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Abstract. In this paper we study attractors of skew products, for which the following dichotomy
is ascertained. These attractors either are not asymptotically stable or possess the following two
surprising properties. The intersection of the attractor with some invariant submanifold does not
coincide with the attractor of the restriction of the skew product to this submanifold but contains
this restriction as a proper subset. Moreover, this intersection is thick on the submanifold, that is,
both the intersection and its complement have positive relative measure. Such an intersection is
called a bone, and the attractor itself is said to be bony. These attractors are studied in the space of
skew products. They have the important property that, on some open subset of the space of skew
products, the set of maps with such attractors is, in a certain sense, prevalent, i.e., “big.” It seems
plausible that attractors with such properties also form a prevalent subset in an open subset of the
space of diffeomorphisms.
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1. Introduction

As far as the author is aware, all attractors of dynamical systems on a compact manifold with
an invariant submanifold which do not coincide with the manifold and have been studied up to
2010 possess the following two properties:

the intersection of the attractor with the invariant submanifold of the system coincides with the
attractor of the restriction of the system to this submanifold;

this intersection either has k-dimensional Lebesgue measure 0 or coincides with the whole sub-
manifold; here k stands for the dimension of the submanifold.

In the present work we construct attractors that possess neither of these properties, while the
dimension k is arbitrary. The purpose of this paper is not only to prove the results formulated in it
but also to present the construction used to prove them. We believe that this construction deserves
further examination. The major component of this construction is the presence of two fiber maps
such that the attractor of one of them intersects the repeller of the other and this intersection is
irremovable by a small perturbation.

This construction is motivated by the following example, which is, however, destroyed by a
small perturbation.

Let Σk denote the set of all doubly infinite sequences over a k-element alphabet {0, 1, . . . , k−1}.
Consider a skew product over Σ2 with circle fiber, that is, a map of the form

F : X = Σ2 × S1 → X, (ω, x) �→ (σω, fω0x). (1)

The diffeomorphisms f0 and f1 in this formula are called the fiber maps. Suppose that f0 and f1

possess the following properties.
1. The rotation number of both maps is 0. All their fixed points are hyperbolic.
2. The map f0 is a north-south map with an attractor a0 and a repeller r0 .
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3. The map f1 has attractors a1 and a2 and repellers r1 and r2 , and r1 = a0 . Moreover, on
the arc [r0, r2] (the smallest of the two arcs with endpoints r0 and r2), there are no attractors of
the maps f0 and f1 .

4. The multiplicators of the fiber maps at the point a0 = r1 satisfy the inequality

f ′
0(a0)f ′

1(a0) < 1. (2)

Theorem 1. A skew product (1) with fiber maps f0 and f1 described above has a Lyapunov
unstable Milnor attractor.

This theorem was proved by Shilin [5]. It motivates the consideration of those skew products
whose attractor and repeller (which do not necessarily consist of one point) intersect.

The unusual property of the attractor of the map (1) is due to the coincidence of the attractor
of the fiber map f0 and the repeller of the fiber map f1 . This coincidence can be removed by a small
perturbation. But if the fibers are multidimensional, the attractor of the map f0 is a submanifold,
and the repeller of f1 is a submanifold of complementary dimension, then the intersection of these
two manifolds cannot be destroyed by a small perturbation. The study of such skew products leads
to our main result.

2. Main Result

2.1. A theorem and a conjecture. We say that an invariant set of a map F is Lyapunov
stable if, for every neighborhood of this set, there is another neighborhood such that the points of
the second neighborhood never leave the first neighborhood under positive iterations of F .

An invariant subset of a map F is said to be asymptotically stable if it has a neighborhood W
such that, for any other neighborhood V of this subset, there is a number k0 with the property

F k(W ) ⊂ V for every k � k0. (3)

Definition 1. Consider a self-diffeomorphism F of a compact metric space X with a probability
measure. The minimal closed set in X that contains ω-limit sets of almost all points of the space
X under the iterations of F is called the Milnor attractor. The Milnor attractor is denoted by AM .

Theorem 2. In the space of step skew products over the Bernoulli shift with fiber the torus of an
arbitrary dimension greater than 3, there exists an open set in which metrically generic (prevalent)
are maps whose Milnor attractor either is not asymptotically stable or possesses the following two
properties.

1. There exists an invariant fiber such that its intersection with the Milnor attractor has
nonempty interior and nonempty complement.

2. The restriction of the skew product to this fiber has an attractor that is a proper subset in
the intersection of the Milnor attractor with this fiber.

A. Okunev has recently modified the construction presented below in such a way that the
dichotomy mentioned in the abstract disappears, and there remain only those systems that possess
properties 1 and 2 in the statement of the theorem.

When the intersection of the Milnor attractor AM with the fiber possesses the properties
specified in the theorem, this intersection is called a bone. An attractor possessing property 1 is
said to be thick on an invariant subset.

Comment. By the definition of a skew product of the form (1), the invariant fiber lies over a
fixed point of the Bernoulli shift. In our construction, this is the sequence consisting solely of ones.
The fiber and the attractor are both closed, so their intersection is closed too. Therefore, both the
bone and its complement contain an open subset.

In [6], Kudryashov studied attractors of skew products over Σ2 with fiber the interval for which
the theorem stated above is true. These attractors were called bony. A general definition of such
attractors is given below. In Kudryashov’s thesis [7] it was also proved that the maps with bony
attractors form an open set in the space of self-diffeomorphisms of the toric slice (the product of the
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two-dimensional torus and the interval). In the present paper we propose a construction of a skew
product over Σk with fiber of arbitrary dimension for which the theorem formulated above is true.
It seems plausible that the attractors constructed here have a series of other curious properties.

The following conjecture refers to the generalization of Theorem 2 to the set of diffeomorphisms.
Conjecture 1. In the space of diffeomorphisms of the n-torus, n > 5, there is an open set in

which the maps whose attractors either are thick on an invariant submanifold of dimension n − 2
or are not asymptotically stable form a generic subset.

2.2. On the definition of an attractor. The initial definition of an attractor (see [8] and
the references therein) included requirement (3). Attractors in the sense of this definition (often
called maximal) are automatically asymptotically stable. However, not every diffeomorphism has
an attractor with property (3). The simplest example is a diffeomorphism of the circle with a single
fixed point. This point is inevitably of saddle-node type. We must either regard the whole circle
as an attractor (which is unnatural, since all trajectories tend to the saddle-node) or change the
definition of an attractor. Such a change was made by Milnor [8], who defined the Milnor attractor,
and the author [1], who defined minimal and statistical attractors. Unlike maximal attractors,
these attractors exist for any diffeomorphism of a compact Riemannian manifold. Although, they
are not necessarily Lyapunov stable. The simplest example is the circle diffeomorphism with a
single saddle-node point discussed above. Moreover, maximal attractors are often rather excessive
in the sense that they contain big subsets which are superfluous from the point of view of numerical
experiments, i.e., unobservable. Minimal, statistical, and Milnor attractors are less excessive. In this
paper we consider Milnor attractors.

2.3. Bony attractors. A component of the Milnor attractor AM is a subset K ⊂ AM that
possesses the following properties: (a) some neighborhood of the set K contains no points of AM

that do not belong to K ; (b) there are no proper subsets of K that possess property (a).
By definition, a bony attractor of a homeomorphism F is the Milnor attractor of the map F or

a component K of such an attractor provided that the following condition holds. The restriction
of F to the bony attractor is topologically equivalent to a skew product of the form

F : (b, x) �→ (h(b), fb(x)). (4)

Here h : B → B is a homeomorphism of a metric measure space and

K =
⊔

b∈B

Kb, fb(Kb) = Kh(b), (5)

where the set B is called a base, and the Kb are called fibers. Note that not all fibers Kb are
homeomorphic to each other. Moreover, there are fibers of different dimensions among them. Fibers
of maximal dimension are called bones, and the attractor itself is said to be bony.

It follows from (4) and (5) that the map F permutes fibers.
There exist examples of bony attractors for which the sum of the dimensions of the bones

and the base equals the dimension of the phase space. However, in all known examples of bony
attractors, the measure of these attractors is zero.

Problem 1. Does there exist an open set in the space of diffeomorphisms such that each map
from this set has a thick attractor, i.e., a Milnor attractor of positive measure whose complement
is nonempty (therefore, this complement is open and has positive measure too)?

3. Construction of Bony Attractors

Here we give conditions on skew products which are sufficient for the existence of bony attrac-
tors. Examples of such skew products are given in Section 5.

Let M be a closed k-manifold, and let Σk be, as before, the set of doubly infinite sequences of
k symbols. We set X = Σk+3 × M and

F : X → X, (ω, x) �→ (σω, fω0x). (6)
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Here fω0 is one of the diffeomorphisms f0, f1, . . . , fk+2 . These diffeomorphisms are called fiber
maps. Suppose that they satisfy the following conditions.

1. The diffeomorphism f0 has a global attracting surface A0 normally hyperbolic in the sense
of Hirsch–Pugh–Shub with index greater than r. This means that the orbits with initial points
close to A0 are exponentially attracted to A0 . The rate of exponential convergence of orbits to
the attracting manifold A0 is more than r times greater than the similarly defined exponential
approach rate of the orbits on A0 . Below we usually take r = 1. A more detailed version of these
definitions (which is still simplified in comparison with the original) can be found in [1]. What is
important for us is that the map f0 possesses the property formulated below in Remark 1.

Let A0 be a global attractor of f0 , which means that all points of M , except those of a stratified
embedded submanifold, tend to A0 under the action of f0 .

2. The diffeomorphism f1 has a hyperbolic attractor and an invariant repelling surface R1 (it
is often homeomorphic to a torus in what follows). The repelling basin of R1 (which, by definition,
coincides with the attraction basin of the surface R1 for f−1

1 ) will be denoted by R . This is an
open subset of the manifold M . By (1) we denote the sequence that consists solely of ones. We
shall show that the basin R in the fiber over the sequence (1) is a bone in the Milnor attractor of
the map F .

Suppose that R1 is a normally hyperbolic invariant submanifold for f0 and its index is greater
than r.

Remark 1. From the condition on the indexes it follows that, under a small perturbation of the
maps f0 and f1 , the perturbed maps have Cr -smooth invariant attracting and repelling manifolds
close to A0 and R1 , respectively.

3. Suppose that the restrictions f0|A0 and f1|R1 are Anosov diffeomorphisms.
Now, we make some assumptions about the “interaction” of the maps fj . We say that a map

f has a repelling region W if W ⊂ f(W ).
4. All fiber maps f0, f1, . . . , fk+2 have a common repelling region W .
To formulate property 5, we need the following lemma.
Lemma 1 Hutchinson’s lemma [4]. Consider a k-manifold M , an open domain Ω ⊂ M , a

number q < 1, and maps g1, . . . , gk+1 such that

gl(Ω) ⊂ Ω, (7)

Lip gl|Ω � q. (8)

Suppose there is also a subdomain Ω1 contained with its closure in Ω such that

Ω1 ⊂
k+1⋃

1

gl(Ω1). (9)

Then, for any domain U that has nonempty intersection with Ω1 , there exists a map g in the
semigroup G+(g1, . . . , gk+1) such that

g(Ω) ⊂ U. (10)
Now, we can formulate the last two conditions on the skew product (6).
5. The fiber maps f2, . . . , fk+2 have a common attracting region Ω, and each point of the mani-

fold M belongs to the basin of attraction of Ω under the iterations of one of the maps f2, . . . , fk+2 .
On the domain Ω, these maps satisfy the conditions of Hutchinson’s lemma that refer to the maps
g1, . . . , gk+1 , respectively; moreover, Ω1 ∩ A0 �= ∅.

6. Suppose that
dim A0 + dimR1 = dim M (11)

and the surfaces A0 and R1 intersect transversally in a set that contains a point p such that its
future orbit under the restriction f1|R1 is dense in R1 and its past orbit under f0|A0 is dense in A0 .

Let P denote an equidistributed Bernoulli measure on Σk+3 . Let m be a Lebesgue measure on
a fiber, and let μ = P × m be a measure on X . The metric on X is the Cartesian product of the
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metrics on the base and on the fiber. These definitions allow us to talk about the Milnor attractor
of the map (6).

Theorem 3. Suppose that a skew product satisfies conditions 1–6 in this section. Then its
Milnor attractor either is not asymptotically stable or possesses properties 1 and 2 in Theorem 2.

Proposition 1. The set of skew products with these properties is metrically dense in some open
subset of the space (Diff1

T
m)k+3 with m � 4.

This proposition is proved in Section 5.
Together, Theorem 3 and Proposition 1 imply Theorem 2.

4. Hunting for a Bone

In this section we prove Theorem 3. If the Milnor attractor of the map described in this theorem
is not asymptotically stable, then there is nothing to prove. It remains to consider the case in which
this attractor is asymptotically stable.

4.1. Sketch of the proof. Theorem 3 is proved in four steps, which correspond to the four
lemmas below. In Sections 4.1–4.4 we assume the conditions of Section 3 to be satisfied.

Lemma 2. The surface {(0)} × A0 lies in the Milnor attractor AM (F ) of the map F .

Lemma 3. Let ω01 = 0−|1+ . Then
either the Milnor attractor AM (F ) of the map F is not asymptotically stable,
or the surface {ω01} × A0 is contained in AM (F ).

Lemma 4. Let p = A0 ∩ R1 be the intersection point mentioned in condition 6. Suppose that
P = ((1), p). Then

ω(P ) ⊂ AM (F ).

From the Hirsch–Pugh–Shub theory it follows that, in some neighborhood of the manifold R1 ,
the map f1 has an invariant foliation W u expanding under the action of f1 . Each fiber of this
foliation intersects the surface R1 transversally in a single point. This foliation can be extended
to the whole repelling basin of the repelling surface R1 with the help of positive iterations of the
map f1 . For the extended foliation we use the same notation W u , and for its fiber through a point
Q, the notation W u

Q .

Lemma 5. Let P be the same point as in Lemma 4. Then, together with every point T ∈ ω(P ),
the attractor AM (F ) contains the fiber W u

T .

Theorem 3 follows from Lemmas 2–5, because the repelling basin R of the repelling surface R1

equals the union of expanding unstable fibers:

R =
⋃

Q∈R1

W u
Q.

This basin is an open domain. By Lemma 5, the set {(1)} × R lies in the Milnor attractor of the
map F . On the other hand, the complement to the Milnor attractor in the invariant fiber {(1)}×M
contains a repelling region {(1)} × W . Therefore, the intersection of the Milnor attractor with the
invariant fiber {(1)}×M has nonempty interior, and the (open) complement of this intersection in
the fiber is nonempty too. Note that the restriction of the map F to the fiber under consideration
is the map f1 . The attractor of this map is a hyperbolic set (see property 2 in Section 3). By the
Bowen theorem [3], this set has k-dimensional measure zero and cannot contain an open subset of
the fiber, such as the repelling basin of the surface R . Hence the intersection of the attractor with
this fiber does not coincide with the attractor of the restriction of the map to the fiber. This proves
Theorem 3.

We proceed to the proof of the lemmas.
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4.2. An attracting surface in a fiber as a part of the Milnor attractor.
Proof of Lemma 2. Let p ∈ {(0)} × (A0 ∩ Ω1) be an arbitrary point whose past orbit under

f0 is dense in A0 . Consider an arbitrary neighborhood of p of the form

Vp = Cw0(m) × Vp;

here Vp is a neighborhood of the point p in the fiber M , Cw is the cylinder corresponding to a
word w, and w0(m) = 0 . . . 0︸ ︷︷ ︸

m

| 0 . . . 0︸ ︷︷ ︸
m+1

, where the mark | is next to the left of the zero position. Here

and below, we denote neighborhoods in the fiber M by romans and neighborhoods in the phase
space X by italics. Subscripts indicate sets whose neighborhoods are taken.

Proposition 2. Under the positive iterations of the map F , almost every points of the set
X \ (Σk+3 × W ) falls in the neighborhood Vp at least once.

This proposition easily implies a similar statement in which “at least once” is replaced by
“infinitely many times.” Indeed, by virtue of Proposition 2, the set of points that are never taken
to Vp under the positive iterations of the map F has measure zero. The image of this set under F−k

is the set of points that do not fall into Vp after k iterations of the map F ; thus, it has measure
zero as well. The complement to all of these sets consists of the points that hit Vp infinitely many
times, and this complement has full measure.

The arbitrariness of the neighborhood Vp implies p ∈ AM (F ).
Since the Milnor attractor is invariant, we obtain

orbF ((0), p) = {(0)} × orbf0 p ⊂ AM (F ).

Recall that the orbit orbf0 p is dense in A0 , and the Minor attractor is closed. These two facts now
imply Lemma 2.

Proof of Proposition 2. We prove that, under conditions 1–6 of Section 3, the following
condition holds.

7. Let Ω and Ω1 be the same as in condition 5 of Section 3. Then, for every domain U such
that U ∩ Ω1 ∩ A0 �= ∅ and every point x ∈ M , there is a word w = w(x) such that

fw(x) ∈ U.

Here
fw = fωk−1

◦ · · · ◦ fω0,

provided that w = ω0 · · ·ωk−1. Let us derive Proposition 2 from condition 7.
Let A denote the set X \ Σk+3 × W , and let B(U) be the set of points in A that hit the

domain U at least once under the positive iterations of the map F . Then Proposition 2 acquires
the following form.

Proposition 3. Let Vp be the same neighborhood as at the beginning of this subsection. Then
almost all points of the set A belong to the set B(Vp).

Proof. Let C(x) = ({x} × Σk+3) \ B(Vp). We shall prove that

P (C(x)) = 0, (12)

where P is the Bernoulli measure on Σk+3 mentioned above.
Let m be the same as in the definition of the neighborhood Vp . Choose m′ � m so that

U ∩Ω1 �= ∅, where U = f−m′
0 (Vp) and the neighborhood Vp is the same as at the beginning of this

subsection. This is possible because the past orbit of the point p under f0 is dense in A0 .
The set M \W is compact. Therefore, there exists a number N0 such that, for every x ∈ M \W ,

the word w = w(x) in condition 7 that corresponds to the point x and the domain U has length
at most N0 . For this word w, we have fw(x) ∈ U . Let w̃(x) and ŵ(x) denote the words obtained
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from w(x) by adding, respectively, 2m′ + 1 and m′ zeros on the right. We set |ŵ(x)| = K and
|w̃(x)| = L. We have f

bw(x)(x) ∈ Vp . For any sequence ω ∈ Σ2 , let

ω|ba = ωa · · ·ωb

be the subword of the sequence ω that begins at the position a and ends at the position b. Let
N = 2m′ + 1 + N0 , N � L. For every ω such that ω|L−1

0 = w̃(x), we obtain

FK(ω, x) ∈ Vp.

Thus, the relative measure of the set formed by those points of the horizontal fiber {x}×Σk+3

which do not belong to C(x) is less than 2−N , and therefore the relative measure of those points
of this fiber which belong to C(x) is at most ν = ν(N) = (2N − 1)/2N .

We shall prove by induction on l that this measure is actually not larger than νl for any l,
i.e., equals zero. For every word w′ of length N that does not contain a subword w̃(x) beginning
at the zero position, consider y = fw′(x) and the word w̃(y). Let K = |w̃(y)| < N , and let
ω|N+K−1

0 = w′w̃(y). Then

FN+K(ω, x) ∈ Vp.

Therefore, the relative measure of the set of those points which belong to C(x) does not exceed ν2 .
This concludes the inductive step from 1 to 2. The inductive step for an arbitrary l is similar.

This proves relation (12).
Proposition 3 now follows from the Fubini theorem.
The proof of Proposition 3 uses a method due to Kudryashov [6].
Proposition 3 directly implies Proposition 2.
Proof of condition 7. By condition 5 of Section 3, for every x ∈ M , there is a word w0 = w0(x)

such that fw0(x) ∈ Ω. By Hutchinson’s lemma, for every y ∈ Ω, there exists a word w1 = w1(y)
such that fw1(y) ∈ U . Take such a word for y = fw0(x). The word w0(x)w1(y) is as required.

Note that in the proof of Proposition 3 we have obtained not only relation (12) but also the
inequality dimH C(x) < 2.

4.3. The unstable manifold of the attracting surface.
Proof of Lemma 3. Suppose, as before, that the attractor AM (F ) is asymptotically stable.

As mentioned above, this means that this attractor has a neighborhood W such that, for any other
its neighborhood V , there is a number k0 such that F k(W ) ⊂ V for every k � k0 .

Suppose now that there exists a point Q = (ω01, q) ∈ {ω01} × A0 that does not belong to
AM (F ). Then there exist neighborhoods VAM (F ) and VQ such that VAM (F ) ∩ VQ = ∅. Let W

be the same neighborhood as above. Take k0 such that F k(W ) ⊂ VAM (F ) for every k � k0 . By
Lemma 2, the domain W is at the same time a neighborhood of the surface {(0)} × A0 . Take
m � k0 such that Cw0(m−1) × A0 ⊂ W . We have

F−m(Q) = (σ−mω01, f−m
0 q) ∈ Cw0(m−1) × A0 ⊂ W .

Consequently,

Fm(W ) ∩ VQ 
 Q �= ∅.

But Fm(W ) ⊂ VAM (F ) . This contradiction proves the lemma.

4.4. The bone.
Proof of Lemma 4. As above, we suppose that the Milnor attractor of the skew product under

consideration is asymptotically stable. The lemma follows from the fact that the Milnor attractor
is invariant and closed. Let p = A0 ∩ R1 and P = ((1), p) be the same as in the statement of the
lemma, and let Q = (ω01, p). By Lemma 3, we have Q ∈ AM (F ). By virtue of invariance, the same
is true for the orbit of the point Q, and since the attractor is closed, it contains the ω-limit set of
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this orbit. The orbits of the points P and Q under F asymptotically approach each other, because
the left shifts of the sequence ω01 tend to (1):

Fn(Q) = (σnω01, fn
1 (p)), Fn(P ) = ((1), fn

1 (p)), dist(Fn(P ), Fn(Q)) → 0.

Therefore, ω(P ) = ω(Q) ⊂ AM (F ). This completes the proof of Lemma 4.
Proof of Lemma 5. This proof makes use of the fact that not only the point Q = (ω01, p)

but also the whole surface ω01 × A0 is contained in the Milnor attractor.
Consider the images

Fn(ω01 × A0) = (σnω01 × fn
1 (A0)).

The surface fn
1 (A0) contains the point fn

1 (p) ∈ R1 . Points on the repelling surface diverge from
each other at a rate slower than the rate of repelling from R1 . Hence, for a sufficiently small
neighborhood VR1 of the repelling surface in M , the intersections fn

1 (A0)∩VR1 approach the fibers
W u

fn
1 (p) . This is proved from the same considerations as the well-known Λ-lemma, so we omit the

details.
Note that ω(P ) is dense in {(1)} × R1 . Therefore,

{(1)} × R1 ⊂ AM (F ). (13)

Inclusion (13) proves Lemma 5 and, thereby, Theorem 2.

5. Metric Genericity

Here we prove the local metric genericity (prevalence) of the set of skew products which satisfy
conditions 1–6 in Section 3. At first, we construct a tuple f0

0 , . . . , f0
k+2 satisfying conditions 1–5 in

Section 3 but not satisfying condition 6, that is, such that the attractor and the repeller surface
of the first two maps have complementary dimensions, but one of them is a subset of the other.
Appropriate perturbations of this tuple yield the required tuples.

5.1. Description of the first two fiber maps of the auxiliary tuple. Here we construct
maps f0

0 and f0
1 that have normally hyperbolic attracting and repelling surfaces and a common

repelling region.
Let k � 4 be arbitrary, and let M = T

k . We decompose k into two summands as k = l + m,
2 � l � m, and rewrite T

k in the form T
l × T

m = T
l × T

m−l × T
l .

We begin with the map f0
0 . Let G0 : T

l → T
l be a Morse–Smale map such that all of its

nonwandering points are fixed. We assume that all Morse–Smale maps that appear in the sequel
satisfy this condition. Let a be an attracting fixed point of the map G0 , and let r be a repelling
point. Suppose that Al : T

l → T
l is a hyperbolic diffeomorphism of the torus. In this notation,

Am : T
m → T

m is a hyperbolic automorphism of the torus T
m . We set

f0
0 = G0 × Am.

The map f0
0 has a globally attracting surface A0 = {a} × T

m , whose restriction to A0 is a
hyperbolic diffeomorphism. The normal hyperbolicity of the surface A0 is guaranteed by choosing
the map G0 to be a strong enough contraction in a neighborhood of the point a.

Now, we proceed to the construction of the map f0
1 .

Let G̃0 : T
l → T

l be a Morse–Smale map for which both points a and r are repelling. Let
G̃1 : T

m−l → T
m−l be another Morse–Smale map with a repeller r̃ ∈ T

m−l . Then G1 = G̃0 × G̃1 :
T

m → T
m is a Morse–Smale map with the repeller (a, r̃) ∈ T

l × T
m−l . We set

f0
1 = G1 × Al.

The map f0
1 has the repelling surface R1 = {(a, r̃)} × T

l ⊂ A0 . The restriction of this map
to the surface R1 is a hyperbolic diffeomorphism. The normal hyperbolicity of the surface R1 is
guaranteed by choosing the map G1 to be strongly expanding in some neighborhoods of its repelling
points.
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The maps f0
0 and f0

1 have a common repelling region W . Indeed, both maps G0 and G̃0 have a
common repelling point r. Therefore, they have a common repelling neighborhood V ⊂ T

l of this
point. The domain W = V × T

m is as required.
The repelling basin R1 of the repelling surface R1 of the map f0

1 is an open set, and its
complement contains the open set W . The attractor of the map f0

1 is hyperbolic.
Conditions 1–4 in Section 3 are satisfied, while condition 6 is not; in what follows, we satisfy

condition 6 by applying a small perturbation to the map f0
0 .

Condition 5 refers to the maps f2, . . . , fk+2 , and we proceed to construct these maps.
5.2. Description of the remaining fiber maps. Let g0

2 : T
k → T

k be a Morse–Smale map
with a globally attracting fixed point b. More specifically, all points of the torus T

k , except the
points of some stratified (k−1)-manifold S , are attracted to b under the action of g0

2 . Suppose that,
in some coordinate neighborhood of the point b, the diffeomorphism g0

2 is a scalar contraction with
coefficient close to 1. Consider diffeomorphisms hj : T

k → T
k close to the identity and satisfying

the following conditions.
1. In the same coordinate neighborhood of the point b, the maps hj are translations, and there

is no hyperplane containing the points hj(b).
2. The intersection

⋂k+2
2 hj(S) is empty.

We set
fj = hj ◦ g0

2 ◦ h−1
j .

Note that T
k \hj(S) is the basin of attraction of the point hj(b) under fj ; we denote this basin by

Aj . Condition 2 guarantees that any point x ∈ T
k belongs to at least one basin Aj .

Let Ω denote the simplex in the same coordinate neighborhood with vertices hj(b). For the
domain Ω1 we take a simplex with the same mass center as Ω and obtained from Ω by applying a
contraction with coefficient close to 1. The maps f0

2 , . . . , f0
k+2 thus constructed satisfy condition 5

in Section 3.
Note that conditions 1–5 in Section 3 are C1-robust. Consider a neighborhood of the tuple

f0
0 , . . . , f0

k+2 in the space C1 . For a generic tuple from this neighborhood, the attracting surface of
the map f0 , which is close to A0 , transversally intersects the repelling surface of the map f1 , which
is close to R1 . The set of tuples for which this intersection contains a point whose past orbit under
f0 is dense in A0 and future orbit under f1 is dense in R1 is metrically generic, because almost all
points of A0 and R1 possess the required property.

This concludes the proof of Theorem 2.

6. Problems

Consider a skew product that satisfies the conditions in Section 3 except condition 6, which is
replaced by the following condition.

6′ . The surfaces A0 and R1 intersect transversally in a finite set consisting of periodic points
of the map f1 .

Problem 2. Suppose that the map F (see (6)) satisfies conditions 1–5 in Section 3 and con-
dition 6′ . Let Q = A0 ∩ R1 ⊂ Per f1 be a finite set. Is it true that the intersection of the Milnor
attractor AM (F ) and the fiber {(1)} × M has the form

AM (F ) ∩ {(1)} × M =
⋃

q∈Q

W u
q , (14)

where W u
q is the strong unstable manifold of the point q , which was defined in Section 4.1?

If relation (14) is true, then the attractor AM (F ) is Lyapunov unstable because of the hyper-
bolicity of the map f1|R1 . On the other hand, the maps with properties 1–5 and 6′ are dense in
the space of skew products of the form (6). The validity of (14) would give us an example of a set
dense in some open subset of the space of skew products over the Bernoulli shift such that any map
from this set has Lyapunov unstable Milnor attractor.
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Such a phenomenon has never been observed. Note that in [2] a residual set in an open subset
of the space of diffeomorphisms was constructed, in which all maps have Lyapunov stable Milnor
attractors not being asymptotically stable.

In conclusion, we formulate the following problem.
Problem 3. Is there an open set in the space of diffeomorphisms of some closed manifold that

consists of maps with Lyapunov unstable Milnor attractors?
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