‖h‖C1≤γ

∣∣∣ ∫ 2π

0

eiωs(ξ sin t+h(t)) sin(kt+ ϕ) dt
∣∣∣ ≤ Y (k, s, ξ, γ)

def
= min

{
2π,

20√
ωsξ

+
4(k + γωs) ln(ωsξ)

ωsξ

}
holds for any non-negative integer s and real ξ ≥ 1.

Put αs(t) = sin
(
ωs(ξ sin t+h(t)) +ψs

)
. According to (4) the function f(ξ sin t+

h(t)) can be represented as

f(ξ sin t+ h(t)) =

∞∑
s=1

µsαs(t).
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Let ak, ck, c
′
k be the Fourier coefficients of the functions αs, Hs = AwQαs, and

d
dtHs. Then |ak| ≤ Y (k, s, ξ, γ), k = 0, 1, 2, . . ., therefore |c0| ≤ const·ln s·(ωs ξ)−1/2

and for any k = 1, 2, . . .

|ck| ≤ const · Y (k, s, ξ, γ) km−`, |c′k| ≤ const · Y (k, s, ξ, γ) km−`+1

(see (15)). In particular, from m− `+ 1 ≤ −1 it follows that

|c′k| ≤ const · Y (k, s, ξ, γ)k−1. (30)

Lemma 4.2. Let ` ≥ m+2. For any ε ∈ (0, 1
2 ) the estimate ‖Hs‖W 1

2
≤ const(ε)ξ−ε

ln s holds.

Lemma 4.2 is proved in Subsection 4.4. Now h ∈ H, the relation h =
∑∞
s=1 µsHs

implies

‖h‖W 1
2
≤ const

∞∑
s=1

µs‖Hs‖W 1
2
≤ const · ξ−ε

∞∑
s=1

µs| ln s| ≤ const · ξ−ε,

and Lemma 3.4 follows from Condition 4 of Theorem 1. �

4.2. Proof of Lemma 3.5.

Lemma 4.3. For any ε there exists some β = β(ε) > 0 such that for any ρ > 0 the
relation

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

ei(ξ sin t+h(t)) sin t dt−∆(ξ)i
∣∣∣ ≤ β(1 + ρ)ξ−ε (31)

holds, where ∆(ξ) = =
(
e(ξ−π/4)i

√
2π − e−(ξ−π/4)i

√
2π
)

= 2 sin(ξ − π/4)
√

2π =

2
√
π(sin ξ − cos ξ).

Lemma 4.3 is proved in the end of the paper.
Put in (31) the expressions ωsξ, ωsh instead of ξ and h and rewrite the obtained

relation

sup
‖ωsh‖

W1
2
≤ρ(ωsξ)−ε

∣∣∣√ωsξ ∫ 2π

0

eiωs(ξ sin t+h(t)) sin t dt−∆(ωsξ)i
∣∣∣

≤ β(1 + ρ)(ωsξ)−ε,

in the form

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

eiωs(ξ sin t+h(t)) sin t dt− ∆(ωsξ)√
ωs

i
∣∣∣
≤ β
√
ωs(w−1−ε + ρ)ξ−ε,

replacing ρ(ωs)−1−ε by ρ. The last inequality can be rewritten as two real relation-
ships

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

cos(ωs(ξ sin t+h(t))) sin t dt
∣∣∣ ≤ β√ωs(ω−1−ε+ρ)ξ−ε,

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

sin(ωs(ξ sin t+h(t))) sin t dt− ∆(ωsξ)√
ωs

∣∣∣
≤ β
√
ωs(ω−1−ε+ρ)ξ−ε,
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therefore,

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

sin(ωs(ξ sin t+ h(t)) + ψs) sin t dt− cosψs∆(ωsξ)√
ωs

∣∣∣
≤ β
√
ωs(ω−1−ε + ρ)ξ−ε.

If we sum the obtained inequalities for various s = 1, 2, . . . with the coefficients µs,
we obtain

sup
‖h‖

W1
2
≤ρξ−ε

∣∣∣√ξ ∫ 2π

0

f(ξ sin t+ h(t)) sin t dt−
∞∑
s=1

µs
cosψs∆(ωsξ)√

ωs

∣∣∣
≤ β
√
ω(ω−1−ε + ρ)ξ−ε

∞∑
s=1

µs
√
s.

The definition of the function g:
∞∑
s=1

µs cosψs∆(ωsξ)√
ωs

= 2

√
2π

ω
g(s)

proves the first part of Lemma 3.5. The second part (25) follows from the identities∫ 2π

0

f(ξ sin t+ h(t)) cos t dt

=
1

ξ

∫ 2π

0

f(ξ sin t+h(t)) d(ξ sin t+h(t))− 1

ξ

∫ 2π

0

h′(t )f(ξ sin t+h(t)) dt

and ∫ 2π

0

f(x(t))x′(t) dt ≡ 0,

and the estimates∣∣∣ ∫ 2π

0

f(ξ sin t+ h(t)) cos t dt
∣∣∣ =

∣∣∣1
ξ

∫ 2π

0

h′(t )f(ξ sin t+ h(t)) dt
∣∣∣

≤
√

2π sup |f |
ξ

‖h′‖L2 ≤
√

2πρ sup |f |
ξ1+ε

.

Lemma 3.5 is completely proved. �

4.3. Proof of Lemma 4.1. Put

q(t) = sin(kt+ ϕ)eih(t), q′(t) = k cos(kt+ ϕ)eih(t) + i sin(kt+ ϕ)eih(t)h′(t);

obviously, ‖q‖C ≤ 1, ‖q′t‖C ≤ k + γ. Let us estimate the value

I(ξ) = Iξ(0,π/2) =

∫ π/2

0

ei(ξ sin t+h(t)) sin(kt+ ϕ) dt =

∫ π/2

0

eiξ sin tq(t)dt,

analogous integrals Iξ(π/2,π), I
ξ
(π,3π/2), and Iξ(3π/2,2π) along the corresponding inter-

vals (the function sin t is monotone on each such interval) can be considered with
the use of the same scheme. After the change of variables v = sin t in the integral
I(ξ) we have

I(ξ) =

∫ 1

0

eivξW (v)dv, W (v) =
q(arcsin v)√

1− v2
.



UNBOUNDED SEQUENCES OF CYCLES 1011

The function W is continuous on [0, 1), |W (v)| ≤ 1/
√

1− v and

|W ′(v)| ≤
∣∣∣q′(arcsin v)

1− v2

∣∣∣+
∣∣∣v q(arcsin v)

(
√

1− v2)3

∣∣∣ ≤ k + γ

1− v
+

1√
(1− v)3

.

Furthermore, I(ξ) = I1(ξ) + I2(ξ);

I1(ξ) =

∫ 1−ξ−1

0

eiξvW (v) dv, I2(ξ) =

∫ 1

1−ξ−1

eiξvW (v) dv.

Now let us estimate the integrals I1 and I2 separately. First of all

|I2(ξ)| =
∣∣∣ ∫ 1

1−ξ−1

eiξvW (v) dv
∣∣∣
≤
∫ 1

1−ξ−1

dv√
1− v

= −2
√

1− v
∣∣∣1
1−ξ−1

=
2√
ξ
,

then

|I1(ξ)| =
∣∣∣ ∫ 1−ξ−1

0

eiξvW (v) dv
∣∣∣ =

1

ξ

∣∣∣ ∫ 1−ξ−1

0

W (v) d(eiξv)
∣∣∣

≤
∣∣∣∣(eiξvW (v)

ξ

∣∣∣1−ξ−1

0

)∣∣∣∣+
1

ξ

∣∣∣ ∫ 1−ξ−1

0

eiξvW ′v(v) dv
∣∣∣

≤ 1

ξ
+

1√
ξ

+
1

ξ

∫ 1−ξ−1

0

k + γ

1− v
dv +

1

ξ

∫ 1−ξ−1

0

dv√
(1− v)3

=
1

ξ
+

1√
ξ

+
(k + γ) ln ξ

ξ
+

2

ξ
√

1− v

∣∣∣1−ξ−1

0

≤ 1

ξ
+

1√
ξ

+
(k + γ) ln ξ

ξ
+

2
√
ξ

ξ
− 2

ξ
≤ 3√

ξ
+

(k + γ) ln ξ

ξ
.

Combining the obtained estimate for Iξ(0,π/2) with the same estimates for the inte-

grals Iξ(π/2,π), I
ξ
(π,3π/2), and Iξ(3π/2,2π) we have (27). �

4.4. Proof of Lemma 4.2. From Parseval’s Formula

‖H ′s‖2L2 =

∞∑
k=1

|c′k|2

and (30) it follows the estimate

‖H ′s‖2L2 ≤ const
∞∑
k=1

|Y (k, s, ξ, γ)k−1|2.
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Split for any ξ the last series into two parts: a finite part for4 k ≤ [ξ] and an infinite
rest part for k > [ξ]. Then

∞∑
k=[ξ]+1

(Y (k, s, ξ, γ)

k

)2

≤
∞∑

k=[ξ]+1

4π2

k2
≤

∞∑
k=[ξ]+1

4π2

([ξ] + 1)2εk2−2ε

≤ 1

ξ2ε

∞∑
k=1

4π2

k2−2ε

(ε ∈ (0, 1
2 ) ⇒ 2 − 2ε > 1) and, since (3 − 2ε)/4 + ε + (1/2 − ε)/2 = 1 and ε ∈

(0, 1
2 )⇒ (3− 2ε)/4 > 1

2 ,

[ξ]∑
k=1

(Y (k, s, ξ, γ)

k

)2

≤
[ξ]∑
k=1

(
20

k
√
ωsξ

+
4(k + γωs) ln(ωsξ)

kωsξ

)2

≤
[ξ]∑
k=1

(
20

k
√
ωsξ

+
4(k + γωs)

kωs

ln(ωsξ)

ξ(1/2−ε)/2
1

k1−ε−(1/2−ε)/2ξε

)2

≤
∞∑
k=1

(
20

k
√
ωsξ

+
4(k + γωs)

kωs

ln(ωsξ)

ξ(1/2−ε)/2
1

k(3−2ε)/4ξε

)2

≤ ln2 s

ξ2ε

∞∑
k=1

(
20

k
+

const

k(3−2ε)/4

)2

=
c ln2 s

ξ2ε
.

We proved the estimate ‖H ′s‖L2 ≤ c(ε)ξ−ε ln s, it implies ‖H ′s‖L1 ≤ c̃1(ε)ξ−ε ln s.
Any continuous periodic function Hs always takes its mean value c0 that is its zero
harmonics, it satisfies |c0| ≤ c̃(ε) ξ−ε ln s, let Hs(t0) = c0. The estimates for the
values ‖Hs‖C follow from

|Hs(t)| ≤ |c0|+
∫ t

t0

|H ′s(t)| dt,

therefore, ‖Hs‖C ≤
(
c̃(ε) + c̃1(ε)

)
ξ−ε ln s. �

4.5. Proof of Lemma 4.3. Let us slightly change (compare with the proof of
Lemma 4.1) some denominations:

q(t) = sin t eih(t), q′(t) = cos t eih(t) + i sin t eih(t)h′(t).

Obviously, ‖q‖C ≤ 1, ‖q′‖C ≤ 1 + γ. Consider in detail the integral

I(ξ) =

∫ π/2

0

ei(ξ sin t+h(t)) sin t dt =

∫ π/2

0

eiξ sin tq(t) dt,

the integrals ∫ π

π/2

. . . ,

∫ 3π/2

π

. . . ,

∫ 2π

3π/2

. . .

4We denote the integer part as [·].
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can be considered in a similar way. The statement of Lemma 4.3 follows from the
relations

I(ξ) =

∫ π

π/2

. . . =

√
π

2ξ
e(ξ−π4 )i +O(ξ−

1
2−ε),∫ 3π/2

π

. . . =

∫ 2π

3π/2

. . . = −
√

π

2ξ
e−(ξ−π4 )i +O(ξ−

1
2−ε),

we prove the first one (concerning I(ξ)) only. Put v = sin t in the integral I(ξ):

I(ξ) =

∫ 1

0

eivξW (v)dv, W (v) =
eih(arcsin(v))v√

1− v2
.

The function W is continuous on [0, 1),

|W (v)| ≤ 1√
1− v

,

|W ′(v)| ≤
∣∣∣ eiq(...)√

1− v2

∣∣∣+
∣∣∣eiq(...)h′(. . .)v

1− v2

∣∣∣+
∣∣∣ eiq(...)v2

2(
√

1− v2)3

∣∣∣ ≤ 2 + γ√
(1− v)3

.

Obviously,

I(ξ) = J(ξ) +

∫ 1

0

eivξU(v)dv

where

J(ξ) =

∫ 1

0

eivξ
dv√

2(1− v)
, U(v) = W (v)− 1√

2(1− v)
.

The value J(ξ) contains the principal term that can be computed explicitly:

J(ξ) =
eiξ√

2

∫ 1

0

e−iuξdu√
u

=
eiξ√

2

∫ 1

0

eiuξdu√
u

=
eiξ√

2

∫ ∞
0

eiuξdu√
u
− eiξ√

2

∫ ∞
1

eiuξdu√
u

.

Now Lemma 12.1 from [9] (page 100, formula (12.01)) implies∫ ∞
0

eiuξdu√
u

=
1√
ξ

∫ ∞
0

eiudu√
u

=
e
πi
4 Γ( 1

2 )
√
ξ

=
e
πi
4
√
π√

ξ
.

Obviously∣∣∣ ∫ ∞
1

eiuξdu√
u

∣∣∣ =
1

ξ

∣∣∣ ∫ ∞
1

deiuξ√
u

∣∣∣ ≤ 1

ξ
+

1

2ξ

∫ ∞
1

du√
u3
≤ 1

ξ
+

1

ξ
=

2

ξ
.

Therefore, ∣∣∣J(ξ)−
√

π

2ξ
e(ξ−π4 )i

∣∣∣ ≤ √2

ξ
.

Now eliminate the principal term from the function U(v):

U(v) =
eih(arcsin(v))v√

1− v2
− 1√

2(1− v)
= E(v)− (1− eih(arcsin(v)))v√

1− v2
.
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The function

E(v)
def
=

v√
1− v2

− 1√
2(1− v)

=
v
√

2−
√

1 + v√
2(1− v2)

=
(v
√

2 +
√

1 + v)(v
√

2−
√

1 + v)

(v
√

2 +
√

1 + v)
√

2(1− v2)

=
(v − 1)(2v + 1)

(v
√

2 +
√

1 + v)
√

2(1− v2)
=

√
1− v(2v + 1)

(v
√

2 +
√

1 + v)
√

2(1 + v)

is continuous on [0, 1], the derivative E′ is continuous on [0, 1), |E′(v)| ≈ const/√
1− v at v = 1, therefore

∫ 1

0
|E′(v)|dv = E0 <∞. Now we have

∣∣∣ ∫ 1

0

eivξE(v) dv
∣∣∣ =

∣∣∣ 1

iξ

∫ 1

0

E(v) d
(
eivξ

) ∣∣∣
≤ |E(0)|

ξ
+

1

ξ

∣∣∣ ∫ 1

0

E′(v) eivξdv
∣∣∣ ≤ |E(0)|+ E0

ξ
.

Consider the integral

J0(ξ) =

∫ 1

0

eivξ
(1− eih(arcsin(v)))v dv√

1− v2
=

∫ 1−ξ−1

0

. . .+

∫ 1

1−ξ−1

. . .

It is simple to estimate the second term here: since5 |1− eir| ≤ |r|, we have

∣∣∣ ∫ 1

1−ξ−1

eivξ
(1− eih(arcsin(v)))v dv√

1− v2

∣∣∣ ≤ ‖h‖C ∫ 1

1−ξ−1

dv√
1− v

= 2‖h‖C
√
ξ−1 ≤ 2ρξ−

1
2−ε.

5An arc is always longer than its chord.
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To estimate the first term, let us firstly estimate the values

G1 =
∣∣∣ ∫ 1−ξ−1

0

eivξ
(

(−eih(arcsin(v)))vh′(arcsin(v))

1− v2
dv

) ∣∣∣
≤
∫ 1−ξ−1

0

∣∣∣h′(arcsin(v))

1− v2

∣∣∣ dv
≤
∫ 1−ξ−1

0

(
max

v∈[0,ξ−1]

1√
1− v2

) ∣∣∣h′(arcsin(v))√
1− v2

∣∣∣ dv
≤
√
ξ

∫ 1−ξ−1

0

∣∣∣h′(arcsin(v))√
1− v2

∣∣∣ dv ≤√ξ ∫ 1

0

|h′(arcsin(v))|√
1− v2

dv

=
√
ξ

∫ π/2

0

|h′(t)| dt ≤
√
π

2

√
ξ‖h′‖L2 ≤

√
π

2
ρξ

1
2−ε,

G2 =
∣∣∣ ∫ 1−ξ−1

0

eivξ
(1− eih(arcsin(v)))v2√

(1− v2)3
dv
∣∣∣

≤ ‖h‖C
∫ 1−ξ−1

0

dv√
(1− v)3

=
1

2
‖h‖C

√
ξ ≤ 1

2
ρξ

1
2−ε,

G3 =
∣∣∣ ∫ 1−ξ−1

0

eivξ
(1− eih(arcsin(v)))√

1− v2
dv
∣∣∣

≤ ‖h‖C
∫ 1−ξ−1

0

dv√
1− v

= 2‖h‖C ≤ 2ρξ−ε.

Now∣∣∣ ∫ 1−ξ−1

0

eivξ
(1− eih(arcsin(v)))v dv√

1− v2

∣∣∣ ≤ 1

ξ

∣∣∣ ∫ 1−ξ−1

0

(1− eih(arcsin(v)))v√
1− v2

d
(
eivξ

)∣∣∣
≤ ‖h‖C√

ξ
+

1

ξ

∣∣∣ ∫ 1−ξ−1

0

eivξ
d

dv

(
(1− eih(arcsin(v)))v√

1− v2

)
dv
∣∣∣

≤ ‖h‖C√
ξ

+
1

ξ
(G1 +G2 +G3) ≤ 5ρξ−

1
2−ε.

We proved that J0(ξ) ≤ 7ρξ−
1
2−ε, by construction

I(ξ) = J(ξ) +

∫ 1

0

eivξE(v) dv − J0(ξ).

Lemma 4.3 is proved. �
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