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1. Introduction

Tullock (1980) introduced input-output approach in rent-seeking analysis in the
form of the context success function (CSF) that describes outcomes of contest where
several agents bid resources to secure a source of rent. If s;,i = 1, ..., n are participating
agents’ outlays in a rent-seeking contest, then obtained payoffs are given by CSFs
zi(sl’, ...,sn),i =1, ...,n. Under the standard definition contests are of “winner takes
all” nature, in which case CSFs describe expected gains of participants; with additional
assumption of risk-neutrality they are probabilities of winning multiplied by the
valuation of the prize. Sometimes the notion of contest is extended to include situations,
common in rent seeking, where prizes are divisible (Hillman, Riley, 1989; Corchon,
Dahm, 2008; Fey, 2008), and success functions characterize shares of the prize obtained
by contenders. Both versions permit the same description when agents are risk-neutral',
but to explicitly allow prize divisibility we will hereafter refer to the above model as
rent-seeking success function (RSSF), borrowing the terminology from Hirshleifer
(1989).

While it is natural to assume some general properties of RSSFs (e.g. they should
monotonically increase in an agent’s own rent-seeking outlays and monotonically
decrease in outlays of other contenders), their exact forms are far from obvious. Since
Tullock’s seminal work, a simple fractional model

s.
2i(Sy, 0 Sp) = Vg (1)
j=15]
where V is the value of the prize, is widely used, or its immediate logit extension
$(s1)
zi(S1, 0, Sp) =Vs—r— 2
S = VS E ) @

with some monotonically increasing function &. Plausibility and analytical tractability
were the main appeals of these forms, which explain their popularity in literature, but
these and other RSSFs obviously require more solid and rigorous foundations.

Two broad approaches were proposed to address this problem. The first is
axiomatic, whereby a particular set of axioms provide necessary and sufficient
conditions for a given class of RSSFs. Scaperdas (1996) presented such axioms for logit
RSSFs (2); the centrepiece of his characterization is an appropriately formulated
independence of irrelevant alternatives condition. Polishchuk and Savvateev (2004)
noted that if a RSSF is of the form 21(51,' ...,sn) = ®(s;, X+ S;) » then such RSSF is
identical to (1).

! With risk-aversion (Hillman, Katz , 1984) this is no longer the case.



The second approach supplies micro-foundations for RSSFs by deducing particular
functional forms of rent-seeking outcomes from assumptions about rent-seeking
mechanisms, institutions and information available to participating agents. An example
is the well-known model of the commons (Dasgupta, Heal, 1979), when the source of
rent is in public domain and aggregate payoff which depends on the total investments by
participating agents is shared among them in proportion to their outlays:

n Si
alsu s = FQY, 5 Ty 3)
this model® is a straightforward generalization of (1). Another set of examples is given
by auction-type contests when the prize goes to the highest bidder; additional
randomness assumptions, e.g. that agents’ outlays are augmented by random shocks
(Hillman, Riley, 1989; Jia, 2008), or when agents are uncertain about how their bids are
valuated (Corchon, Dahm, 2008), produce RSSFs similar to (1), (2).

In the above examples rules of the rent-seeking game are set exogenously and are
not themselves a decision variable. In many instances however a source of rent is
controlled by an administrator (e.g. government official) who has her own priorities and
preferences over the outcome of rent seeking and resources invested by contenders. In
such cases the administrator could manipulate rent-seeking rules to achieve a more
preferable outcome, and these rules thus become endogenous. This leads to the optimal
contest design approach in rent seeking (Dasgupta, Nti, 1998; Epstein, Nitzan, 2006,
2007), which yields particular types of RSSFs that under given institutional constraints
best suit the administrator.

A natural setup for implementation of the optimal rent-seeking design is
informational asymmetry between the administrator and participants, when individual
characteristics (types) of the latter are not directly observable by the administrator.
Indeed, if the administrator has full information, she can simply identify the first-best
outcome (rent allocation and participants’ outlays), subject to appropriate participation
constraints, and present agents with “take it or leave it” offers that would implement
such outcome. A more sophisticated approach involving RSSFs where agents make their
bids in anticipation of other rent-seekers’ bidding strategies, would be superfluous, if not
inferior, in such case’. Optimal mechanism design can still generate particular RSSFs
under full information, assuming that the administrator has to use RSSF-based
allocation mechanisms and is furthermore restricted to certain classes of such functions

? For this model applications in a conventional rent-seeking setup see e.g. Grossman (1994).

? Rent-secking equilibria based on commonly used RSSFs usually leave agents above their
reservation utility levels, despite of partial dissipation of rent; this is an indication that such
equilibria are not first-best outcomes for the rent administrator (assuming that the
administrator’s sole concern is revenue collection and that she does not care about agents’
welfare — for a more general formulation see Epstein, Nitzan, (2006)).
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(e.g. the class of logit functions (2) where § is concave, as in Dasgupta, Nti (1998); see
also Corchon (2007)). Such assumptions could reflect e.g. institutional restrictions on
rent allocation mechanism such as requirements of competitive bidding and collusion-
proofness.

However, if the administrator does not have full information about agents’ types,
top-down take-it-or-leave-it-type contracts could no longer be optimal and not even, for
that matter, feasible. In such case bidding is not a constraint imposed upon the
administrator, but her instrument of choice, since bids, apart from their immediate
material value, are also signals that reveal valuable information about agents’ types.
Optimal RSSFs that describe administrator’s best response to such signals thus become
fully endogenous.

Below we derive optimal RSSFs through Bayesian implementation, on the
assumption that agents’ types — their valuations® of the resource allocated by the
administrator which are known only to agents themselves — are randomly drawn from a
given distribution which is a common knowledge. It is shown that no matter what
mechanism the administrator uses to communicate with the agents, as long as it involves
trading the source of rent for agents’ payments to the administrator, the best of all such
mechanisms can always be represented through some RSSFs; therefore Bayesian
implementation endogenizes the very model of rent seeking based on RSSFs.
Furthermore the proposed approach leads to a class of RSSF which are generalizations
of Tullock’s logit functional forms (2), and the latter forms obtain if and only if agents
have Cobb-Douglas utilities, irrespective of distribution of their types.

To get further insight into the class of RSSFs obtained through Bayesian mechanism
design, we study asymptotic behaviour of such functions when the number of
participating agents grows to infinity. Such analysis reveals increasing returns to scale in
rent seeking as suggested in Murphy, Shleifer, Vishny (1993), and possible exclusion
from rent seeking of agents with low valuation of the prize — a phenomenon observed
under different assumptions by Hillman and Riley (1989). Finally, as an extension of the
base model, we derive optimal RSSFs when the administrator can invest a portion of
agents’ contributions to augment the allocated resource — in such case, still assuming
Cobb-Douglas utilities, optimal RSSFs combine features of forms (2) and (3).

The rest of the paper is organized as follows. In Section 2 a Bayesian mechanism
design problem leading to optimal RSSFs is presented. This problem is solved in
Section 3, producing a class of endogenous RSSFs which are optimal for given

* There could be other kinds of private information, e.g. costs of rent-seeking outlays (efforts)
to agents, as in Fey, (2008); however such case could be re-formulated in terms of
unobservable valuations.



preferences of participating agents and distributions of their types. Properties of the
derived RSSFs are analyzed in Section 4, including conditions under which such RSSFs
can be represented in the logit form proposed by Tullock. Section 5 investigates
asymptotic properties of optimal RSSFs for large numbers of participating agents. In
section 6 the analysis is extended on rent-seeking contests when the source rent is of
variable size and can be enhanced by investing some of the payments collected from
rent-seekers. Section 7 concludes.

2. Rent-seeking and Bayesian mechanism design

Consider a model where the administrator allocates one unit of resource which is a
source of rent for n agents, each with a quasi-linear utility function f(z;,w;) —s;,
i = 1,..,n; here z; is the quantity of resource obtained from the administrator, s; — rent-
seeking outlay, and w; — agent’s type which is his private information. We assume
positive and diminishing marginal returns to the allocated resource: f, > 0, f,, < 0;
utility increasing in agent’s type: f;, > 0; and a single-crossing property f,,, > 0. One
way to interpret agents’ types is to view them as endowments of another resource,
complementary to the one allocated by the administrator, in which case types become
indicators of agents’ wealth, and f is a two-input production function. In what will
follow we use a multiplicative specification f(z,w) = we(z), where ¢@(-) is
monotonically increasing, smooth, concave and satisfies the Inada conditions
@(0) = 0,lim,_4 @' (z) = 0,lim,_, ¢'(2) = . However, most of our results also
hold for a general constant returns to scale two-input production function.

Agents’ types are randomly and independently drawn from a distribution with
cumulative function G(w) and density g(w),w € [w,w], 0 <w <Ww < oo; this

distribution is common knowledge to all parties involved. The function p(w) =w —
1-G(w)
gw)
Klemperer (1999)) is assumed monotonically increasing — a condition which is satisfied
for most commonly used distributions, including those with increasing hazard rate
gw)
1-G(w)
Informational asymmetry prompts the administrator to communicate with agents
prior to allocating the resource. Such communication is based on a mechanism M =

(My,..., My; a()), conventionally defined as a collection of strategy sets from which

(marginal revenue, or valuation, as it is known in the auction theory — see e.g.

. Both the administrator and agents are risk-neutral.

agents select their messages m; € M;, and an allocation function a(my, ..., m,) which
describes administrator’s decision in response to received messages. In mechanisms



considered below an allocation comprises a set of payments sy, ..., s, of the agents to the
administrator, and a division Y,i=; z; < 1 of the unit stock of resource among the agents:

a(my, ..., my) = (s1(My, ..., My), ..., Sp(My4, ..., my),
zi(my, .., M), ..., Zp(My, ..., mp)). @)

This mechanism works as follows: once all agents have communicated to the
administrator their messages m;,i = 1, ...,n, agent i is required to make the payment
si(my,..,m;) to the administrator and receives in exchange the amount
z;(my, ..., my,) of the allocated resource. Notice that there are no a priory restrictions on
the content of messages (or, what is the same, on information sets); in particular, no
communication is also an option with a constant allocation function.

Rent-seeking success functions form a sub-set of such mechanisms, whereby
messages are payments s; = 0 offered to the administrator, and the allocation is the 2n-
tuple {sq, ..., Sp; 21(S1, s Sp)s oo 2 (S1, ..., Sp)) Of rent-seeking outlays and outcomes. It
will be shown in the next section that the administrator can restrict her choice of the best
mechanism to this subset.

We assume Bayesian mechanism implementation, in which case agents’ strategies
form a Bayes-Nash equilibrium — they are functions m;(w;), i = 1,...,n of agents’
types such that for every type w; m;(w;) maximizes agent i’s expected utility,
conditional on other agents playing strategies m; (Wj), j# i

E_w, [Wi(p(zi(mi(wi):m—i(W—i))) - Si(mi(wi)r m—i(W—i))] =
E_y wip(zi(m';, m_;(w_))) —s;(m'y, m_;(w_))], i =1,..,n,

®)

for all feasible messages m'; € M;.°

Since participation in rent-seeking game is voluntary, the administrator also needs
to ensure that equilibrium outcomes leave agents (non-strictly) above their reservation
utility levels which in the present context equal zero:

E_y Wi (z; (my(wy), m_;(w_))) — si(m;(wy), m_;(w_;))] = 0,
i=1,..,n (6)

Now the optimal rent-seeking mechanism design problem can be stated as maximization
of the expected gross payoff collected by the administrator from the agents

® We use the notation " — i" as a conventional shortcut for “all variables other than i”. For
more on Bayes-Nash equilibria in rent-seeking games with asymmetric information see
Malueg, Yates (2004), Fey (2008).



max E Zj:lsi(mi(Wi)' m—i(W—i)) 7

over all mechanisms (4) subject to conditions (5), (6) and the resource constraint

Z:lzlzi(mi(wi)’ m—i(W_i)) <1 ®)

3. Optimal rent-seeking success functions

The problem of optimal mechanism design is considerably simplified when
mechanisms are direct, i.e. agents’ messages are announcements (truthful or otherwise)
of their types. In the present context a direct mechanism includes strategy sets M; =
[y, W] and functions §; and Z;, defined over [y, W] X ... X [y, W] ,i =1,...,n, such that

T —
once agents’ types are reported as w';, the mechanism requires agent i = 1,...,n to

make the payment §;(w'y,..,w',) to the administrator against obtaining from her
Z;(W'y, ..., W) units of the allocated resource. Direct mechanism is incentive
compatible if correct reporting by agents of their types constitutes a Bayes-Nash
equilibrium, i.e.

E_y [wioZi(w,w_y)) — Si(w,w_)] = (57)
E_ywioZ(w',w_)) — §;(w';, w_ ),V w'; € [E,W], i=1,..,n

According to the revelation principle (Myerson 1981), if functions
my;(+), ..., my (+) form a Bayes-Nash equilibrium for a mechanism (4), then the functions

Siw'y, W) = s,-(ml(w’l), ...,mn(w'n)), 9)

Ziw'y, e W'y) = Z,-(ml(w’l), ...,mn(w’n)),

i=1,..,n, represent a direct incentive-compatible mechanism such that for any
combination of agents’ types wy, ..., w,, the two mechanisms yield the same allocation.
Therefore the choice of optimal mechanisms can be confined to direct
mechanisms Z;(+), $;(+), and the administrator’s problem set forth in the previous section
can be re-stated as follows:



n
maxE ) 5wy w) )
i=1
subject to the resource constraint
n ~ 1)
Do Zwywo) <1, (8%
the incentive compatibility constraints (5°), and participation constraints
E_Wi[Wi(p(ZNi(Wi,W_i)) _§i(Wi'W—i)] >0, i=1,..,n (6’)

We will now demonstrate that the optimal solution of this problem (which delivers
the best results over all conceivable mechanisms (4)) can be implemented by
appropriately chosen RSSFs. To this end, first notice that in a direct incentive-
compatible mechanism §;(+),Z;(-) satisfying participation constraints (6) transfer
functions $;(w;, w_;) can be replaced by 5;(w;) = E_,,,5;(w;, w_;) (for simplicity we
keep the same notation for such reduced single-variable form) — the new mechanism
remains incentive-compatible, also meets participation constraints, and yields the same
value to the maximand (7). Therefore without loss of generality §;(+) can be assumed
depending on w; alone; this assumption is kept through the rest of the paper.

Next, tools of the optimal auction theory (Myerson, 1981; Maskin, Riley, 1989;
Klemperer, 1999) are used to solve the problem (5)-(8’).

Proposition 1 Optimal direct mechanism which solves the problem (57)-(8’) is as
follows:

) ~ oWl
ziwow-) = F (o o o) (10)
i=1,..,n,

where p(w) is the marginal revenue function for distribution G; [x]; = max(x,0);
F(t) = (¢")~1(1/t); and symmetric function Ap (x4, ..., x,,) is uniquely determined for
allx; 20,..,x, 20, X x; > 0 by the following equation:

n

2" G, ) = Y

i=1
(if po(w;) < 0 for all i, then all Z; are equal zero); and



5 (w) = $wy) = wip(wy) — [V @(s)ds, (12)
where B

o(wy) = Eyy_o(Z;(wi, w_y)). (13)

Proofs of this and subsequent propositions can be found in the Appendix.

Finally, a set of endogenous RSSFs which solve the optimal mechanism design
problem (without an a priory requirement that such mechanism is RSSF-based) obtains
from the above direct mechanism. To this end, one has to eliminate agents’ types w;
from (10), (12). Recall that the marginal revenue function p monotonically increases in
type, and therefore there exists w® € [w,w) such that p(w;) >0 for all w; €
[w, W], w; > w®, and p(w;) < 0 for all w; € [w, W], w; < w°. Notice further that for all
w; < wP agent i obtains no resource from the administrator and hence due to (12), (13)
makes no contribution, whereas for w; > w® both amounts are positive. It is shown in
the Appendix that over the range of [w® w] the function §(-) monotonically increases,
and therefore the mechanism (10)-(13) indeed yields RSSFs which solve the problem
(5)-®).

Proposition 2 The function $(-) monotonically increases for s € [s,5], where s =
5(w?%), s =3§w), and optimal RSSFs solving the problem (5)-(8) are defined over
si €[s,3],i=1,..,n asfollows®:

p(§_1 (Si)) )
e

i=1,..,n

7i(spy5-) = F(A (
F

4. Properties of optimal rent-seeking success functions

Optimal RSSFs (14) can be represented as

TI(Si) ) .

Zi(si,s_i)=F(m ,i=1,..,n, (15)

¢ These functions can be extrapolated beyond the “equilibrium range” [g, E] by letting
z;(s;,s_;) = 0 for s; < s and z;(s;,5_;) = z;(5,s_;) for s; > 5.

10



where 7(s) = p(§71(s)) is a monotonically increasing function; note that the function
F is also monotonically increasing and F(0) = 0. Generally RSSFs (14) are not of
Tullock’s logit form (2), although they share with that form some common properties.
Thus, both classes of RSSFs — (2) and (15) — conform to the basic intuition of rent-
seeking technologies — rent-seeking outcome for a given agent increases in his own
outlay s; and decreases in outlays of all other agents; furthermore, such outcome is
determined by a ratio of an appropriate valuation (monotone transformation) of the
agent’s outlay n(s;) to an aggregate (average) of such valuations of outlays of all agents.

Proposition 3 The following statements hold:

(i) The function Ag (x4, ..., x,,) is monotonically increasing in its arguments.
(i) The function t,Ar, where nF(t,)) = 1, is a generalized average’ of

Xq, ..., Xy, in that it is symmetric and such that

minx; < t,Ap(xy, ..., X)) < max x;; in particular t,Az(x, ..., x) = x.
(i) The function z;(s;, s_;) monotonically increases in s; € [s, 5] and

monotonically decreases ins; € [s,5] for all j # i.

For logit RSSFs (2) F(t) =t Ap(xy, ..,xp) = X1 x;, and t, =1/n, and
therefore t,Ap(xy, ..., %,) = D=1 X;/n  is the conventional average of xq,...,x,.
Functions (15) can be reduced to the logit form if the utility function is of Cobb-Douglas
type: @(z) = a~1z% a € (0,1). In such case F(t) = t/1~% and RSSFs (15) take form
(2) with V = 1 and the following
monotonically increasing functions

E(s) = ()1 = [p(371(s))] /1 (16)

It turns out that Cobb-Douglas utility is not just sufficient, but also necessary for logit
representation of RSSFs (15).

Proposition 4 Rent-seeking success functions (15) admit logit representation (2) if and
only if o(z) = Cz%, a € (0,1),C > 0.

Resource allocations achieved through optimal RSSFs (14) as a rule are not ex post
socially efficient (the only exception is the Pareto distribution G(w) =1—

7 For a similar but more restrictive concept of generalized averages see Kolmogorov (1985).
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w/w)¥,k>1,w > 0,w = oo, when p(w)/w = const)®. Efficiency losses are the toll
of the informational asymmetry’; such losses are especially severe for “low” types w;,
and in the case a(y) < 0 (or, what is the same, w < w® < w) take the extreme form of
complete exclusion of agents in the [w,w°] range from the resource allocation process,
whereas social efficiency requires allocation of positive amounts of the resource to all
agents with w; > 0. If agents’ types are treated, as in Section 2, as endowments of a
complementary production input, such exclusion could be interpreted as informational
discrimination of poorer agents, which are “too small” to be of interest for the resource
administrator and would restrict her ability to extract revenue from wealthier rent-
seekers'’. This observation sheds new light on the causes of entry barriers that owners of
small assets face: in addition to political economy/public choice explanations (Djankov
et al.,, 2002; Polishchuk, 2008) and inequality of stakes arguments (Hillman, Riley,
1989), such discrimination could also have informational rationales.

5. Limiting case: a continuous model

Additional insight into properties of endogenous RSSFs can be gained by
considering the limiting case of an “atomless” model which approximates rent seeking
with a large number of participants.

Suppose that rent-seekers form a unit continuum of agents with the distribution
G (w) of their types, and the resource administrator allocates one unit of resource across
this continuum by implementing a direct mechanism § (), Z, (), so that an agent that
reveals his type as w gets Z,,(w) units of resource against a contribution of 5,,(w). This
mechanism is incentive-compatible iff

W([)(ZOO(W)) —Se(w) = wqo(z”oo(w’)) =S (W), Yw,w' € [w, W], 17)

and the participation constraint takes form

¥ Note however that if the resource is non-divisible, optimal auctions with symmetric bidders
and monotonically increasing marginal valuation function p always deliver efficient
outcomes (Klemperer, 1999).

% Social losses and rent dissipation due to informational asymmetry in rent-secking contest
were observed in a different setting in Hillman, Riley (1989).

' Similarly a price-discriminating monopolist could elect under informational asymmetry not
to cater to lower wealth/valuation segment of the market in order to enhance the yield of the
more lucrative part.
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Wgo(z”oo(w)) — S5 (w) = 0, Vw € [w,W]. (18)

The optimal mechanism maximizes the administrator’s aggregate revenues

ff§w(w)g(w)dw subject to constraints (17), (18) and the resource constraint

f‘f Zoo(W)g(w)dw < 1 and is as follows (Tonis, 1998):

Zw(w) = FESELE), 5,(w) = w26 (W)) - [} 0 (Zu (D))l (19)

where A = A is the unique solution of the equation

waF (@) gw)dw =1 (20)

(it is assumed through the end of this section that one has fWWF (%) gw)dw <

,VA > 0). The function Z,, (w), and hence 3, (w), are monotonically increasing for
w € [w,w°], and

205(5) = Ze0(821(5)), 5 € [Soo So), (2]

with S, = §m(y),§oo = §,(W), is a rent-seeking success function, which in the
present case depends only on an agent’s own contribution. We will now show that this
function approximates optimal RSSFs (14) when the number of participating agents is
large.

To this end, suppose that n agents with types wy,..,w, are randomly and
independently drawn from the distribution G(w) to obtain a discrete approximation of
the said distribution, so that each agents carries a weight 1/n. This means that if z; and
s; are resp. the resource allocated to agent i and his payment, then the resource

n
. 1 - ..
constraint takes form E SZi < 1, and similarly the resource administrator’s revenue
i=1

n
equals Z %si. The optimal RSSF-based mechanism for such sample
i=1

zi(n) (si,s_;) with s; € [s ("),E(n)] is described above (superscript n stands for the size of

the sample) with the only modification that A;n)now satisfies the following equation:

n l I S — 11°
=1y F (As,n) (xl,...,xn)> 1 ar)

13



Functions (21) approximate RSSFs (14), (11°) “on the average” in the following
sense: when contributions of all agents but i are fixed at their equilibrium levels
sj = 5(")(wj), j=1,..,n;j #1, one obtains a parametric family of single-variable
rent-seeking success functions Zi(n) (silw_y) = zi(n) (si §£7:) (w_;)), and according to the
following proposition, for a given outlay s; the expected value of such functions over
other agents’ types approaches z, (s;) for large n. We establish such convergence in the

next two propositions under an additional technical assumption a(y) > 0.

Proposition 5 Domains of RSSFs zi(") (si, s_;) approximate those of z,,(s): lim g(n) =
Nn—oo’

(n)

Sw, lims™ ' =3, and

n—-oo

711_1)‘1010 E_y, Zi(")(silw_,-) = Zo,(s;), Vs; € (s,5)11. (22)

For Cobb-Douglas utilities, when according to Proposition 4 optimal RSSFs allow a
logit representation

M (s,
zi(")(sl, i Sp) = P A C) , (23)
n2j=1 EM(s))
where functions £ (.) are calculated according to (16) (with §(w) is replaced by
§™ (w)), Proposition 5 can be re-stated as convergence of ¢ ™to a constant multiple of

Zoo ().
Proposition 6 If ¢(z) = Cz%, a € (0,1), and
/1-a
€)= [p ()]

one has

]1/1—0{ _

lim §7(s)) = §eo(5) = [p(551(50)

Zeo(50) [y D)1/ g (w)dw, Vs, € (5,5). @4

" It is assumed that n is large enough to have s; € [s ("),E(n)].

14



Properties of the limit RSSF z,, can now be extended in the above described sense

on the optimal RSSFs Zi("), when the number of agents is sufficiently large. One such
property is increasing returns to scale'? which holds under a mild additional assumption.

Proposition 7 If the ratio p(w)/w monotonically non-decreases", then the limiting
RSSF z,(s;) is convex.

According to the above proposition, when agents are sufficiently numerous, those
among them with higher valuation of the source of rent (larger endowments of a
complementary input) obtain the resource allocated by the administrator on increasingly
better terms' (whereas, as it was noted above, agents at the bottom of the type
distribution could even opt out of rent seeking altogether). Such discrimination'® leads to
re-distribution of the allocated resource (in comparison with the socially optimal
competitive benchmark when the resource is sold at the market-clearing price) from
“low” to “high” types to which optimal RSSFs give a scale advantage.

Consider as an example uniform distribution of w on the [2,3] range and agents’
utility functions with ¢@(z) = 2Vz. In this case the limiting function &.,(s;) = 12 +
416 s; — 8V(2 + 1.04s;), defined over the [1.92, 6.73] range; the graph of this function
and convergence to it of ™ (s;) are shown on Fig. 1.

Another noteworthy example can be obtained by combining the Pareto distribution
Gw)=1—Ww/w)* (w<w < ) and Cobb-Douglas utility ¢(z) = a~1z% with
a € (0,1), k(1 —a) > 1. In this case the limit of the functions §™(s;) entering
optimal RSSFs (2) for finite n is as follows:

Eoo(si) = C(sl/£ - (1 - a))l

1
k(1-a)
& 1s linear in agents’ outlays, and therefore for large n the optimal RSSFs can be
approximated by Tullock’s initial fractional model (1).

where s = w(l — )¥/a, and C = i[y(l - %)]1/1_“. Here the limiting function

'2 Increasing returns to scale in rent-seeking activities was observed in a different context in
Murphy, Shleifer, Vishny (1993). More generally on the role of economy of scale in rent-
seeking see Tullock (1980).

" This condition holds if e.g. the hazard rate 1?28/)

of the distribution G (w) monotonically

increases.

' Such feature commonly occurs in optimal contracts due to the single-crossing property.

"5 For interpretation of optimal auctions as monopolistic price discrimination see (Bulow,
Roberts, 1989).
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Fig. 1. Convergence of rent-seeking success functions

6. An extension: variable resource

It was assumed so far that the stock of resource allocated by the administrator is
fixed; however in many applications it can be expanded at some additional cost to the
administrator. To explore such situations, in this section the administrator has the option
to partially invest payments collected from rent-seeker to augment the allocated
resource; this will lead to a yet another class of RSSFs.

Namely, let the administrator have access to a resource-production technology with
monotonically increasing and convex production function F(s). If the administrator
invests in this technology an amount s, from her total receipts and keeps the balance
YiqS; — Sg, then she will have F(sy) units of the resource available for allocation to
rent-seekers. To obtain endogenous RSSFs in this setting, the procedure presented in
Section 4 is still applicable, with the following modification: direct mechanisms now
include, in addition to functions §; and Z;, a yet another function §,(wj, ...w,,), which
together satisfy the constraints

Y, ZiWi wop) S F(SoWa o W) SoWa, W) < X0 (W), (29)
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The optimal direct mechanism maximizes the expected payoff of the administrator
max E [Y7 §;(w;) —5o(wy, ... wy)] (26)

subject to constraints (5”), (6°) and (25). The rest of the procedure remains the same, and
its outcome, assuming again agents’ Cobb-Douglas utilities @(z) = a~z%, is as

follows.

Proposition 8 Optimal RSSFs admit representation

_ N _ $(si)
zi(syy5-) = H(}Z $(s) —Z?:l ) (27)

with some monotonically increasing functions & and H. Here H(t) = F(¥(t)), where

W(-) is an inverse function to F(s)/[F'(s)]/1~%; functions &(s) are calculated
according to (12), (13) and (16) with the underlying direct mechanism

: , P17
Zi(WivW—i) = H( p(W)l/l a) np
2.

- - 28
j:1P(Wj)1/1_a ( )

Endogenous RSSFs combine features of the functional forms (2) and (3); e.g. for a
Cobb-Douglas resource production technology F(s) = sf,0 < 8 < 1,one obtains
H(t) = CtF~*B/1=aB for some C > 0. Notice that according to (27) the rent-seeking
contest acquires features of public good provision, since rent-seekers’ contributions,
driven by individual self-interest, also increase the total supply of resource (for more on
rent-seeking and public goods see Congleton, Hillman, Konrad (2008)).

Discretion of the administrator who is a net revenue maximizer over how much to
invest in resource production entails additional efficiency losses, on top of those in
resource allocation (see Section 4), since the equilibrium investment falls short of the ex
post social optimum. Indeed, it follows from (28) that
So(Wy, owy) = ‘P(Z;‘zlp(wj)l/ 1-@) whereas it is easy to verify that the first-best
investment s* is as follows: s*(wq,..wy,) = W(Z?zlel/l_“), and since ¥
monotonically increases (as an inverse to a monotonically increasing function), and

p(w) <w, Vw <w, one has Sy(wq,...wp) < s*(Wq,...w,), unless all agents are of
the highest possible type. Such efficiency losses are due to the administrator’s inability
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to fully appropriate the resource rent which is partly shared with rent-seeking agents —
full rent appropriation is precluded by informational asymmetry'®.

7. Concluding remarks

The paper contributes to the strand of public choice literature where rules of rent-
seeking contests are not assumed upfront but instead are endogenous to some plausible
behavioural, institutional, informational etc. assumptions. Here such assumptions
include informational asymmetry and revenue maximization by the rent administrator. It
is argued that this is a natural setup for rent-seeking contests, since bidding is essential
to deal with informational asymmetry that restricts the revenue-collection ability of the
administrator. Indeed, in such case the rent seeking success function model is
endogenous to the above informational and behavioural assumptions, and yields RSSFs
which are similar (and under additional assumptions identical) to those commonly used
in the rent-seeking studies.

Analysis of endogenous RSSFs sheds light on a number of distributional issues of
public choice and political economy, such as discrimination of small stake holders and
increasing returns in rent seeking. It reveals origins of efficiency losses in rent seeking,
including the failure to achieve socially optimal investments into rent-generating
resources.

The above analysis can be extended in several ways, to reflect variations in the
setups of rent-seeking and auction theory (Klemperer, 1999; Corchon, 2007; Congleton,
Hillman, Konrad, 2008). Such extensions include, but are not limited to, bidders’
asymmetry; risk-aversion; collective rent seeking and possibility of collusion; more
complex preferences of the administrator, combining private and public interest; entry
costs; etc., and are left to future research.

'S Similarly in (McGuire, Olson, 1996) the autocrat under-invests in her tax base (in
comparison to the social optimum) due to deadweight losses of taxation.
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Appendix
Proof of Proposition 1 The problem (5°)-(8’) is solved by using tools of the mechanism

design/optimal auction theory (Myerson, 1981; for the case of divisible prize see also
Maskin and Riley, 1989). Consider agents’ expected net equilibrium payoffs

TZ'l'(Wl') =Ww; Ew_i<p(Zi(wi, W—i)) - §i(Wi)' i=1,..,n (Al)

Assuming interior w; and differentiability, the necessary condition for incentive
compatibility (5°) is

w; ;' (W) = §'(wy), (A2)
where
oW = Ey_o(Ziw;,w_y), (A.3)
or equivalently,
i (wy) = @;(wy), (A.4)

for all i = 1, ..., n. Furthermore, incentive compatibility constraints are satisfied if and

only if equalities (A.4) hold and functions @; (w;) are monotonically non-decreasing.
According to (A.4), functions m; are non-decreasing, and therefore once the

participation constraint (6°) is satisfied for the lowest type w, it holds for all other types.

In the optimum 7;(0) = 0, so that 7;(w;) = f‘:vl @,(s)ds and hence

5 (wp) = wi@;(wy) —f L@(S)ds- (A.5)

Substituting (A.5) into the administrator’s objectivgfunction, one has

f s W g (wdw; =

fWWi @, (w)gw)dw; — fw

w w

fWi @, (©Odt g(w)dw; =

- w i Q(Wl) Pi i)d i i
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Administrator’s gross payoff can thus be represented as

f f D P Euwi w-)]gwy) . g(w)dws .. dw,,
w v =1

and, ignoring for a moment constraints (5”), (6”), functions Z;(+) can be found from the
following problems:

max[ 3}, p(w)e (2 (wi, w-)], (A6)
Z?zlz”i(wi,w_i) < 1,Z~](W],W_J) > 0,] = 1, ., n,

for any w; € [ﬂ, W], j=1,..,n This is a standard resource allocation problem, and
given the neo-classical properties of ¢, its solution is as follows:

pw)e' (Z;(wi, w_;)) = A(wy, ..., wy,), foralli = 1,...,n such that a(w;) > 0;
Z;(w;,w_;) =0, forall i = 1,...,n such that p(w;) < 0.

Solving for A(wj,...,wy) from the budget constraint Z:l (Ziwi,w_) <1, one
obtains (10); equation (11) indeed has a unique solution, since F is monotonically
increasing and F(0) = 0, F(t) - oo with t - o. The mechanism is made complete by
combining Z; with agents’ contribution functions §; derived according to (A3), (AS5);
notice that solution (10) is symmetric and hence the subscript i in §; can be dropped.

To verify optimality, notice that if y; > 0 and at least for some j # i y; > 0, then
in the optimal solution of the problem

max Mg e (zi), Yp=12<1,2=201=1,..,n, (A7)

x; monotonically increases in y; .17 Therefore Z; (w;, w_;) monotonically increases in w;
over the range w; € [w° w] if at least some other w; > w®, and monotonically non-
decreases (being equal to zero) otherwise. This means that the expected value @(w;) =
Ew_iqo(z](wi,w_i)) monotonically increases in w; € [w® W], since w; > w® with
positive probability. Therefore the obtained mechanism indeed maximizes (7’) subject to
(5°), (6”), and (8’): participation constraint is met by definition, whereas incentive
compatibility follows from (A.4) and monotonicity of ¢.

"7 Re-write (A.7) as maxu;@(z;) + ®(z;), 0 < z; < 1, where ®(t) = max Yy 40 (2)
Zk#izk < 1—t, zZ > O,l E
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Proof of Proposition 2 Monotonicty of ¢ implies that the function §(w;) monotonically
increases over the same range[w® w]; indeed if x <y,x,y € [W°, W], then 3(y)-
§(0) = - 00 +x(p() — p()) — [ p(©)dt > x(#(y) — #(x)) > 0.  This
allows to invert § and define RSSFs (14). These RSSFs deliver (as a Bayes-Nash
equilibrium with agents’ strategies s;(w;) = §(w;), i = 1,...,n) the same outcomes as
the optimal direct mechanism (10), (12), and participation constraint (6) follows from
(6), Q.E.D.

Proof of Proposition 3 Symmetry and monotonicity of Ap follow immediately from its

definition. Since F is monotonically increasing, one has

n
max Xx;

1= G ) S e

i=1

max Xx;

and therefore ————
Ap(x,nXn)

.. L Xi
>t,. _
= t,. Monotonicity of Ap implies that F (AF (x1,---.xn))

monotonically decreases in x; for j # i, and due to the constraint

b () =1

,monotonically increases in x; . Hence Z;(w;, w_;) monotonically increases in w; over
the range w; € [w® W] (which has been already established in the proof of Proposition
1) and monotonically decreases in w;, j # i over the same range. To complete the
proof, notice that the function 17(s) = p(§~1(s)) monotonically increases, since the
marginal valuation function p(-) increases by assumption, and §(-) — due to Proposition
2.

Proof of Proposition 4 Only the second part of the proposition needs to be verified. Let

Xi _ ((xl) .
d (Ap(xi, ...,xn)) ) Lom (A.8)

for some monotonically increasing function {(-). Denote y; = {(x;) and suppose first
that n = 2, in which case (A.8) yields

- y
') _ F 1(}’1 "‘1}’2)
-1 - _ y .
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Let % = t, so that
2

¢ tyn) _ P/ + 1)
) | P/ DY

and hence {"1(ty,) = {"1(y,)H(t) for some function H. This leads to the functional
equation {"1(xy) = ¢"1(x) {~1(y), which implies {(x) = x¢ for some ¢ > 0 (Acz’el,
Dhombres, 1989). The case n > 2 is treated similarly by choosing yy, k > 2 such that
Yk=3Yk/y2 = const.

Proof of Proposition 5 Fix w; and treat w;, j # i as independent random variables.
According to the law of large numbers (Feller, 1968), for every given A > 0 the random
n 1 F (p(Wk) p(W))

variable _a = W)
k=1 n A A

) converges in probability to EF (
A

w
f F(p(w))g(w)dw. This implies that A(Fn)(p(wl), ., p(Wp)) converges in
w

probability to A, (recall that F monotonically increases), and hence Zi(n) (Wl-, W_l-) =

p(w;) . . p(wy) ~ )
F converges in probability to F (—’) = Z,,(w;). Notice
(A(F")(p(wl),....p(wn))> 4co '

that A7 (p(Wy), ..., p(Wp)) < Apmax for alln, wy, ..., wy,, where F (Z(—w) =1, and so
max

random variables Zi(n)(wi,w_i) are bounded from above by F (%); therefore
max

convergence of these variables in probability implies convergence of their expected
values, so that

liM o0 By, 270 (Wi, W_;) = Zoo (W) (A.9)
By the same token a(n)(wi) =E,_ ¢ (z”i(n)(wi, w_l-)) = @(Ze(W;)), n > o, and hence

1m0 §™ (W;) = oo (W;). (A.10)

(n)

Letting in (A.10) w; equal w and W, one obtains resp. lims™ = sy, lims "~ = 5.
n—oo

n—oo
The functions §™ (w;) are monotonically increasing, and therefore due to (A.10) the

inverses of these functions converge to §,,~*(+). This fact in combination with (A.9) and
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the observation that functions E_WiZi(n)(', w_;) are also monotonically increasing, leads

to (22).

Proof of Proposition 6 It was shown in the proof of Proposition 5 that functions
(3™)=1(.) converge to 551 (+), Q.E.D.

Proof of Proposition 7 The first-order version of the incentive compatibility condition

imnli 2o _ 200y _ 1 "(z =
(17) implies that —= = —==/—= IR One also has aW)¢’' (ZewW)) = Ac,
Az _ alw)

and hence e and thus non-decreases in w. Finally, 3, (w) monotonically
0

. . dz . .
increases in w, and hence d—:’ monotonically non-decreases in s, Q.E.D.

Proof of Proposition 8 As in the proof of Proposition 1, optimal direct mechanism
design boils down to the following problem similar to (A.6):

max [ pw@Fiwi, w0) = So(wa, ., )] (A.11)
i=1
Zfi(wi,w_i) < F(soWy, ey W) ,Zj(wj,w_j) >0,j=1,..,n
i=1

Assuming an interior optimum, one has
Zi(wyw-) = pW)M 7 (F So (Wi, o W)/, (A.12)
and due to the budget constraint of the problem (A.11),
F(SoW, W) = (F'GoWa, o wp )V 37 p(w)/17%. (A13)

(A.12) and (A.13) yield (28). Similarly to the proof of Proposition 1 it can be shown that
here too Z;(w;, w_;) monotonically increases in w; € [w w] if at least some other
w; > w0, and monotonically non-decreases (being equal to zero) otherwise, and
therefore allocation (28) is indeed a part of optimal direct mechanism. Arguments
similar to those presented in the proof of Proposition 2 complete the proof of
Proposition 8.

23



References

Acz’el, J. and Dhombres, J. (1989) Functional Equations in Several Variables.
Cambridge: Cambridge Univ. Press.

Bulow, J., and Roberts, J. (1989) The Simple Economics of Optimal Auctions.
Journal of Political Economy, 97, 1060-1090.

Congleton, R. D., Hillamn, A. L., and Konrad, K. A. (eds). (2008) 40 years of
Research on Rent Seeking 1. Theory of Rent Seeking. Berlin, Heidelberg: Springer-
Verlag.

Corchoén, L. (2007) The theory of contests: a survey. Review of Economic Design, 11,
69-100.

Corchon, L., and Dahm, M. (2008) Foundations for Contest Success Functions.
Economic Theory, published online.

Dasgupta, P., and Heal, G. (1979) Economic Theory and Exhaustible Resources.
Cambridge: Cambridge Univ. Press.

Dasgupta A., and Nti K. (1998) Designing an Optimal Contest. European Journal of
Political Economy, 14, 587-603.

Djankov, S., La Porta, R. , Lopez-de-Silanez, F., and Shleifer, A. (2002) The
Regulation of Entry. Quarterly Journal of Economics, 92, 1-37.

Epstein, G., and Nitzan, S. (2006) The Politics of Randomness. Social Choice and
Welfare, 27, 423-433.

Epstein, G., and Nitzan, S. (2007) Endogenous Public Policy and Contests. Berlin:
Springer.

Feller, W. (1968) An Introduction to Probability Theory and Its Applications. New
York: Wiley.

Fey, M. (2008) Rent-seeking Contests with Incomplete Information. Public Choice,
135, 225-236.

Grossman, H. (1994) Production, Appropriation, and Land Reform. American
Economic Review, 84, 705-712.

Hillman A, and Katz E. (1984) Risk-averse Rent Seekers and the Social Cost of
Monopoly Power. Economic Journal, 94, 104-110.

Hillman A, and Riley, J. (1989) Politically Contestable Rents and Transfers.
Economics and Politics, 1, 17-39

Hirshleifer, J. (1989) Conflict and Rent-Seeking Success Functions: Ratio vs.
Difference Models of Relative Success. Public Choice, 63, 101-112.

Jia, H. (2008) A Stochastic Derivation of the Ratio Form of Contest Success
Functions. Public Choice, 135, 125-130.

Klemperer, P. (1999) Auction Theory: A Guide to the Literature. Journal of
Economic Surveys, 13, 227-286.

Kolmogorov, A. Mathematics and Mechanics (In Russian) (1985). Moscow: Nauka.

24



Malueg, D., and Yates, A. (2004) Rent Seeking with Private Values. Public Choice,
119, 161- 178.

Maskin, E. and Riley, J. (1989) Optimal Multi-Unit Auctions. In F. Hahn (Ed.), The
Economics of Missing Markets, Information, and Games (pp. 312-335). Oxford: Oxford
Univ. Press, Clarendon Press.

McGuire, M., and Olson, M. (1996) The Economics of Autocracy and Majority Rule:
The Invisible Hand and the Use of Force. Journal of Economic Literature, 34, 72-96.

Murphy, K., Shleifer, A., and Vishny, R. (1993). Why Is Rent-Seeking So Costly to
Growth? American Economic Review, 83, 409-414.

Myerson, R. (1981) Optimal Auction Design. Mathematics of Operation Research, 6,
58-73.

Polishchuk, L. (2008) Misuse of Institutions: Patterns and Causes. Journal of
Comparative Economic Studies, 4, 57-80.

Polishchuk, L., and Savvateev, A. (2004) *Spontaneous (non)emergence of Property
Rights. Economics of Transition, 12, 103-127.

Skaperdas, S. (1996) Contest Success Functions. Economic Theory, 7, 283-290.

Tonis, A. (1998) Rent-Seeking Technologies: Analysis and Modeling. New Economic
School Working Paper.

Tullock, G. (1980) Efficient Rent-Seeking. In J. Buchanan, J. Tollison, and G.
Tullock (Eds.) Toward a Theory of the Rent-Seeking Society (pp. 97-112). College
Station, TX: Texas A. and M. Univ. Press.

25



Iommmyxk JI., Tonuc A. KoncTpyupoBanne Mexanu3MoB GOpbOBI 32 PEHTY: ONTHMAJBHBIN
BbIOOD «ynkumii yenexa»: [Ipenpunt WP10/2009/05. — M.: U3natensckuit nom [ocynapcTBeH-
HOTO YHUBepcHuTeTa — Bhiciieii mkoibl 9KoHOMUKH, 2009. — 28 ¢. (Ha aHIIL. 13.).

B aHanuze GopbObI 3a PEHTY LIMPOKO MPUMEHSIOTCS BBeAeHHble TopaoHoM Tamiokom
«bYHKIIUU yCIiexa», KOTOPBIE CTaBsIT Pe3y/IbTaThl 6OPHOBI 32 PEHTY TaHHOTO YYACTHUKA B 3a-
BUCUMOCTb OT €r0 COOCTBEHHBIX YCWIIMI (3aTpaT), a TakXke aHaJIOTMYHbBIX 3aTPaT KOHKYPEH-
ToB. Hepenko dopma Takux GyHKIUI TOCTYIMPYETCS U3 «ITPABIOTIONOOHBIX COOOPaXKEeHUIT»;
B HACTOsILIEl paboTe Mpe/roiaraeTes, YTo npaBuiia GOpbObI 32 PEHTY LieJIeHAIPaBIEHHO BbI-
OuparoTCs B yCIOBUSIX MHGOOPMAIIMOHHOM aCUMMETPUU aIMUHICTPATOPOM UCTOYHUKA PEHTHI.
DyHKIMY ycriexa B TAKOM Cllyyae OKa3bIBalOTCSI HIOTeHHBIMU, 00pa3yst ONTUMaJIbHBIH € TOY-
KU 3peHUsI aIMUHUCTPATOPa MEXaHU3M pacripe/ie/ieH st peHThl. [1oTy4eHo ornucaHue OrnTH-
MaJIbHbIX (DYHKLUI ycriexa U aHaJM3UPYIOTCSl UX CBOMCTBA; B YaCTHOCTH, (HOPMYJIUPYIOTCS
YCJIOBUSI, TIPU KOTOPBIX 3TH (PYHKIIMU MPUHUMAIOT PACIIPOCTPAHEHHBIE B TUTEPATYpe (DOPMBI.
UccnenyioTest nepepacripeieuTeNIbHble MOCIEACTBUS U ToTepr 3(h(HEKTUBHOCTH, BOSHUKAIO-
11e IPU pean3aliiy TAKOTO POjia MEXaHU3MOB.

Toauwyx Jleonud — nipoeccop Kadeapbl MHCTUTYITUOHATHBHON SKOHOMUKHN SKOHOMHUYE-
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