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NUMERICAL INTEGRATION BY GENETIC ALGORITHMS 
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Abstract: It is shown that genetic algorithms can be used successfully in problems of definite integral calculation 

especially when an integrand has a primitive which can't be expressed analytically through elementary functions. 

A testing of the program, which uses the genetic algorithm developed by authors, showed that the best results 

are reached if the size of population makes 30-50 chromosomes, approximately 40-60% of its take a part in 

crossover, and the program stops if the population's leader didn't change during 5-10 generations. An answer of 

genetic algorithm is more exact than answer received by the classical numerical methods, even if a quantity of 

partition’s points into segment is small or if an integrand is quickly oscillating. So genetic algorithms can compete 

both on the accuracy of calculations and on operating time with well-known classical numerical methods such as 

midpoint approximation, top-left corner approximation, top-right corner approximation, trapezoidal rule, Simpson's 

rule. 
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Introduction 

A solution of many problems in physics, chemistry, mechanics and other natural sciences requires calculation 

definite integrals. Unfortunately, an exact analytic calculation of definite integrals is often impossible. Many 

functions do not have primitive that can be expressed analytically through elementary functions. For example, this 

is true for the function )exp()( 2xxf  . Moreover, a symbolic integration is a much more difficult problem than a 

finding the primitive and there is no universal algorithm solving this problem. That’s why an exact calculation of 

definite integrals by the fundamental theorem of calculus is often difficult or impossible at all. 

Traditionally, many algorithms for calculating of the integral's value are used in numerical analysis. In most of 

them, the integrand )(xf  is replaced with the approximating function )x(  which is easier to integrate 

[Samarsky, 1989]. 

In this paper a new method of numerical integration is described. This method doesn't require knowledge of 

integrand's primitive because it is based on a genetic algorithm. 

Such an unusual method of numerical integration expands area of applicability of genetic algorithms, which are 

traditionally used for solving of optimization problems [Gladkov, 2009]. 

Theoretical premises 

Let a function )(xf  be defined on segment ],[ ba . It is required to calculate a definite integral I of the function )(xf  

over the segment ],[ ba : 


b

a

.dx)x(fI  (1) 

Let  kx,...,x,x,xP 210  be a partition of the segment ],[ ba . It is assumed that bxxxa k =<...<<= 10 . The 



INFOS 2013 (VI-th International Conference Intelligent Information and Engineering Systems) 

 

2 

nodes kx,...,x,x,x 210  of partition P subdivide the segment ][ b,a  into k small segments 

     kk x,x,...,x,x,x,x 12110 
 so that kabxx ii )(  1

 for all k,i 1 . 

According to the additive property of definite integrals we have the equality 

.dx)x(ff(x)dx
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The theorem of mean value integration states that into segment  ii x,x 1
 there exists a point 

i  for which the 

following equality is true [Shipachev, 2005]: 

  .xx,xx)(fdx)x(f iiiiii
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Let us pick some point 
iс  into each segment  ii x,x 1

 and then define the following integral sum 

)c,...,c,c(S k21 : 

 .xx)c(f)c,...,c,c(S ii

k

i
ik 1

1
21 



  (2) 

Geometric interpretation of this integral sum (2) is shown on Fig. 1. 

 

Fig. 1. Geometric interpretation of the integral sum S with random points    

The integral sum ),...,,( kcccS 21
 is random variable, because points 

iс  into each segment  ii xx ,1
 are selected 

by random way. However it approximately equals to the value of the definite integral (1) and the calculation error 

does not exceed the error given by the rectangle method. Moreover the mathematical expectation ][SM  of 

integral sum's value must be equal to the exact value of the integral (1), i.e. 

.dx)x(f]S[M
b

a
  

If another set of points 
iс  is selected, the value of the integral sum is different, but still it must be approximately 

equal to the integral's value. In case of large N arithmetic average value of integral sum S* converges to the value 

of integral (1) when N tends to infinity: 

  .dx)x(fNS...SSlimSlim
b

a

N
N

*

N



21

 (3) 

The closer value of the integral sum (2) to the average sum S* (3) is, the closer it is to the exact value of the 

integral (1). Therefore if we select points fortunately, we can calculate integral (1) with high accuracy. So we 
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reduced the problem of the integral's calculation to the optimization problem: to find the points kc,...,c,c 21  into 

segments      kk x,x,...,x,x,x,x 12110 
 so that 

.minS)c,...,c,c(S *
k 21

  

Further we shall show that this minimization problem can be solved by a genetic algorithm with a high accuracy. 

For this purpose we 

 worked out a genetic algorithm for calculating the numerical value of definite integral of arbitrary 

functions defined on an segment; 

 developed a program that implements the genetic algorithm; 

 tested and debugged the program, using our genetic algorithm. 

Genetic algorithm's description 

Before we develop the genetic algorithm we need to: 

 define the space of search; 

 select the method of coding the possible solutions; 

 set rules of crossover and mutation; 

 define the fitness-function. 

The main requirement to the fitness-function is following: its minimum's point must be an exact solution of the 

minimization problem [Gladkov, 2009]. 

By means of our genetic algorithm we will find the set of points kc,...,c,c 21 , which minimize the difference 

between the integral sum (2) and the integral value (1) as far as it is possible. 

Coding of possible solutions 

The solution is an ordered set of k points, so it can be encoded by a sequence of k numbers – the coordinates of 

these points (Fig. 2). It's important to note, that there is only one point 
iс  into segment  ii x,x 1  for each k,i 1 . 

 

Fig. 2. The encoding of the solution 

So each chromosome is a sequence of k numbers kc,...,c,c 21 , where k is quantity of small segments into the 

segment ],[ ba . 

Crossover and mutation 

We choose the classical crossover technique – the one-point crossover. The crossover point is a random point 

from the partition  kxxxxP ,...,,, 210  of the segment ],[ ba , where kabxx ii )(  1
 for all ki ,1 . 

Since all the segments      kk x,x,...,x,x,x,x 12110 
 have the same length, all children after the one-point 

crossover are viable undoubtedly, because it is impossible that there would be no point or would be more than 

one point into segment  ii xx ,1
. An example of crossover's result is shown on Fig. 3 (the vertical line cuts 

chromosomes). 

     a                        b           

 c1          c2      c3       ck-1              ck                  



INFOS 2013 (VI-th International Conference Intelligent Information and Engineering Systems) 

 

4 

Parent 1 

      d1          d2        d3              dk-1         dk    

 c1          c2       c3         ck-1               ck  

Parent 2 

 c1          c2           c3               dk-1             dk   

          ck                  

      d1         d2       d3      ck-1            ck    

Child 2 

Child 1 

 

Fig. 3. One-point crossover's result 

Let 
crossp  be a quantity of percents of the best chromosomes in the generation, which participate in crossover 

(the parameter 
crossp  can be adjusted). The crossover's point is random. 

Let 
mutp  be a quantity of percents of the chromosomes, which mutate (the parameter 

mutp  can be adjusted, 

usually it does not exceed to   ). The mutation's operator randomly changes the coordinate of the point 
iс  into 

segment  ii xx ,1
. An example of the mutation is shown on Fig. 4 (point c3 is replaced by point d3). 

 

Fig. 4. Mutation's result 

After the mutation operator is applied to a chromosome, the resulting chromosome always is viable, because the 

point 
iс  moves within the segment  ii xx ,1

. 

Fitness-function 

Fitness-function has to meet the following requirements: the exact decision has to settle down in a point of its 

global minimum and value of function has to reflect a level of fitness of a chromosome [Gladkov, 2009]. 

For definition of fitness-function we will calculate the integrated sum for each chromosome in population on a 

formula (2). The problem of optimization is to minimize a divergence between the integrated sum and the value of 

integral (1). As it was noted earlier, if the value of the integrated sum S is close to average value S* of all 

integrated sums, then it is closer to value of integral too.  

 c1          c2                  d3         ck-1               ck     

          ck                  

After 

   Before 

 c1           c2      c3        ck-1               ck    
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Therefore for calculation of fitness-function F we will use a formula: 

,),...,,(),...,,( *ScccScccF kk  2121
 (4) 

where S* is the average value of all integrated sums in a given generation. It is obvious that the most adapted 

chromosomes are those who have the smallest value of fitness-function (4). 

The algorithm stops when the leading chromosome doesn't change during several generations. 

Testing of genetic algorithm 

During a testing the quality and the operating time of genetic algorithm were investigated, their dependence on 

number of points in partition of a segment and parameters of genetic algorithm (such as size of the population, 

percent of the chromosomes chosen for crossing, a stop condition, etc.) was estimated. 

To estimate the quality of the received decision in case of 0I  the relative error of result is calculated by 

formula: 

%,
I

II *

100


  (5) 

where I is exact value of integral (1), I* is answer received by means of genetic algorithm. If the integral (1) can't 

be calculated precisely, then I is received by means of some classical numerical method (such as midpoint 

approximation, Simpson's rule etc.). During the testing only one of parameters of the genetic algorithm was 

changed, and all the others parameters remained fixed. 

Dependence of quality and operating time of genetic algorithm on partition's size 

It is obvious that if number k of points into segment ],[ ba  grows, the value kab )(   decreases. Therefore it 

is possible to calculate the integral (1) more precisely if we increase the number k. Suitable value of k depends on 

properties of integrand )x(f . 

  

Fig. 5. A result's precision given by genetic algorithm and by numerical methods 

Number of segments 

Error, % 

E
rr

or
, %

 

genetic algorithm 

Simpson's rule 

top-left corner approximation 

top-right corner approximation 
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For example we consider an integral with a monotonic continuous integrand such as
 

32
1

0

/dxx  . The 

dependence of result's precision (5) given by genetic algorithm and by numerical methods on quantity of 

partition's points is presented on Fig. 5. It is important to note that the result’s precision (5) given by genetic 

algorithm is much higher than ones given by known numerical methods such as top-left corner approximation, 

top-right corner approximation, Simpson's rule, especially in case of small partition's points. 

The essential error arises in case of quickly oscillating functions if the integral is calculated by means of classical 

numerical methods. For example, we mean the integral
 

dx)x/sin(
.

1

010

1 . The diagram of quickly oscillating 

integrand )x/sin(1  is shown on Fig. 6. 

 

Fig. 6. Diagram of quickly oscillating function sin(1/x) 

But even in case of quickly oscillating function the genetic algorithm gives more exact answer, than other known 

numerical methods such as midpoint approximation, top-left corner approximation, top-right corner approximation, 

trapezoidal rule, Simpson's rule (Fig. 7). 

 

Fig. 7. Precision given by genetic algorithm and by numerical methods 

in case of a quickly oscillating integrand 

Number of segments 

Error, % 

E
rr

or
, %

 

genetic algorithm 

midpoint approximation 

top-left corner approximation 

trapezoidal rule 

top-right corner approximation 

Simpson's rule 
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If the quantity k of partition's segments increases the operating time of the genetic algorithm increases too of 

course. For example, if the number of partition's segments is equal to 1000 the operating time of the genetic 

algorithm doesn't exceed 1 minute. But if the number of partition's segments is less than 100, an operating time 

doesn't exceed 4 seconds.  

Dependence of a quality and an operating time of genetic algorithm on its parameters 

As a result of testing of the program using the genetic algorithm the following regularities were found: 

 In case of small quantity of chromosomes in population (less than 15) the error of the decision is rather 

great. If to increase number of chromosomes in population then the average error (5) monotonically 

decreases and stabilizes. 

 The percent of the chromosomes who are taking a part in crossover slightly influences an operating time 

of algorithm and doesn't influence almost response accuracy. 

 The algorithm stops if the leader doesn't change during several generations. Such quantity of 

generations is one of the algorithm's parameter. A user can set its value voluntarily. If this parameter's 

value is small (less than 5), then an error of received decision (5) can be big. However in case of this 

parameter's value is more than 10 an error considerably decreases, and in case of its further increase 

the error practically doesn't change. 

Calculating multiple integrals 

The developed genetic algorithm can be extended for calculating multiple integrals. The task is to compute an 

integral where integrand depends on n arguments and exists into a domain D, where nRD  : 

,dx...dxdx)x,...,x,x(f
D

nn 2121
 

(6) 

The domain of the function ),...,,( nxxxf 21
 is a set D which satisfies the following requirements:  

 D is bounded in nR , i.e. nn IDI  : , where nI  – n-dimensional parallelepiped; 

 the bound of D is a null-set in Lebesgue measure. 

At the beginning we consider a simple case when the domain D is a n-dimensional parallelepiped. For clarity, we 

describe a genetic algorithm when integrand has two arguments and D is a rectangle. 

Integration over a rectangle 

The domain D of the function f(x,y) is a rectangle which is separated into equal rectangles by lines 

yjxi kjyykixx ,,,,, 00   Then we pick a point 
i jc  in each rectangle (Fig. 8). 

 

Fig. 8. Diagram of function f(x,y), the partition of the rectangle and chosen points 
i jc  

f(x,y) 

cij 
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In case of n = 2 a chromosome is a two-dimensional array and selected points 

 m,j,k,i)y,x(с jiij 00   are elements of this array. In this case we need to select 2 crossover lines for 

the crossover operator. But when D is n-dimensional parallelepiped we need to select n hyperplanes. Children 

inherit fragments of parents’ chromosomes. The example of crossover is shown on Fig. 9. 

 

Fig. 9. Crossover operator 

During the mutation a point randomly changes its position inside the rectangle (Fig. 10). 

 

Fig. 10. Mutation operator 

Fitness-function F is computed by the formula (4), where S* is the average value of the integral sums in the 

generation and S is integral sum for the chromosome calculated with following formula: 

)yy()xx()c(fS jjii

k

i

m

j
ij 11

1 1


 

  .  

Integration over an arbitrary domain 

For calculating integrals (6) over more complicated areas D, we introduce the concept of characteristic function. 

Let characteristic function for the set D be the function 










.Dx,

,Dx,
)x(D

0

1 .  

The integral (6) of the function f(x) over the domain D is defined as: 

 
nI

nnDn

D

nn dx...dxdx)x,...,x,x()x,...,x,x(fdx...dxdx)x,...,x,x(f 2121212121
. 

 

where nID   and nI  – n-dimensional parallelepiped. 

Thereby, the task of integration over an arbitrary domain D is reduced to the integration over a parallelepiped nI . 

We tested our genetic algorithm with the purpose to evaluate its accuracy and an operating time. The testing 

procedure is similar to the one-dimensional case above. One of the parameters is changing while the others are 

fixed. 

Before After 

Parent 1 

 

 

Child 1 

Parent 2 

 

 

Child 2 
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First, we investigated the dependence of the solutions’ precision on number of the segments in the partitions. 

These solutions were obtained by genetic algorithm and classical numerical methods. There are two examples of 

the test below. In the first test, the integrand is smooth continuous function which is defined on a rectangle: 

  80660
2

5

5

2

2

3

3

2
53

221

0

1

0

.sinsindx)ysin()xsin(dy 
















    

The genetic algorithm shows more accurate result than other methods, even if the number of segments is small. 

The dependence of the solutions’ precision on number of the segments in the partitions is presented on Fig. 11. 

 

Fig. 11. Results given by the genetic algorithm and numerical methods 

The second example shows us a dependence of precision on the number of segments for quickly oscillating 

integrand. 

 

Fig. 12. Results given by the genetic algorithm and numerical methods in case of quickly oscillating integrand 

In this example we calculated the integral with quickly oscillating integrand 

trapezoidal rule 

top-right corner approximation 

Simpson’s rule 

genetic algorithm 

midpoint approximation 
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0230
1

1

10

1

10

4

.sin

. .









 

x

dy
xy

dx .  

The error increased when a quickly oscillating function is integrated, but the result given by genetic algorithm is 

more precise even than one given by Simpson’s rule, not to mention other more rough approximations (Fig. 12). 

Some more examples in the table below are shown: 

Integral Accuracy, % 
Operating time, 

sec. 

Quantity of 

generations 

 








2

0

2
0

2

2

2

3

12 dr)coscosr(rdcosd  
0,0088 129,64 142 










cos

dr)sincos(rd
2

0

2

2

1  
0,0783 19,34 180 






2

2

4

2

1

0

2

0

r

r

zdzrdrd  0,1125 130,53 123 

dy
)xln(

)yxsin(
dx

x

x




 

2

1
4

2

6 10

263  
0,3369 12,02 109 

 



2

22

4

0

4

0

2

0

5

x

yx

dzdyydx  0,4125 229,67 145 






225

4

3

4

0

x

x

dy)ysinx(dx  
0,5254 4,08 36 









12

11000010
2

22

0 11
1

.

dr
r

r
rd  1,2788 8,29 81 

Conclusion 

A purpose of our investigation was to research a possibility of genetic algorithms' application to a task of definite 

integral's computation. To do this we developed a genetic algorithm and created the software product using this 

algorithm. 

The developed genetic algorithm allows calculating definite integrals with an acceptable accuracy. Testing of a 

software product showed that the best accuracy of the decision is reached if the size of population makes from 30 

to 50 chromosomes, 40-60% of chromosomes participate in crossover and the algorithm stops if the leader of 

population doesn't change during 5-10 generations.  

The genetic algorithm with the specified parameters provides the more exact result than if we would apply other 

well-known numerical methods such as midpoint approximation, top-left corner approximation, top-right corner 

approximation, trapezoidal rule, Simpson's rule. Advantage of the genetic algorithm is especially noticeable, when 

a quantity of partition’s points is small and also when an integrand is quickly oscillating. 

Executed research shows that genetic algorithms can be used for numerical integration when integrand has a 

primitive which can't be expressed analytically through elementary functions. Also developed genetic algorithms 
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allow to calculate multiple integrals with integrand function of n arguments defined over n-dimensional 

parallelepiped or arbitrary bounded domain into n-dimensional space. Thus was confirmed that genetic algorithms 

can successfully compete with classical numerical methods both on the accuracy of computation and on an 

operating time. 
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