КОНТИНУАЛЬНЫЕ МНОЖЕСТВА ГРАНИЧНЫХ КЛАССОВ ГРАФОВ ДЛЯ ЗАДАЧ О РАСКРАСКЕ

Д. С. Малышев

Аннотация. Для задач о вершинной 3-раскраске и о рёберной 3-раскраске указываются континуальные множества граничных классов графов. Это первые примеры задач на графах с множествами граничных классов такой мощности.

Ключевые слова: граничный класс графов, задачи о 3-раскраске, континуальные множества граничных классов.

Введение

Данная работа является продолжением цикла работ [1–5], в которых изучалась граница между «простыми» и «сложными» классами графов для некоторых задач на графах в семействе наследственных классов графов, т.е. классов графов, замкнутых относительно изоморфизма и удаления вершин. Хорошо известно, что любой наследственный класс графов X может быть задан множеством своих запрещённых порождённых подграфов S, при этом принята запись X = Free(S). Для произвольного наследственного класса X минимальное множество запрещённых порождённых подграфов является единственным и обозначается через Forb(X). Если Forb(X) конечно, то класс X называется конечно определённым.

Пусть П — какая-либо задача на графах. Наследственный класс графов называется П-простым, если задача П в этом классе полиномиально разрешима. П-сложным называется наследственный класс графов, не являющийся П-простым. Наследственный класс графов X называется П-предельным, если существует такая бесконечная последовательность П-сложных классов графов $X_1 \supseteq X_2 \supseteq \ldots$, что $X = \bigcap_{i=1}^{\infty} X_i$. Минимальный по включению П-предельный класс называется П-граничным. Значение понятия «граничный класс графов» раскрывает следующая теорема, доказанная в [5].

^{© 2009} Малышев Д. С.

Теорема 1. Если $P \neq NP$, то конечно определённый класс графов X является Π -сложным тогда и только тогда, когда X содержит какойнибудь Π -граничный класс.

Основные результаты настоящей работы, как и работ [1,2], справедливы в предположении, что $P\neq NP$. Это предположение далее не включается явно в формулировки соответствующих утверждений.

Для некоторых задач на графах найдены отдельные граничные классы [1,3-5]. Во всех этих результатах в качестве граничных фигурируют три класса. Один из них — класс T, состоящий из графов, каждая компонента связности которых является либо простым путём, либо гомеоморфна звезде $K_{1,3}$. Данный класс является граничным для задач о независимом множестве, о доминирующем множестве и некоторых других. Для задачи о доминирующем множестве и некоторых других задач граничным является класс D, состоящий из графов, являющихся графами рёбер графов класса T. В [2] доказано, что для задачи о рёберной 3-раскраске множество граничных классов бесконечно. Данное доказательство является неконструктивным, и для этой задачи не было найдено ни одного конкретного граничного класса. В настоящей статье описываются континуальные семейства конкретных граничных классов графов для задач о вершинной и рёберной 3-раскрасках.

В статье приняты следующие обозначения: [X] — класс всех графов, изоморфных порождённым подграфам графов из X; X^+ — множество графов, у которых каждая из компонент связности принадлежит классу X; $\mathrm{Deg}(d)$ — класс графов, в которых степени вершин не превосходят d; nG — граф, состоящий из n вершинно не пересекающихся копий графа G; $T_{i,i,i}$ — дерево с тремя листьями, находящимися на расстоянии i от вершины степени 3; $D_{i,i,i}$ — граф рёбер графа $T_{i+1,i+1,i+1}$; граф K_4 — e получается из графа K_4 удалением ребра e; граф B получается из графа $2K_3$ добавлением двух рёбер, не имеющих общих вершин; граф \widetilde{B} — граф, получаемый добавлением одной вершины к графу P_5 и всех рёбер, соединяющих эту вершину с вершинами данного пути.

1. Задача о вершинной 3-раскраске

Правильной k-раскраской (далее просто k-раскраской) вершин графа G называется такое отображение $f:V(G)\to\{1,2,\ldots,k\}$, что если $(a,b)\in E(G)$, то $f(a)\neq f(b)$. Задача о вершинной k-раскраске (задача k-BP) состоит в том, чтобы определить, существует ли k-раскраска вершин данного графа.

Пусть некоторый граф G содержит ровно две вершины степени два,

а также автомофизм, переводящий эти вершины друг в друга. Операция замены ребра e=(a,b) некоторого графа графом G состоит в удалении этого ребра с последующим отождествлением вершины a с одной вершиной степени 2 графа G и вершины b с другой вершиной степени 2 графа G. Понятно, что граф, получаемый при замене ребра, не зависит от того, какая именно вершина степени 2 графа G отождествляется с вершиной a.

Для произвольной бинарной последовательности $\pi = \{\pi_1, \pi_2, \dots, \pi_k\}$ назовём π -гирляндой граф, получаемый из простого пути P_{2k+1} заменой каждого его ребра. Для любого $i \in \{1, 2, \dots, k\}$ i-е и (2k+1-i)-е рёбра этого пути заменяются графом $K_4 - e$, если $\pi_i = 0$, или графом \widetilde{B} , если $\pi_i = 1$.

Ввёдем понятие π -преобразования вершины. Пусть окрестность вершины v некоторого графа состоит из четырёх вершин x_1, x_2, y_1, y_2 , причём порождённый этими четырьмя вершинами подграф содержит ровно два ребра (x_1, x_2) и (y_1, y_2) . Применение π -преобразования к вершине v состоит в следующем:

- 1) вершину v заменяем двумя вершинами v_1 и v_2 ; вершину v_1 соединяем рёбрами с вершинами x_1, x_2 , а вершину v_2 с вершинами y_1, y_2 ;
- 2) вершину v_1 отождествляем с одной вершиной степени 2 π -гирлянды, а вершину v_2 с другой такой вершиной.

Множество 4-регулярных графов класса Free $(K_{1,3},K_4,K_4-e)$ обозначим через K. Пусть $G\in K$. Ясно, что окрестность любой вершины v этого графа представляет собой граф $2K_2$. π_V -Преобразованием графа G является последовательное применение π -преобразования ко всем вершинам, окрестности которых изоморфны графу $2K_2$ и которые не содержатся в порождённом подграфе K_4-e . Заметим, что в получившемся графе нет вершин, окрестность которых порождает подграф $2K_2$. Обозначим через G_{π_V} граф, получаемый π_V -преобразованием из графа G. Всё множество графов, сформированных таким образом из графов класса K, обозначим через K_{π} .

Легко видеть, что справедлива следующая

Лемма 1. Граф $G \in K$ является вершинно 3-раскрашиваемым тогда и только тогда, когда для любой конечной бинарной последовательности π граф G_{π_V} является вершинно 3-раскрашиваемым.

Для произвольной конечной бинарной последовательности π через D_{π} будем обозначать граф, получаемый отождествлением трёх вершин степени 2, принадлежащих трём копиям π -гирлянды, с тремя различными вершинами графа C_3 . Для произвольной бесконечной бинарной после-

довательности $\pi = \{\pi_1, \pi_2, \ldots\}$ через \mathcal{D}_{π} обозначим множество графов $\left[\bigcup_{k=1}^{\infty} \{D_{\pi^{(k)}}\}\right]^+$, где $\pi^{(k)} = \{\pi_1, \pi_2, \ldots, \pi_k\}$.

Лемма 2. Для любой бесконечной бинарной последовательности π класс \mathcal{D}_{π} является 3-BP-предельным.

Доказательство. Известно [8], что задача 3-ВР для графов класса K является NP-полной. Отсюда и из леммы 1 следует, что для любого i эта задача NP-полна в классе $K_{\pi^{(i)}}$. Поэтому класс $X_s = \begin{bmatrix} \bigcup\limits_{j=s}^\infty K_{\pi^{(j)}} \end{bmatrix}$ при любом s является 3-ВР-сложным. Докажем справедливость равенства $\mathcal{D}_\pi = \bigcap\limits_{j=1}^\infty X_j$.

Для произвольного графа $G \in \mathcal{D}_{\pi}$ существуют такие натуральные числа n и k, что для любого $j \geqslant k$ граф G является порождённым подграфом графа $nD_{\pi^{(j)}}$. Очевидно, что для любых n,k,s граф $nD_{\pi^{(k)}}$ принадлежит классу X_s (поскольку при любом s класс X_s является наследственным). Таким образом, произвольный граф $G \in \mathcal{D}_{\pi}$ принадлежит классу $\bigcap_{j=1}^{\infty} X_j$, поэтому имеет место включение $\mathcal{D}_{\pi} \subseteq \bigcap_{j=1}^{\infty} X_j$.

Рассмотрим произвольный граф $G\in\bigcap_{j=1}^\infty X_j$. Тогда существует такая бесконечная монотонно возрастающая последовательность $\{j_d\}$, что для любого натурального d граф G принадлежит классу $[K_{\pi^{(j_d)}}]$. Отсюда, положив d=|V(G)|+1, заключаем, что для некоторых n и k< d граф G является порождённым подграфом графа $nD_{\pi^{(k)}}$. Таким образом, граф G принадлежит классу \mathcal{D}_π . Поэтому справедливо включение $\mathcal{D}_\pi\supseteq\bigcap_{j=1}^\infty X_j$. Лемма 2 доказана.

Пусть X — некоторый наследственный класс графов. Обозначим через $(X)^k$ множество графов класса X, в которых степень каждой вершины не менее k.

Лемма 3. Если класс X является k-BP-сложным, то класс $[(X)^k]$ является k-BP-сложным.

Доказательство. Пусть $G \in X$ и G имеет вершину v степени не более чем k-1, $G'=G\setminus \{v\}$. Очевидно, граф G является вершинно k-раскрашиваемым тогда и только тогда, когда граф G' является вершинно k-раскрашиваемым. Лемма 3 доказана.

Лемма 4. Пусть B-k-ВР-граничный класс и граф $G_1 \in B$ содер-

жит вершину x степени не более чем k-1. Тогда существует такой граф $G_2 \in B$, что G_1 является порождённым подграфом графа G_2 , а вершина x в графе G_2 имеет степень k.

Доказательство. Так как B-k-ВР-граничный класс, то существуют такие наследственные k-ВР-сложные классы $B_1\supseteq B_2\supseteq\ldots$, что $\bigcap_{i=1}^{\infty}B_i=B$. Пусть $B_i'=[(B_i)^k]$. Ясно, что $B_1'\supseteq B_2'\supseteq\ldots$ и при любом i

класс B_i' является k-ВР-сложным. Поэтому если $B' = \bigcap_{i=1}^{\infty} B_i'$, то класс B' является предельным для задачи k-ВР. Так как $B_i' \subseteq B_i$ для любого i, то $B' \subseteq B$, но B — минимальный k-ВР-предельный класс, поэтому B' = B.

Так как $G_1 \in B$, то $G_1 \in B'$. Тогда $G_1 \in B'_1, G_1 \in B'_2, \ldots$ По построению класса B'_i для любого i существует такой граф $G_2^i \in B'_i$, что G_1 порождён в G_2^i , а вершина x имеет степень k. Пусть граф G_2^i является наименьшим с этим свойством, тогда $\left|V\left(G_2^i\right)\right| - \left|V\left(G_1\right)\right| < k+1$. Пусть $\mathbf{M} = \left\{G_2^1, G_2^2, \ldots\right\}$. Очевидно, \mathbf{M} — конечное множество. Поэтому существует граф G_2 , принадлежащий B'_s для бесконечно многих значений s. Отсюда и из включения $B'_1 \supseteq B'_2 \supseteq \ldots$ следует, что $G_2 \in B'_i$ для любого i, т.е. $G_2 \in B$. Лемма 4 доказана.

Лемма 5. Пусть $G \in \text{Free}(\{K_{1,s}\})$ — произвольный вершинно k-раскрашиваемый граф. Тогда $G \in \text{Deg}((k-1)(s-1))$.

Доказательство. Пусть x — произвольная вершина графа G. Рассмотрим окрестность этой вершины и любую вершинную k-раскраску графа G. Понятно, что мощность пересечения любого цветного класса и окрестности вершины x не превосходит s-1. Отсюда следует, что $\deg(x)\leqslant (k-1)(s-1)$. Лемма 5 доказана.

Известно, что многие NP-полные задачи полиномиально разрешимы в классе графов с ограниченной древесной шириной. Определение древесной ширины, а также список таких задач можно найти в [6].

Лемма 6 [9]. Для любых графов $G_1 \in T$ и $G_2 \in D$ и любого натурального числа d существует такое число $t = t(G_1, G_2, d)$, что древесная ширина графов класса $\operatorname{Free}(\{G_1, G_2\}) \cap \operatorname{Deg}(d)$ не превосходит t.

Лемма 7. Для любого k-BP-граничного класса B либо $B\supseteq T$, либо $B\supseteq D$, либо $B\supseteq S=\{K_{1,s},s\in\{1,2,\ldots\}\}.$

Доказательство. Предположим противное. Тогда для некоторых натуральных чисел s, p, q, i, j справедливо включение

$$B \subseteq \operatorname{Free}(\{K_{1,s}, pT_{i,i,i}, qD_{i,i,i}\}). \tag{*}$$

Пусть $B_1\supseteq B_2\supseteq\ldots$ — произвольная сходящаяся к B последовательность k-BP-сложных классов графов. В силу (*) существует такое r^* , что $B_r\subseteq \operatorname{Free}(\{K_{1,s},pT_{i,i,i},qD_{j,j,j}\})$ при любом $r>r^*$. Для любого r рассмотрим класс графов $B'_r=B_r\cap\operatorname{Deg}((k-1)(s-1))$. Из леммы 5 следует, что при любом $r>r^*$ все графы из $B_r\setminus B'_r$ не являются вершинно k-раскрашиваемыми. Поэтому при любом $r>r^*$ задача k-BP в классе графов B_r полиномиально эквивалентна той же задаче в классе B'_r .

Известно [6], что для любых заданных натуральных чисел d и t класс TW(d,t) является k-ВР-простым (TW(d,t) — множество графов класса $\mathrm{Deg}(d)$, древесная ширина которых не превосходит t). Отсюда и из леммы 6 следует, что при любом $r>r^*$ класс B'_r является k-ВР-простым. Значит, при любом $r>r^*$ класс B_r является k-ВР-простым. Получаем противоречие с граничностью класса B. Таким образом, предположение неверно. Лемма 7 доказана.

Лемма 8. Пусть для некоторой бесконечной бинарной последовательности π и некоторого 3-ВР-граничного класса B выполняется включение $B \subseteq \mathcal{D}_{\pi}$, причём для некоторого k граф $kD_{1,1,1}$ принадлежит классу B. Тогда $\left[\bigcup_{i=1}^{\infty} \{kD_{\pi^{(i)}}\}\right] \subseteq B$.

Доказательство. Предположим противное, тогда для некоторого i граф $kD_{\pi^{(i)}}$ не принадлежит классу B.

Рассмотрим граф $G \in B$ — максимальный по включению порождённый подграф $kD_{\pi^{(i)}}$, содержащий порождённый подграф $kD_{1,1,1}$. Очевидно, что граф G обязательно содержит вершину x степени не более чем 2, которая в графе $kD_{\pi^{(i)}}$ имеет степень не менее чем 3. Тогда из доказательства леммы 4 следует, что в классе B существует такой граф G', в котором граф G является собственным порождённым подграфом и $\deg(x) \geqslant 3$. Поэтому граф G не является максимальным по включению; противоречие. Лемма 8 доказана.

Основной результат этого раздела составляет следующая

Теорема 2. Для любой бесконечной бинарной последовательности π класс \mathcal{D}_{π} является 3-BP-граничным.

ДОКАЗАТЕЛЬСТВО. Заметим, что $\mathcal{D}_{\pi} \subseteq \operatorname{Free}(\{K_{1,4}, T_{2,2,2}\})$. Таким образом, если для некоторого 3-BP-граничного класса B выполнено включение $B \subseteq \mathcal{D}_{\pi}$, то $B \not\supseteq S$ и $B \not\supseteq T$. Из леммы 7 следует, что при любом k граф $kD_{1,1,1}$ принадлежит классу B. Тогда из леммы 8 следует, что при любом k выполнено включение $\left[\bigcup_{i=1}^{\infty} \{kD_{\pi^{(i)}}\}\right] \subseteq B$. Поэтому $\mathcal{D}_{\pi} \subseteq B$. Та-

ким образом, $B=\mathcal{D}_{\pi}$, т. е. класс \mathcal{D}_{π} является 3-ВР-граничным. Теорема 2 доказана.

Ясно, что для различных бесконечных бинарных последовательностей π_1 и π_2 классы \mathcal{D}_{π_1} и \mathcal{D}_{π_2} различны. Отсюда и из теоремы 2 следует, что множество 3-BP-граничных классов является континуальным.

2. Задача о рёберной 3-раскраске

Pёберной k-раскраской графа G называется такое отображение $f: E(G) \to \{1, 2, \dots, k\}$, что если e_1 и e_2 — два смежных ребра графа G, то $f(e_1) \neq f(e_2)$. Задача о рёберной k-раскраске (задача k-PP) для данного графа состоит в том, чтобы определить, имеет ли данный граф k-раскраску рёбер.

Для произвольной последовательности π длины k назовём π -связкой граф, получаемый из простого пути P_{4k+2} заменами его рёбер. Для любого $i \in \{1,2,\ldots,k\}$ 2i-е и (4k+2-2i)-е рёбра этого пути заменяются графом K_4-e , если $\pi_i=0$, или графом B, если $\pi_i=1$.

 π_E -Преобразованием графа G является операция замены каждого ребра этого графа π -связкой. Обозначим через G_{π_E} граф, получаемый π_E -преобразованием из графа G.

Следующее утверждение легко проверяется.

Лемма 9. Для любой конечной бинарной последовательности π граф G_{π_E} является рёберно 3-раскрашиваемым тогда и только тогда, когда граф G является рёберно 3-раскрашиваемым.

Ввёдем понятие \triangle -преобразования вершины. Пусть окрестность вершины x некоторого графа состоит в точности из трёх попарно не смежных вершин y_1, y_2, y_3 . Применение \triangle -преобразования к вершине x состоит в следующем:

- 1) вершина x заменяется на три попарно смежных вершины x_1, x_2 и x_3 ;
 - 2) добавляются рёбра $(x_1, y_1), (x_2, y_2), (x_3, y_3).$

Пусть G — произвольный граф класса $\operatorname{Deg}(3)$. \triangle -Преобразование графа G состоит в последовательном применении \triangle -преобразования к вершинам, окрестность которых порождает подграф \overline{K}_3 . Ясно, что граф, полученный в результате \triangle -преобразования графа G, определяется однозначным образом. Обозначим этот граф через $(G)_{\triangle}$. Через $(X)_{\triangle}$ обозначим множество графов, получаемых в результате применения \triangle -преобразования к графам из $X \subseteq \operatorname{Deg}(3)$.

Легко проверить, что справедлива следующая

Лемма 10. Граф $G \in \text{Deg}(3)$ является рёберно 3-раскрашиваемым тогда и только тогда, когда таковым является граф $(G)_{\triangle}$.

Через Z_{π} обозначим множество графов, получаемых применением π_E -преобразования к графам класса $\mathrm{Deg}(3)$. Через T'_{π} будем обозначать граф, получаемый применением π_E -преобразования к графу $T_{1,1,1}$. Обозначим через D'_{π} граф $(T'_{\pi})_{\triangle}$. Для произвольной бесконечной бинарной последовательности π множество графов $\begin{bmatrix} \overset{\infty}{\bigcup} \{T'_{\pi^{(k)}}\} \end{bmatrix}^+$ обозначим через T'_{π} , а класс графов $(T'_{\pi})_{\Delta}$ — через \mathcal{D}'_{π} .

Лемма 11. Для любой бесконечной бинарной последовательности π классы \mathcal{T}'_π и \mathcal{D}'_π являются 3-PP-предельными.

Доказательство. Известно, что класс $\mathrm{Deg}(3) \cap \mathrm{Free}(\{C_3\})$ является 3-PP-сложным [7]. Отсюда и из леммы 9 следует, что для любого k класс $[Z_{\pi^{(k)}}]$ является 3-PP-сложным. Таким образом, при любом k класс $X_k = \bigcup_{j=k}^{\infty} [Z_{\pi^{(j)}}]$ является 3-PP-сложным. По аналогии с соответствующими рассуждениями леммы 2 можно показать справедливость равенства $\mathcal{T}'_{\pi} = \bigcap_{j=1}^{\infty} X_j$. Отсюда следует, что класс $\mathcal{T}'_{\pi} - 3$ -PP-предельный.

Из проделанных рассуждений и леммы 10 следует, что при любом k класс $([Z_{\pi^{(k)}}])_{\triangle}$ является 3-РР-сложным. Поэтому для произвольного k класс $X_k' = \bigcup_{j=k}^{\infty} [([Z_{\pi^{(j)}}])_{\triangle}]$ также является 3-РР-сложным. Из равенства

 $\mathcal{D}'_{\pi} = \bigcap_{j=1}^{\infty} X'_{j}$, доказательство которого аналогично доказательству соответствующего равенства из предыдущего абзаца, следует 3-PP-предельность класса \mathcal{D}'_{π} . Лемма 11 доказана.

Вершину x некоторого графа G назовём 3-PP-aннигилируемой, если выполняется одно из следующих условий:

- 1) $\deg(x) \leqslant 1$;
- 2) $\deg(x)=2$ и существует такая вершина y графа G, что $\deg(y)\leqslant 2$ и $(x,y)\in E(G)$;
- 3) $\deg(x) = 2$ и x принадлежит некоторому порождённому подграфу $K_4 e$ графа G;
- 4) $\deg(x) = 2$ и x принадлежит некоторому порождённому подграфу B графа G.

Лемма 12 [2]. Пусть B-3-РР-граничный класс и граф $G_1 \in B$ содержит 3-РР-аннигилируемую вершину x. Тогда существует такой граф

 $G_2 \in B$, что G_1 является порождённым подграфом графа G_2 , а вершина x в графе G_2 не является 3-PP-аннигилируемой.

Лемма 13. Любой k-РР-граничный класс содержит либо класс T, либо класс D.

Доказательство. Предположим противное. Пусть $B_1 \supseteq B_2 \supseteq \ldots$ произвольная сходящаяся к 3-PP-граничному классу B последовательность из 3-PP-сложных классов графов. Поскольку ни один из графов класса $\mathrm{Deg}(k+1) \setminus \mathrm{Deg}(k)$ заведомо не является рёберно k-раскрашиваемым, можно считать, что при любом i выполняется включение $B_i \subseteq \mathrm{Deg}(k)$. Дальнейшие рассуждения аналогичны рассуждениям леммы 7 и используют тот факт, что для любых заданных чисел d и t класс $T\mathcal{W}(d,t)$ является k-PP-простым [6]. Лемма 13 доказана.

Доказательство следующих двух лемм аналогично доказательству леммы 8 и использует лемму 12.

Лемма 14. Пусть для некоторой бесконечной бинарной последовательности π и некоторого 3-PP-граничного класса B выполняется включение $B\subseteq T'_{\pi}$, причём для некоторого k граф $kT_{1,1,1}$ принадлежит классу B. Тогда $\left[\bigcup_{i=1}^{\infty}\{kT'_{\pi^{(i)}}\}\right]\subseteq B$.

Лемма 15. Пусть для некоторой бесконечной бинарной последовательности π и некоторого 3-PP-граничного класса B выполняется включение $B\subseteq D_\pi'$, причём для некоторого k граф $kD_{1,1,1}$ принадлежит классу B. Тогда $\left[\bigcup_{i=1}^\infty \{k\mathcal{D}_{\pi^{(i)}}'\}\right]\subseteq B$.

Основным результатом этого раздела является

Теорема 3. Для любой бесконечной бинарной последовательности π классы \mathcal{T}'_{π} и \mathcal{D}'_{π} являются 3-РР-граничными.

Доказательство. Заметим, что

$$\mathcal{T}'_{\pi} \subseteq \operatorname{Free}(\{D_{1,1,1}\})$$
 и $\mathcal{D}'_{\pi} \subseteq \operatorname{Free}(\{T_{1,1,1}\}).$

Дальнейшее доказательство полностью аналогично рассуждениям теоремы 2 и использует леммы 13–15. Теорема 3 доказана.

Понятно, что для различных бесконечных бинарных последовательностей π_1 и π_2 выполняются условия $T'_{\pi_1} \neq T'_{\pi_2}$ и $\mathcal{D}'_{\pi_1} \neq \mathcal{D}'_{\pi_2}$, поэтому множество всех 3-PP-граничных классов имеет мощность континуума.

3. Заключительные замечания

В теоремах 2 и 3 было установлено, что некоторые классы графов являются граничными для задач о 3-раскраске. Логически следующим за получением такого описания является вопрос о его полноте. Покажем, что найденные множества классов графов не совпадают с множеством граничных классов ни для одной из рассматриваемых задач.

Напомним, что в работе [8] показано, что класс $\mathrm{Free}(\{K_4-e\})$ является 3-BP-сложным. Согласно теореме 1 конечно определённый класс $\mathrm{Free}(\{K_4-e\})$ должен содержать некоторый 3-BP-граничный класс B. В то же время данный класс отличен от описываемых в теореме 2, поскольку для любой бесконечной бинарной последовательности π класс \mathcal{D}_{π} содержит граф K_4-e .

Класс $\operatorname{Deg}(3) \cap \operatorname{Free}(\{C_3\})$ является 3-PP-сложным. Поскольку для любой бесконечной бинарной последовательности π ни класс T'_{π} , ни класс \mathcal{D}'_{π} не принадлежат классу $\operatorname{Free}(\{C_3\})$, существует 3-PP-граничный класс B_1 , не совпадающий ни с одним из ранее указанных. Из леммы 10 следует, что класс $(\operatorname{Deg}(3) \cap \operatorname{Free}(\{C_3\}))_{\triangle}$ является 3-PP-сложным. Так как $(\operatorname{Deg}(3) \cap \operatorname{Free}(\{C_3\}))_{\triangle} \subseteq \operatorname{Free}(\{K_{1,3}, K_4 - e, B\})$, то класс

Free(
$$\{K_{1,3}, K_4 - e, B\}$$
)

является 3-РР-сложным. Таким образом, существует 3-РР-граничный класс $B_2 \subseteq \operatorname{Free}(\{K_{1,3}, K_4 - e, B\})$. Из леммы 13 следует, что $B_1 \neq B_2$. Поэтому в множестве всех 3-РР-граничных классов существует два различных класса, не принадлежащих множеству классов, описываемых в теореме 3.

ЛИТЕРАТУРА

- **1. Алексеев В. Е., Малышев Д. С.** Критерий граничности и его применения // Дискрет. анализ и исслед. операций. 2008. Т. 15, № 6. С. 3–11.
- **2.** Малышев Д. С. О бесконечности множества граничных классов в задаче о рёберной 3-раскраске // Дискрет. анализ и исслед. операций. 2009. Т. 16, № 1. С. 37–43.
- **3. Alekseev V. E.** On easy and hard hereditary classes of graphs with respect to the independent set problem // Discrete Appl. Math. -2004.- V. 132.- P. 17-26.
- **4. Alekseev V. E., Korobitsyn D. V., Lozin V. V.** Boundary classes of graphs for the dominating set problem // Discrete Math. -2004.- V. 285.- P. 1-6.

- **5.** Alekseev V. E., Boliac R., Korobitsyn D. V., Lozin V. V. NP-hard graph problems and boundary classes of graphs // Theoret. Comput. Sci. 2007. V. 389. P. 219–236.
- **6. Bodlaender H. L.** Dynamic programming on graphs with bounded treewidth // Automata, languages and programming (Tampere, 1988). Proc. Berlin: Springer-Verl., 1988. P. 105–118. (Lect. Notes in Comput. Sci.; V. 317).
- **7. Holyer I.** The NP-completeness of edge-coloring // SIAM J. Comput. 1981. V. 10, N = 4. P. 718-720.
- **8. Kochol M., Lozin V., Randerath B.** The 3-colorability problem on graphs with maximum degree four // SIAM J. Comput. -2003.- V. 32, N = 5.- P. 1128-1139.
- 9. Lozin V. V., Rautenbach D. On the band-, tree- and clique-width of graphs with bounded vertex degree // Discrete Math. -2004.- V. 18.- P. 195-206.

Малышев Дмитрий Сергеевич, e-mail: dsmalyshev@rambler.ru

Статья поступила 21 января 2009 г. Переработанный вариант — 27 июня 2009 г.