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Abstract

It is shown that the space of functions ofn real variables with finite total variation in the sense of
Vitali, Hardy and Krause, defined on a rectangleIb

a ⊂ Rn, is a Banach algebra under the pointwise
operations and Hildebrandt–Leonov’s norm. This result generalizes the classical case of functions of
bounded Jordan variation on an intervalIb

a = [a, b] for n = 1 and a previous result of the author in
[Monatsh. Math. 137(2) (2002) 99–114] forn = 2.
© 2005 Published by Elsevier Ltd.
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1. Introduction

The purpose of this paper is to characterize Lipschitzian superposition (Nemytskii) oper-
ators in the space of functions ofn real variables (with arbitraryn ∈ N) having finite total
variation in the sense of Vitali, Hardy and Krause as a continuation of the studies in[10]
for n = 2. All main results of this paper have been announced in[11,15].
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Let I be a nonempty set (a rectangle inRn below),RI be the algebra of all functions
f : I → R mappingI into the realsR equipped with the usual pointwise operations and
h : I × R → R be a given function. Thesuperposition(Nemytskii) operatorH = Hh :
RI → RI generated byh is defined by

Hf (x) ≡ H(f )(x) = h(x, f (x)), x ∈ I, f ∈ RI . (1.1)

The functionh is called thegeneratorof H.
If I = I b

a = [a, b] is a closed interval onR, let BV(I ; R) be the subset ofRI of all
functionsf of bounded (i.e., finite) Jordan total variation

V b
a (f ) = sup

P

m∑
i=1

|f (xi) − f (xi−1)|,

where the supremum is taken over allm ∈ N and all partitionsP = {xi}mi=0 of the interval
I (i.e., a = x0< x1< · · · < xm−1< xm = b). Classically, it is known that BV(I ; R) is a
Banach algebra with respect to the norm‖f ‖ = |f (a)| + V b

a (f ), f ∈ BV(I ; R), and
‖f · g‖�2‖f ‖ · ‖g‖ for all functionsf andg of bounded variation onI. This inequality is
a straightforward consequence of the following two inequalities (e.g.,[30, VIII.3.3]):

|f |s ≡ sup
x∈[a,b]

|f (x)|�‖f ‖ and V b
a (f · g)�V b

a (f )|g|s+ |f |sV b
a (g). (1.2)

The Banach algebra property of BV(I ; R) implies immediately that if the generatorh :
I × R → R is given byh(x, u) = h1(x)u + h0(x), x ∈ I , u ∈ R, for some functions
h0, h1 ∈ BV(I ; R), then the corresponding superposition operatorH maps BV(I ; R) into
itself and is Lipschitzian in the sense that there exists a nonnegative constantL (actually,
L = 2‖h1‖) such that

‖Hf 1 − Hf 2‖�L‖f1 − f2‖ (1.3)

for all f1, f2 ∈ BV(I ; R). Of course, property (1.3) withL <1 is closely connected with
the solution of the functional equationf =Hf via the classical Banach contraction theorem.
Conversely, Matkowski and Mi´s [29] proved that if the superposition operatorH, gener-

ated by a functionh : I × R → R, maps BV(I ; R) into itself and is Lipschitzian in the
sense of (1.3), then its generatorh satisfies the condition (Matkowski’s representation):

h∗(x, u) = h1(x)u + h0(x) for all x ∈ (a, b] andu ∈ R, (1.4)

whereh∗(x, u) = limy→x−0 h(y, u) is the left regularization ofh in the first variable and
functionsh0, h1 ∈ BV(I ; R) are continuous from the left on(a, b].
Note that the representation (1.4) is not the case for Lipschitzian superposition operators,

e.g., in the space of continuous functionsC(I ; R) with the supremum norm| · |s or in the
spaceLp(I ; R) of Lebesguep-summable (p�1) functions onI with the standard norm:
as an example, considerh(x, u) = sinu, x ∈ I , u ∈ R. On the other hand, in the case
of functions of one variable (1.4) holds in a large number of functional spaces involving
certain types of bounded variation property as is shown in[6,7,9,12,16,26](representation
(1.4) was found in[26] in the space of Lipschitz functions onI), [27,28]and others; see the
references in these papers.
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In [8,10], the author showed that the Banach algebra property and representation (1.4)
are valid for a certain space of functions of two variables with finite total variation (cf.
also[13] for the case of functions with more general values than the real numbers). It is
the aim of this paper to obtain the Banach algebra property and representation (1.4) for a
space of functions ofn real variables with finite variation whenn ∈ N is arbitrary (see
Section 2). For this, we establish and make use of exact equalities for mixed differences
and variations in the multiindex notation and exact estimates for them when appropriate
(not at all employing arguments involving induction). We adopt and restrict ourselves to
the definition of bounded variation in the multidimensional case originally due to Vitali,
Hardy and Krause ([1,18,20], [21, Section III.4], [31,32]), which was redefined by Leonov
[25] to get the notions of total variation and norm (for functions of two variables these two
notions were employed in[21, III.6.3] and[22]). Other definitions of bounded variation for
functions of several variables may be found, e.g., in[2,23,33,34].
Although the superposition operatorH is well studied inmany classical functional spaces

(ideal, Lebesgue, Orlicz, Hölder, Sobolev, etc., cf.[3]), little is known about its properties
in spaces of functions of bounded variation even of one variable (except for certain partial
results[3, Section 6.5], [5,17,19,24]). So, properties of boundedness, continuity, compact-
ness, local Lipschitz continuity, differentiability,. . . , of H are yet to be studied, and our
results are the first step into the general theory of superposition operators in a bounded
variation context for functions of several real variables.
The paper is divided into two Parts, I and II. Part I is organized as follows. In Section

2, we introduce definitions and notations, present our main results (Theorems 1 and 2) and
briefly comment on the main results of Part II (Theorem 4). Section 3 and the first part
of Section 4 (on mixed differences) are preparatory for the proof of the main results. In
Section 5, we give some generalizations of our results when functions under consideration
have their values in normed linear spaces.

2. Definitions and main results

LetN be the set of positive integers,n ∈ N be fixed andN0 = {0} ∪ N. The coordinate
representation of a pointx ∈ Rn will be written asx = (xi | i ∈ {1, . . . , n})= (x1, . . . , xn).
If y = (y1, . . . , yn) ∈ Rn, we say thatx = y, x�y, y�x or x < y (in Rn) providedxi = yi ,
xi �yi , yi �xi or xi < yi for all i ∈ {1, . . . , n}, respectively, and we setx + y = (x1 +
y1, . . . , xn + yn) andx − y = (x1 − y1, . . . , xn − yn). If x�y in Rn, we define then-
dimensional rectangleI y

x (possibly degenerated) with the endpointsxandyas the Cartesian
product ofn closed intervals:

I
y
x =

n∏
i=1

[xi, yi] = [x1, y1] × · · · × [xn, yn] = {z ∈ Rn | x�z�y}.

In what followsa, b ∈ Rn with a < b are fixed and the rectangleI b
a is the domain of most

functions under consideration, called thebasic rectangle.
Elements ofNn

0 = (N0)
n are said to bemultiindicesand will be denoted, as a rule, by

Greek letters. For� = (�1, . . . , �n) ∈ Nn
0 andx ∈ Rn we set|�| = �1 + · · · + �n (the order
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of �) and�x = (�1x1, . . . , �nxn) ∈ Rn. The zero multiindex 0n = (0, . . . ,0) ∈ Nn
0 and

the unit multiindex 1n = (1, . . . ,1) ∈ Nn
0 will be denoted simply by 0 and 1, respectively;

each time the dimension of the zero/unit multiindex will be clear from the context. Setting
A0(n)={� ∈ Nn

0 | ��1}andA(n)=A0(n)\{0},wehave#A0(n)=2n and#A(n)=2n−1
where #A designates the number of elements in the setA.
For the sake of brevity we adopt the followingconvention: unless otherwise stated, a

summation overmultiindiceswill be understood overn-dimensionalmultiindices, the range
of the summation being usually specified under the summation sign. For instance, the sum∑

�∈A(n) will be written as
∑

0�=��1.

Let I b
a be the basic rectangle,f : I b

a → R andx, y ∈ Rn, x < y. TheVitali nthmixed
difference of fon the subrectangleI y

x ⊂ I b
a is the quantity[32]:

mdn(f, I
y
x ) =

∑
0���1

(−1)|�|f (x + �(y − x)). (2.1)

For example, ifn = 1, we have md1(f, I
y
x ) = f (x) − f (y); for n = 2 we findA0(2) =

{(0,0), (1,0), (0,1), (1,1)}, and so,
md2(f, I

y1,y2
x1,x2 ) = f (x1, x2) − f (y1, x2) − f (x1, y2) + f (y1, y2);

and if n = 3, thenA0(3) = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1),
(0,1,1), (1,1,1)}, which implies

md3(f, I
y1,y2,y3
x1,x2,x3 ) = f (x1, x2, x3) − f (y1, x2, x3) − f (x1, y2, x3) − f (x1, x2, y3)

+f (y1, y2, x3)+f (y1, x2, y3)+f (x1, y2, y3)−f (y1, y2, y3).

We say thatP is a (net) partitionof I b
a if there exist amultiindex�=(�1, . . . ,�n) ∈ Nn and

a collection of pointsx[�] ≡ (x1(�1), . . . , xn(�n)) from I b
a indexed by�= (�1, . . . ,�n) ∈

Nn
0 with ��� and satisfyingx[0] = a, x[�] = b andx[� − 1] < x[�] in Rn for all � ∈ Nn,

1����, such thatP={x[�] | � ∈ Nn
0, ���} (in other words,P is the Cartesian product

of ordinary partitions of intervals[ai, bi], i = 1, . . . , n). We will denote such a partition by
P = {x[�]}��=0. Note thatI

b
a is the union of nonoverlapping subrectanglesI

x[�]
x[�−1] over all

1����.
TheVitali nth variation [25,32]of f : I b

a → R is defined by

Vn(f, I b
a ) = sup

P

∑
1����

|mdn(f, I
x[�]
x[�−1])|, (2.2)

where the supremum is taken over all multiindices� ∈ Nn and all partitionsP={x[�]}��=0
of I b

a . If n = 1,V1(f, I b
a ) is the usual Jordan variationV b

a (f ).
In order to define the notion of the total variation off we need the notion of lower order

(less thann) variation of f, which is initially due to Hardy and Krause[18,20,25]. Given
� ∈ A(n) andx ∈ Rn, we define thetruncation of x by� by

x�� = (xi | i ∈ {1, . . . , n}, �i = 1) ∈ R|�|
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and set

I b
a �� = I

b��
a�� =

∏
i∈{1,...,n},�i=1

[ai, bi].

Clearly,x�1=x, I b
a �1= I b

a , and ifx ∈ I b
a , thenx�� ∈ I b

a �� for all � ∈ A(n). For example,
if x = (x1, x2, x3, x4) and� = (0,1,0,1), we havex�� = (x2, x4) andI b

a �� = [a2, b2] ×
[a4, b4].
If f : I b

a → R, z ∈ I b
a and� ∈ A(n), we define thetruncated functionf z

� : I b
a �� → R

with the base at zas follows:

f z
� (x��) = f (z + �(x − z)), x ∈ I b

a . (2.3)

The idea behind this is thatf z
� depends only on|�| variablesxi ∈ [ai, bi] (i.e., for which

�i = 1), and the other variables are fixed and equal tozi (if �i = 0). For example, if
� = (0,1,0,1) andx = (x1, x2, x3, x4), thenf z

� (x2, x4) = f z
� (x��) = f (z1, x2, z3, x4). It

is clear thatf z
1 = f on I b

a for anyz ∈ I b
a .

Now, givenf : I b
a → R and� ∈ A(n), the functionf a

� : I b
a �� → R with the base at

z = a depends only on|�| variables, and so, making use of the above definition (2.2) (and
(2.1)) withn replaced by|�|, f replaced byf a

� andI b
a replaced byI b

a ��, we get the notion
of the (Hardy–Krause)|�|-variation of f, which we denote byV|�|(f a

� , I b
a ��).

The total variationof f : I b
a → R in the sense of Hildebrandt[21, III.6.3] and Leonov

[25] (see also[10,11]) is defined by

TV(f, I b
a ) =

∑
0�=��1

V|�|(f a
� , I b

a ��). (2.4)

For the first three dimensionsn = 1,2,3 we have, respectively,

TV(f, I b
a ) = V b

a (f ), the usual Jordan total variation,

TV(f, I b
a ) = V b1

a1
(f (·, a2)) + V b2

a2
(f (a1, ·)) + V2(f, I b

a ),

TV(f, I b
a ) = V b1

a1
(f (·, a2, a3)) + V b2

a2
(f (a1, ·, a3)) + V b3

a3
(f (a1, a2, ·))

+ V2(f (·, ·, a3), I b1,b2
a1,a2

) + V2(f (·, a2, ·), I b1,b3
a1,a3

)

+ V2(f (a1, ·, ·), I b2,b3
a2,a3

) + V3(f, I b
a ).

We define thespace of functions of finite total variation(in the sense of Vitali, Hardy and
Krause) as BV(I b

a ; R) = {f : I b
a → R | TV(f, I b

a ) < ∞} and equip it with the norm ([21,
III.6.3] if n = 2, [25] for all n ∈ N):

‖f ‖ = |f (a)| + TV(f, I b
a ), f ∈ BV(I b

a ; R). (2.5)

It was shown by Hildebrandt[21, III.4.2] (for n = 2) and Leonov[25, Corollary 4](for
n ∈ N) that the space BV(I b

a ; R) above coincides with the set of all functions of finite
variation in the modification of Hardy and Krause (cf.[1,18,20]). Also, in [21, III.6.3] (for
n=2) and[25, Corollary 2](for arbitraryn) it was proved that BV(I b

a ; R) is a Banach space
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with the norm (2.5). The two notions (2.4) and (2.5) were effectively used in[4, Theorem
2], [21, III.6.5], [22, Theorem 3.2](for n=2), [25, Theorem 4]and[14] (if n ∈ N) in order
to obtain a pointwise Helly’s selection principle for functions from BV(I b

a ; R) (even for
more general values of functions than the real numbers).
Themain result of Part I of this paper, to be proved in Section 4, is a theorem, generalizing

Theorem 1 from[10] for n = 2:

Theorem 1. The spaceBV(I b
a ; R) is a Banach algebra with respect to the usual pointwise

operations and norm(2.5),and the following inequality holds:

‖f · g‖�2n‖f ‖ · ‖g‖, f, g ∈ BV(I b
a ; R).

This theorem is based on the following fundamental estimate for the variation of any
order of the productfg in terms of appropriate variations off andg separately (for the sake
of convenience we setV0(f a

0 , I b
a �0) ≡ |f (a)|):

Theorem 2. If f, g ∈ BV(I b
a ; R) and� ∈ A(n), then

V|�|((f · g)a� , I
b
a ��)�

∑
0��,���,

�+���

2|�|+|�|−|�| V|�|(f a
� , I b

a ��)V|�|(ga
�, I b

a ��). (2.6)

As a corollary of Theorem 1 for superposition operators we have:

Corollary 3. If h0, h1 ∈ BV(I b
a ; R) andh(x, u) = h1(x)u + h0(x), x ∈ I b

a , u ∈ R, then
the superposition operator H generated by hmapsBV(I b

a ; R) into itself and is Lipschitzian:
‖Hf − Hg‖�2n‖h1‖ · ‖f − g‖ for all f, g ∈ BV(I b

a ; R).

More corollaries of the main result are presented in Sections 4 and 5.
Nowwe briefly comment on themain results of Part II. It turns out that Corollary 3 almost

characterizes Lipschitzian superposition operatorsH on the space BV(I b
a ; R). Essentially,

this may be stated as follows (see the complete formulation in Part II, which is to appear in
this journal):

Theorem 4. LetH : RI → RI be the superposition operator generated by a function
h : I × R → R according to(1.1)with I = I b

a . If H mapsBV(I b
a ; R) into itself and is

Lipschitzian(in the sense of(1.3)),then there exist two functionsh0, h1 ∈ BV(I b
a ; R) such

that theMatkowski representation holds: limy→x−0 h(y, u)=h1(x)u+h0(x) for all x ∈ I b
a ,

x > a, andu ∈ R.

Taking this and Corollary 3 into account we obtain a complete characterization of Lip-
schitzian superposition operators generated by functionsh which are left-continuous as
functionsx �→ h(x, u).
The above results are extensions of the results in[29] (for n = 1) and[10] (for n = 2) to

the case of arbitraryn ∈ N.
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3. Properties of mixed differences

Two fundamental properties of mdn andVn are known, namely,additivity, i.e., ifP =
{x[�]}��=0 is a partition ofI

b
a andf : I b

a → R, then

mdn(f, I b
a ) =

∑
1����

mdn(f, I
x[�]
x[�−1]) and Vn(f, I b

a ) =
∑

1����

Vn(f, I
x[�]
x[�−1]);

and (sequential) lower semicontinuity, i.e., if a sequence of functionsfj : I b
a → R, j ∈ N,

converges pointwise onI b
a to a functionf : I b

a → R asj → ∞, then

Vn(f, I b
a )� lim inf

j→∞ Vn(fj , I
b
a ).

Consequently, these twoproperties are also valid for the|�|-variationV|�| for each� ∈ A(n)

(in their formulation one should take into account obvious modifications), and the second
one is valid for the total variation TV.
In order to get more properties of the total variation, we need a number of relations

between mixed differences of all orders. First, let us explicitly calculate the lower order
mixed difference of a functionf : I b

a → R at any basez ∈ I b
a .

Lemma 5. If f : I b
a → R, x, y ∈ I b

a , x�y, z ∈ I b
a and� ∈ A(n), then

md|�|(f z
� , I

y
x ��) =

∑
0����

(−1)|�|f (z + �(x − z) + �(y − x)). (3.1)

In particular, if z = a or z = x, we have, respectively,

md|�|(f a
� , I

y
x ��) =md|�|(f a+�(x−a)

� , I
y

a+�(x−a)��), (3.2)

md|�|(f x
� , I

y
x ��) =

∑
0����

(−1)|�|f (x + �(y − x)). (3.3)

Proof. Toprove (3.1),weobserve that an� ∈ A0(|�|) if andonly if thereexists aunique� ∈
A0(n) such that��� and�=���, in which case|�|=|�|� |�|; in fact, if �= (�1, . . . , �|�|)
andi ∈ {1, . . . , n}, we set�i =0 if �i =0 and�i =�j if �i is thejth unit in�, j =1, . . . , |�|.
Taking into account that

x�� + �(y�� − x��) = x�� + (���)(y�� − x��) = (x + �(y − x))��

and that, by (2.3),

f z
� ((x + �(y − x))��) = f (z + �(x + �(y − x) − z))

= f (z + �(x − z) + (��)(y − x))
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and since md|�|(f z
� , I

y
x ��) =md|�|(f z

� , I
y��
x�� ), we have according to (2.1):

md|�|(f z
� , I

y
x ��) =

∑
�∈A0(|�|)

(−1)|�|f z
� (x�� + �(y�� − x��))

=
∑

0����

(−1)|�|f (z + �(x − z) + �(y − x)),

where we have used the fact that�� = � if and only if ���.
Equality (3.3) is a consequence of (3.1) withz = x.
Now, (3.2) follows from (3.1) and (3.3): in fact, settingx′ = a + �(x − a) we find for

��� (i.e.,�� = �) that�(y − x′) = �(y − x) and

md|�|(f a
� , I

y
x ��) =

∑
0����

(−1)|�|f (x′ + �(y − x′)) =md|�|(f x′
� , I

y

x′ ��). �

The next lemma is a variant of Theorem 2 (and remark following it) from[25] written in
different (and easier) notation and provided with an easier proof.

Lemma 6. Givenf : I b
a → R, x, y ∈ I b

a , x < y, and� ∈ A(n), we have

f (x + �(y − x)) − f (x) =
∑

0�=���

(−1)|�| md|�|(f x
� , I

y
x ��).

Proof. As it is seen from (3.3), the right-hand side of the equality can be written as the
sum of terms of the formc�f (x + �(y − x)) over all multiindices� ∈ Nn

0 with ���. Let
us calculate the factorsc� for all 0����. By (3.3), the value(−1)|�|f (x + �(y − x)) is
contained in the mixed difference md|�|(f x

� , I
y
x ��) for each� ∈ A(n) with �����. So,

if � ∈ A(n), ����� and i = |�|, then max{1, |�|}� i� |�|, and since (as usual we set
0! = 1)

#{� ∈ A(n) | �����, |�| = i} = C
i−|�|
|�|−|�|, whereCi

m = m!
i!(m − i)! , (3.4)

then taking into account the right-hand side of the equality in lemma we get

c� =
|�|∑

i=max{1,|�|}
(−1)i+|�| Ci−|�|

|�|−|�|.

Applying the binomial formula we findc0 = −1, c� = 0 if 0< |�| < |�| andc� = 1. �

As a consequence of Lemma 6 and definition (2.4), we get the following Leonov’s in-
equality[25, Corollary 5]:

|f (y) − f (x)|�TV(f, I
y
x ), f ∈ BV(I b

a ; R), x, y ∈ I b
a , x�y. (3.5)

Since the total variation (2.4) is defined via truncated functions with the base ata, we
need a formula (if it exists!) expressing md|�|(f x

� , I
y
x ��) by means of mixed differences of
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functionsf a
� for some� ∈ A(n). Fortunately, such a formula, of fundamental importance

for the whole subsequent material, can be given as follows:

Lemma 7. If f : I b
a → R, x, y ∈ I b

a , x < y, and� ∈ A(n)\{1}, then

md|�|(f x
� , I

y
x ��) = (−1)|�| ∑

����1

(−1)|�| md|�|(f a
� , I

x+�(y−x)

a+�(x−a) ��). (3.6)

Proof. Wewill compare the right-hand sides of equalities (3.6) and (3.3).Applying (3.1) to
md|�|(f a

� , I
x+�(y−x)

a+�(x−a) ��) and noting that�� = � for ��� we get the following expression
for the right-hand side of (3.6):

(−1)|�| ∑
����1

(−1)|�| ∑
0����

(−1)|�|f (a+(�+�−��)(x−a)+(��)(y−x)). (3.7)

Since 1∈ {� ∈ A(n) | ���}, (3.7) can be written as the sum over all� ∈ A0(n) of
terms of the formc�f (a + (� + � − ��)(x − a) + (��)(y − x)). In order to calculate
constantsc�, we note that if the above term is contained in (3.7), then there exist� and
� satisfying����1 and 0���� such that� + � − �� = � + � − �� and�� = ��,
whence� = �. So, in the rest of the proof we write� in place of� and calculatec�. We set
� = max{�, �} ≡ (max{�i , �i} | i ∈ {1, . . . , n}), so that 1� |�|�n. Since for|�|� i�n

we have (cf. also (3.4))

#{� ∈ A(n) | ���,���, |�| = i} = #{� ∈ A(n) | ���, |�| = i} = C
i−|�|
n−|�|,

it follows from (3.7) that

c� = (−1)|�|+|�|
n∑

i=|�|
(−1)iCi−|�|

n−|�| = (−1)|�|+|�|+|�|
n−|�|∑
j=0

(−1)jCj
n−|�|

=
{

(−1)|�|+|�|+|�| if |�| = n,

(−1)|�|+|�|+|�|(1− 1)n−|�| = 0 if |�| < n.
(3.8)

Let us show that|�| = n if and only if�=max{�, �} =1 if and only if there exists a unique

� ∈ A0(n) such that��� and� = 1− � + �. (3.9)

In fact, given���, �=1− �+ � andi ∈ {1, . . . , n}, we have: if�i =1, then�i =1, and if
�i =0, then�i =0, and so,�i = �i =1. Conversely, condition max{�, �}=1 implies�i =1
or �i = 1, so that�i + �i �1 for all i ∈ {1, . . . , n}, and it suffices to set� = � + � − 1.
Now, let� ∈ A0(n), ��� (cf. (3.3)). Setting� = 1− � + �, by (3.9) and (3.8), we have:

|�| = n − |�| + |�|, |�| = n, �� = �, � + � − �� = 1 andc� = (−1)|�|, and so,

c�f (a + (� + � − ��)(x − a) + (��)(y − x)) = (−1)|�|f (x + �(y − x)).

As it is seen now from (3.9) and (3.8),c� = 0 in the other cases.�
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4. Banach algebra BV(I b
a; R)

As the first step in the proof that BV(I b
a ; R) is a Banach algebra, in the next lemma we

show that thenth mixed difference of the productfg of two functionsf andg can be split
into the sum of certain products with factors depending onf andg separately.

Lemma 8. If f, g : I b
a → R andx, y ∈ I b

a , x < y, then

mdn(fg, I
y
x ) =mdn(f, I

y
x )g(x) + f (y)mdn(g, I

y
x )

+
∑

�∈A(n)\{1}
(−1)|�|[f (x + �(y − x)) − f (y)]

× [g(x + �(y − x)) − g(x)].

Proof. Taking into account definition (2.1), we have:

mdn(fg, I
y
x ) =

∑
0���1

(−1)|�|f (x + �(y − x))g(x + �(y − x))

=mdn(f, I
y
x )g(x) + (−1)nf (y)[g(y) − g(x)]

+
∑

�∈A(n)\{1}
(−1)|�|f (x + �(y − x))[g(x + �(y − x)) − g(x)].

Noting that, according to the binomial formula,

∑
�∈A(n)\{1}

(−1)|�| =
n−1∑
i=1

(−1)iCi
n = −1+

(
n∑

i=0

(−1)iCi
n

)
− (−1)n

= − 1− (−1)n, (4.1)

we get

∑
�∈A(n)\{1}

(−1)|�|[g(x + �(y − x)) − g(x)] =
∑

�∈A(n)\{1}
(−1)|�|g(x + �(y − x))

+ g(x) + (−1)ng(x)

=mdn(g, I
y
x ) − (−1)n[g(y) − g(x)].

Writing out the expression for(−1)n[g(y)−g(x)] and substituting it into the above equality
we obtain the desired equality.�

Actually, the mixed difference mdn(fg, I
y
x ) can be developed as the sum of products of

certain mixed differences off andg separately.
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Lemma 9. If f, g : I b
a → R andx, y ∈ I b

a , x < y, then

mdn(fg, I
y
x ) =mdn(f, I

y
x )g(x) + f (y)mdn(g, I

y
x )

+ (−1)n
∑

�∈A(n)\{1}


 ∑
1−����1

(−1)|�| md|�|(f a
� , I

y

a+(1−�)(x−a)
��)




×

 ∑

����1

(−1)|�| md|�|(ga
�, I

x+�(y−x)

a+�(x−a)
��)


 .

Proof. We first show that the following equality holds:

∑
�∈A(n)\{1}

(−1)|�|[f (x + �(y − x)) − f (y)][g(x + �(y − x)) − g(x)]

=
∑

�∈A(n)\{1}
mdn−|�|(f

x+�(y−x)

1−� , I
y

x+�(y−x)
�(1− �))md|�|(gx

� , I
y
x ��). (4.2)

It will be proved in two steps, and for the sake of clarity the right-hand side of this equality
will be written with� replaced by�:

∑
�∈A(n)\{1}

mdn−|�|(f x+�(y−x)

1−� , I
y

x+�(y−x)�(1− �))md|�|(gx
� , I

y
x ��). (4.3)

1. We transform the sum (4.3) by applying equality (3.3) to the mixed differences, noting
that�(1− �) = � for ��1− � and changing the summation index in the third sum
below:

mdn−|�|(f x+�(y−x)

1−� , I
y

x+�(y−x)�(1− �))

=
∑

0���1−�

(−1)|�|f (x + �(y − x) + �[y − x − �(y − x)])

=
∑

0���1−�

(−1)|�|f (x + (� + �)(y − x))

= (−1)|�|

(−1)nf (y) +

∑
��	�1,	�=1

(−1)|	|f (x + 	(y − x))




and also,

md|�|(gx
� , I

y
x ��) = g(x) +

∑
0�=���

(−1)|�|g(x + �(y − x))
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and so, (4.3) is equal to
 ∑

�∈A(n)\{1}
(−1)|�|+n


 f (y)g(x)

+ f (y)


 ∑

�∈A(n)\{1}
(−1)|�|+n

∑
0�=���

(−1)|�|g(x + �(y − x))




+

 ∑

�∈A(n)\{1}
(−1)|�| ∑

��	�1,	 �=1

(−1)|	|f (x + 	(y − x))


 g(x)

+
∑

�∈A(n)\{1}
(−1)|�|


 ∑

��	�1,	 �=1

(−1)|	|f (x + 	(y − x))




×

 ∑
0�=���

(−1)|�|g(x + �(y − x))


 . (4.4)

2. In steps 2a–2d we compare the respective coefficients (in square brackets) in (4.4) and
the expression on the left in (4.2) and show that they are equal.

2a. The factor byf (y)g(x) on the left in (4.2) is, by virtue of (4.1), equal to
∑

�∈A(n)\{1}
(−1)|�| = −1− (−1)n. The respective coefficient in (4.4) is∑

�∈A(n)\{1}
(−1)|�|+n = (−1)n

∑
�∈A(n)\{1}

(−1)|�| = (−1)n[−1− (−1)n]

= − (−1)n − 1.

2b. The value−∑�∈A(n)\{1} (−1)|�|g(x + �(y − x)) is the factor byf (y) on the left in
(4.2). In the respective coefficient in (4.4)� �= 0 can assume any value��� for � ∈
A(n)\{1}, i.e.,� ∈ A(n)\{1}, andso, this coefficient isof the form∑�∈A(n)\{1} c�g(x+
�(y − x)). In order to calculatec�, we fix � ∈ A(n)\{1} and note that� corresponds
to those� ∈ A(n)\{1}, for which ���. So, if ����1, � �= 1 andi = |�|, then
|�|� i�n − 1. Since (cf. (3.4)) #{� ∈ A(n) | ���, |�| = i} = C

i−|�|
n−|�|, from the second

term in (4.4) and the binomial formula we find

c� =
n−1∑
i=|�|

(−1)i+n+|�|Ci−|�|
n−|�| = (−1)n

n−1−|�|∑
j=0

(−1)jCj
n−|�|

= (−1)n


n−|�|∑

j=0

(−1)jCj
n−|�| − (−1)n−|�|


= −(−1)n(−1)n−|�| = −(−1)|�|,

and so, the respective coefficients are equal.
2c. We have−∑�∈A(n)\{1} (−1)|�|f (x + �(y − x)) timesg(x) on the left in (4.2). In the

respective coefficient in (4.4)	 �= 1 can assume any value	�� for � ∈ A(n)\{1}, i.e.,
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	 ∈ A(n)\{1}, and so, this coefficient is of the form∑�∈A(n)\{1} c�f (x + �(y − x)).
The multiindex� ∈ A(n)\{1} corresponds to those� ∈ A(n)\{1}, for which ���.
So, if 0����, � �= 0 andi =|�|, then 1� i� |�|. Since (again cf. (3.4)) #{� ∈ A(n) |
���, |�| = i} = Ci|�|, from the third term in (4.4) and the binomial formula we get

c� =
|�|∑
i=1

(−1)i+|�|Ci|�| = (−1)|�|

 |�|∑

i=0

(−1)iCi|�| − 1


= −(−1)|�|.

2d. The remaining term on the left in (4.2) is the sum over all� ∈ A(n)\{1} of terms of
the form(−1)|�|f (x + �(y − x))g(x + �(y − x)). We will show that it is equal to the
fourth term in (4.4). It is easily seen that the fourth term in (4.4) can be rewritten in the
form ∑

�,
∈A(n)\{1},
��

c�
f (x + �(y − x))g(x + 
(y − x)).

Let us fix �, 
 ∈ A(n)\{1}, 
��, and evaluatec�
. For this, we note that the term
f (x + �(y − x))g(x + 
(y − x)) is contained in the fourth term of (4.4) for those
� ∈ A(n)\{1}, for which 
����. Since fori = |�| we have|
|� i� |�| and #{� ∈
A(n) | 
����, |�| = i} = C

i−|
|
|�|−|
|, from the fourth term in (4.4) we find

c�
 =
|�|∑

i=|
|
(−1)i+|�|+|
|Ci−|
|

|�|−|
| = (−1)|�|
|�|−|
|∑
j=0

(−1)jCj

|�|−|
|

=
{

(−1)|�| if |
| = |�| or, equivalently, 
 = �,
(−1)|�|(1− 1)|�|−|
| = 0 if |
| < |�| or, equivalently, 
 �= �.

Thus, the proof of (4.2) is complete.
3. In order to establish the equality in Lemma, let us rewrite the mixed differences

mdn−|�|(· · ·) and md|�|(· · ·) on the right from (4.2) in accordance with Lemma 7. Set-
ting�=1−� and replacingxby x +�(y −x) in Lemma 7 and noting that|�|=n−|�|
and

I
x+�(y−x)+(1−�)(y−x−�(y−x))

a+(1−�)(x+�(y−x)−a)
= I

y

a+(1−�)(x−a)
,

we have

mdn−|�|(f
x+�(y−x)

1−� , I
y

x+�(y−x)
�(1− �))

= (−1)n−|�| ∑
1−����1

(−1)|�| md|�|(f a
� , I

y

a+(1−�)(x−a)
��),

and similarly,

md|�|(gx
� , I

y
x ��) = (−1)|�| ∑

����1

(−1)|�| md|�|(ga
�, I

x+�(y−x)

a+�(x−a)
��).

It remains to substitute these expressions into (4.2) and apply Lemma 8.�
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Remark 10. LetNn be the number of terms on the right in the equality in Lemma 9. Since

#(A(n)\{1}) = 2n − 2, #{� ∈ A(n) | ��1− �, |�| = i} = C
i−(n−|�|)
n−(n−|�|) for n − |�|� i�n

and #{� ∈ A(n) | ���, |�| = i} = C
i−|�|
n−|�| for |�|� i�n, we have:

Nn = 2+ (2n − 2)


 n∑

i=n−|�|
C

i−(n−|�|)
n−(n−|�|)




 n∑

i=|�|
C

i−|�|
n−|�|


= 2+ (2n − 2)2|�|2n−|�|,

or Nn = (2n − 1)2 + 1. In particular,N1 = 2, N2 = 10,N3 = 50,N4 = 226,N5 = 962,
N6 = 3970. Ifn = 1, the equality in Lemma 9 is well known:

md1(fg, I
y
x ) = (fg)(x) − (fg)(y) = (f (x) − f (y))g(x) + f (y)(g(x) − g(y))

and it implies the second inequality in (1.2); forn = 2 it is explicitly written in[10] (proof
of Theorem 1). We have found the equality in Lemma 9 by studying the casesn = 2 and 3
(obviously, the casen = 1 gives nothing).

Now we are in a position to prove the fundamental estimate in Theorem 2.

Proof of Theorem 2. 1. In the first step we will prove estimate (2.6) for� = 1:

Vn(fg, I b
a )�

∑
0��,��1,

�+��1

2|�|+|�|−nV|�|(f a
� , I b

a ��)V|�|(ga
�, I b

a ��). (4.5)

LetP = {x[�]}��=0 be an arbitrary partition ofI
b
a , so that� ∈ Nn, x[0] = a, x[�] = b and

x[� − 1] < x[�] for all � ∈ Nn, ���. Settingx = x[� − 1] andy = x[�] in Lemma 9,
taking the absolute values, summing over all 1���� and applying (2.5) and (3.5), we find

∑
1����

|mdn(fg, I
x[�]
x[�−1])|

�
∑

1����

|mdn(f, I
x[�]
x[�−1])| · |g(x[� − 1])|

+
∑

1����

|f (x[�])| · |mdn(g, I
x[�]
x[�−1])|

+
∑

1����

∑
�∈A(n)\{1}


 ∑
1−����1

|md|�|(f a
� , I

x[�]
a+(1−�)(x[�−1]−a)

��)|


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×

 ∑

����1

|md|�|(ga
�, I

x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

��)|



�Vn(f, I b
a )‖g‖ + ‖f ‖Vn(g, I b

a )

+
∑

�∈A(n)\{1}

∑
1−����1

∑
����1

∑
1����

|md|�|(f a
� , I

x[�]
a+(1−�)(x[�−1]−a)

��)|

× |md|�|(ga
�, I

x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

��)|. (4.6)

Letusestimate the term|md|�|(· · ·)| in (4.6).SinceI x+�(y−x)

a+�(x−a)
⊂ I

b+�(y−b)

a+�(x−a)
fora�x < y�b,

we have

I
x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

⊂ I
b+�(x[�]−b)

a+�(x[�−1]−a)

and so, the definition ofV|�| and the monotonicity ofV|�| imply

|md|�|(ga
�, I

x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

��)|�V|�|(ga
�, I

x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

��)

�V|�|(ga
�, I

b+�(x[�]−b)

a+�(x[�−1]−a)
��).

As
⋃

��� I
b+�(x[�]−b)

a+�(x[�−1]−a)
=I b

a is the union of nonoverlapping rectangles (here the union over
��� being understood in the sense that it is taken only over those�i , 1��i ��i , for which
�i = 1), the additivity property ofV|�| yields:∑

���
|md|�|(ga

�, I
x[�−1]+�(x[�]−x[�−1])
a+�(x[�−1]−a)

��)|�
∑
���

V|�|(ga
�, I

b+�(x[�]−b)

a+�(x[�−1]−a)
��)

= V|�|(ga
�, I b

a ��). (4.7)

Asimilarestimateholds for|md|�|(· · ·)| from(4.6):weset�=1−�, note thatI y

a+(1−�)(x−a)
⊂

I
b+(1−�)(y−b)

a+(1−�)(x−a)
for a�x < y�b and, therefore,

I
x[�]
a+(1−�)(x[�−1]−a)

⊂ I
b+�(x[�]−b)

a+�(x[�−1]−a)
and

⋃
���

I
b+�(x[�]−b)

a+�(x[�−1]−a)
= I b

a

and arguing as above we find

|md|�|(f a
� , I

x[�]
a+(1−�)(x[�−1]−a)

��)|�V|�|(f a
� , I

b+�(x[�]−b)

a+�(x[�−1]−a)
��),

which after summing over 1���������� gives∑
���

|md|�|(f a
� , I

x[�]
a+(1−�)(x[�−1]−a)

��)|�V|�|(f a
� , I b

a ��). (4.8)



574 V.V. Chistyakov / Nonlinear Analysis 62 (2005) 559–578

Taking into account that
∑

1���� =∑
���

∑
���, from (4.6)–(4.8) we have:∑

1����

|mdn(fg, I
x[�]
x[�−1])|

�Vn(f, I b
a )‖g‖ + ‖f ‖Vn(g, I b

a )

+
∑

�∈A(n)\{1}

∑
1−����1

∑
����1

V|�|(f a
� , I b

a ��)V|�|(ga
�, I b

a ��).

Since we have setV0(f a
0 , I b

a �0) = |f (a)| (cf. the text preceding Theorem 2), by (2.4) and
(2.5) we have

‖f ‖ = |f (a)| +
∑

�∈A(n)

V|�|(f a
� , I b

a ��) =
∑

�∈A0(n)

V|�|(f a
� , I b

a ��) (4.9)

and so, taking the supremum over all partitionsP of I b
a in the last estimate, we get:

Vn(fg, I b
a )�

∑
�∈A0(n)

∑
1−����1

∑
����1

V|�|(f a
� , I b

a ��)V|�|(ga
�, I b

a ��) (4.10)

=
∑

�,�∈A0(n),�+��1

c��V|�|(f a
� , I b

a ��)V|�|(ga
�, I b

a ��). (4.11)

Given�, � ∈ A0(n) with � + ��1, let us evaluate the numberc��. To such� and� there
correspond� ∈ A0(n) from (4.10) such that 1− �����. Supposingn − |�| = |1 −
�|� i� |�| and noting that (cf. (3.4))

#{� ∈ A0(n) | 1− �����, |�| = i} = C
i−(n−|�|)
|�|−(n−|�|),

we find from (4.10) and the binomial formula

c�� =
|�|∑

i=n−|�|
C

i−(n−|�|)
|�|−(n−|�|) =

|�|−(n−|�|)∑
j=0

C
j

|�|−(n−|�|) = 2|�|+|�|−n.

Now, inequality (4.5) follows immediately from (4.11).
2. In order to prove (2.6), we will apply inequality (4.5). Let us fix� ∈ A(n) and note

that(fg)a� = f a
� ga

� ; in fact, giveny ∈ I b
a , by virtue of (2.3) we have:

(fg)a� (y��) = (fg)(a + �(y − a)) = f (a + �(y − a))g(a + �(y − a))

= f a
� (y��)ga

� (y��) = (f a
� ga

� )(y��).
Replacing 1= 1n by 1�� in (4.5), so that|1��| = |�|, we get:

V|�|((fg)a� , I
b
a ��)

= V|1��|(f a
� ga

� , I
b��
a�� )

�
∑

�′,�′∈A0(|�|),
�′+�′ �1��

2|�′|+|�′|−|1��| V|�′|((f a
� )

a��
�′ , (I

b��
a�� )��′)V|�′|((ga

� )
a��
�′ , (I

b��
a�� )��′).
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We employ the observation from the proof of Lemma 5: given�′,�′ ∈ A0(|�|), there exists
a unique pair(�,�) ∈ A0(n) ×A0(n) such that���, ���, �′ = ���, �′ = ���, |�| = |�′|
and|�| = |�′|; moreover, condition�′ + �′ �1�� implies� + ���. Let us show that

V|�′|((f a
� )

a��
�′ , (I

b��
a�� )��′) = V|�|(f a

� , I b
a ��). (4.12)

Taking into account the equality(x��)�(���) = x�� for any x ∈ Rn (since���) and
definition (2.3) we find

(I
b��
a�� )��′ = (I

b��
a�� )�(���) = I

(b��)�(���)
(a��)�(���) = I

b��
a�� = I b

a ��

and ify ∈ I b
a ,

(f a
� )

a��
�′ (y��) = (f a

� )
a��
���((y��)�(���)) = f a

� (a�� + (���)(y�� − a��))
= f a

� ([a + �(y − a)]��) = f (a + �(a + �(y − a) − a))

= f (a + �(y − a)) = f a
� (y��)

and so,(f a
� )

a��
�′ =f a

� . In this way, we have proved (4.12) and, along with it, inequality (2.6)
as well. �

Proof of Theorem 1. 1.Onecaneasily check thatBV(I b
a ; R) is a linear spaceand the func-

tional (2.5) is a normon it (the property ‘‖f ‖=0 impliesf =0’ is a consequence of (2.5) and
(3.5)). In order to prove the completeness, let{fj }∞j=1 be a Cauchy sequence in BV(I b

a ; R),
i.e.,‖fj −fk‖ → 0 asj, k → ∞. Then, by (2.5) and (3.5),{fj (x)}∞j=1 is aCauchy sequence

in R for all x ∈ I b
a , and so, there exists a functionf : I b

a → R such thatfj (x) → f (x)

asj → ∞ for all x ∈ I b
a . From inequality|TV(fj , I

b
a ) − TV(fk, I

b
a )|�TV(fj − fk, I

b
a )

and the lower semicontinuity of TVwe find TV(f, I b
a )� lim inf j→∞ TV(fj , I

b
a ) < ∞, i.e.,

f ∈ BV(I b
a ; R). Again, by the lower semicontinuity of TV,

TV(fj − f, Ib
a )� lim inf

k→∞ TV(fj − fk, I
b
a )� lim

k→∞ ‖fj − fk‖, k ∈ N

and the Cauchy property of{fj }∞j=1 implies

lim sup
j→∞

TV(fj − f, Ib
a )� lim

j→∞ lim
k→∞ ‖fj − fk‖ = 0

so that‖fj − f ‖ → 0 asj → ∞.
2. In order to prove the inequality in Theorem, given� ∈ A0(n), we setB(�)={(�,�) ∈

A0(n)×A0(n) | ���,���, �+���} and note that⋃�∈A0(n) B(�)=A0(n)×A0(n) ≡
A0(n)2 andB(�′) ∩ B(�′′) = ∅ if �′ �= �′′. In fact, if (�,�) ∈ A0(n)2, then(�,�) ∈ B(�)
with �=max{�,�}=�+�−��.Also, if (�,�) ∈ B(�′)∩B(�′′), thenmax{�,�}� min{�′, �′′}
and� + �� max{�′, �′′}, whence�′ = �′′.
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Settingv�(f ) = V|�|(f a
� , I b

a ��) for � ∈ A0(n) andf ∈ BV(I b
a ; R) and applying (4.9)

and (2.6) (which trivially holds also for� = 0) and the remarks above, we get:

‖fg‖ =
∑

�∈A0(n)

v�(fg)�
∑

�∈A0(n)

∑
(�,�)∈B(�)

2|�|+|�|−|�|v�(f ) v�(g)

�2n
∑

�∈A0(n)

∑
(�,�)∈B(�)

v�(f )v�(g) = 2n
∑

(�,�)∈A0(n)2

v�(f )v�(g)

= 2n


 ∑

�∈A0(n)

v�(f )




 ∑

�∈A0(n)

v�(g)


= 2n‖f ‖ · ‖g‖,

and the proof of Theorem 1 is complete.�

Remark 11. From the theory of Banach algebras one knows that the norm (2.5) can always
be replaced by an equivalent norm?·?on BV(I b

a ; R) such that

?f · g?�?f?·?g?, f, g ∈ BV(I b
a ; R). (4.13)

In fact, givenf ∈ BV(I b
a ; R), letMf : BV(I b

a ; R) → BV(I b
a ; R) be the continuous linear

operator defined byMf (g) = fg and‖Mf ‖ = sup{‖Mf (g)‖ : ‖g‖ = 1} be the operator
norm ofMf . Setting?f?= ‖Mf ‖ and noting thatMfg = Mf ◦ Mg, we get (4.13), and
‖f ‖�?f?�2n‖f ‖ for all f ∈ BV(I b

a ; R).

Remark 12. If h0, h1 ∈ BV(I b
a ; R) and‖h1‖ <1/2n, then, by Banach’s contraction theo-

rem and Corollary 3, there exists a unique functionf ∈ BV(I b
a ; R) such thath1(x)f (x) +

h0(x) = f (x) for all x ∈ I b
a .

GivenN ∈ N, let (RN)I
b
a = (RIb

a )N be the algebra of all functionsf mappingI b
a into

RN , h : I b
a × RN → R be a function ofn + N variables,h = h(x1, . . . , xn, u1, . . . , uN),

and letHh : (RN)I
b
a → RIb

a be thesuperposition operatordefined by

(Hhf )(x) = h(x, f1(x), . . . , fN(x)), x ∈ I b
a , f = (f1, . . . , fN) ∈ (RN)I

b
a .

We endow the Cartesian product

BV(I b
a ; R)N = BV(I b

a ; R) × · · · × BV(I b
a ; R)︸ ︷︷ ︸

N times

with the product norm‖f ‖N =∑N
i=1 ‖fi‖ for f =(f1, . . . , fN) ∈ BV(I b

a ; R)N . Clearly, the
space BV(I b

a ; R)N is a Banach algebra with respect to the componentwise
pointwise operations, and for allf, g ∈ BV(I b

a ; R)N the following inequality holds:
‖f · g‖N �2n‖f ‖N‖g‖N .

Corollary 13. Leth0,h1, . . . , hN ∈ BV(I b
a ; R).Defineh : I b

a ×RN → R byh(x, u1, . . . ,

uN)=h0(x)+∑N
i=1 hi(x)ui , x ∈ I b

a , (u1, . . . , uN) ∈ RN .Then the superposition operator
Hh mapsBV(I b

a ; R)N intoBV(I b
a ; R) and is Lipschitzian.
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5. Some generalizations

Theorem 1 is valid (with the same proof) if we replace the target spaceR in it by any
Banach algebra(U, | · |); the definition of the corresponding space BV(I b

a ; U) is straight-
forward.
More generally, letU, V andW be normed linear spaces over the same fieldR or C

and the norms denoted by the same symbol| · | (which would not lead to ambiguities).
Suppose there exists a bilinear mappingM : U × V → W such that|M(u, v)|� |u| · |v|
for all u ∈ U and v ∈ V. The following generalization of Theorem 1 holds:if f ∈
BV(I b

a ; U) and g ∈ BV(I b
a ; V), then the product functionf · g : I b

a → W defined by
(f ·g)(x)=M(f (x), g(x)), x ∈ I b

a , belongs toBV(I b
a ; W), and the inequality in Theorem

1 holds.
If (U, | · |) and(V, | · |) are normed linear spaces, we denote byL(U; V) the normed

linear space of all linear continuous operators fromU intoV. Denote byUIb
a the space of

all functionsf : I b
a → U mappingI b

a into U. Givenh : I b
a × U → V, thesuperposition

operatorH : UIb
a → VIb

a is defined as in (1.1) withx ∈ I andf ∈ RI replaced byx ∈ I b
a

andf ∈ UIb
a , respectively.

Theorem 14. If U and V are normed linear spaces, h1 ∈ BV(I b
a ; L(U; V)), h0 ∈

BV(I b
a ; V) and h(x, u) = h1(x)u + h0(x), x ∈ I b

a , u ∈ U, then H mapsBV(I b
a ; U)

intoBV(I b
a ; V) and is Lipschitzian.

References

[1] C.R. Adams, J.A. Clarkson, Properties of functionsf (x, y) of bounded variation, Trans. Amer. Math. Soc.
36 (4) (1934) 711–730.

[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,
Clarendon Press, Oxford, 2000.

[3] J. Appell, P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990.
[4] M. Balcerzak, S.A. Belov, V.V. Chistyakov, On Helly’s principle for metric semigroup valued BV mappings

of two real variables, Bull. Austral. Math. Soc. 66 (2) (2002) 245–257.
[5] M. Chaika, D. Waterman, On the invariance of certain classes of functions under composition, Proc. Amer.

Math. Soc. 43 (2) (1974) 345–348.
[6] V.V. Chistyakov, Lipschitzian superposition operators between spaces of functions of bounded generalized

variation with weight, J. Appl. Anal. 6 (2) (2000) 173–186.
[7] V.V. Chistyakov, Generalized variation of mappings with applications to composition operators and

multifunctions, Positivity 5 (4) (2001) 323–358.
[8] V.V. Chistyakov, The algebra of functions of two variables with bounded variation and Lipschitzian

superposition operators (Russian), in: Proceedings of XII-th Baikal International Conference on Methods
of Optimization and Their Application, vol. 6, Irkutsk, Russia, 2001, pp. 53–58.

[9] V.V. Chistyakov, Mappings of generalized variation and composition operators, Dynamical systems, 10. J.
Math. Sci. (N.Y.) 110 (2) (2002) 2455–2466.

[10] V.V.Chistyakov, Superposition operators in the algebra of functions of two variableswith finite total variation,
Monatsh. Math. 137 (2) (2002) 99–114.

[11] V.V. Chistyakov, Functions of several variables of finite variation and superposition operators, in: Real
Analysis Exchange Summer Symposium, Lexington, VA, USA, 2002, pp. 61–66.

[12] V.V. Chistyakov, Selections of bounded variation, J. Appl. Anal. 10 (1) (2004) 1–82.



578 V.V. Chistyakov / Nonlinear Analysis 62 (2005) 559–578

[13] V.V. Chistyakov, Metric semigroups and cones of mappings of finite variation of several variables and
multivalued superposition operators, Dokl. Akad. Nauk 393 (6) (2003) 757–761 (Russian); English
translation: Dokl. Math. Sci. 68(6/2) (2003).

[14] V.V. Chistyakov, A selection principle for mappings of bounded variation of several variables, in: Real
Analysis Exchange Summer Symposium, Opava, Czech Republic, 2003, pp. 217–222.

[15] V.V. Chistyakov, Superposition operators in the algebra of functions of many variables of the class BV
(Russian), in: Proceedings of the 12th Saratov Winter School-Conference on Contemporary Problems of
Functions Theory and Their Applications, Saratov, January 2004, pp. 197–199.

[16] V.V. Chistyakov, O.M. Solycheva, Lipschitzian operators of substitution in the algebra�BV, J. Difference
Equations Appl. 9 (3/4) (2003) 407–416.

[17] J. Ciemnoczołowski, W. Orlicz, Composing functions of bounded�-variation, Proc. Amer. Math. Soc. 96
(3) (1986) 431–436.

[18] J.A. Clarkson, C.R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer.
Math. Soc. 35 (4) (1933) 824–854.

[19] C. Goffman, T. Nishiura, D.Waterman, Homeomorphisms inAnalysis, Math. Surveys and Monographs, vol.
54, American Mathematical Society, Providence, RI, 1997.

[20] G.H. Hardy, On double Fourier series, and especially those which represent the double zeta-function with
real and incommensurable parameters, Quart. J. Math. Oxford 37 (1905) 53–79.

[21] T.H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, NewYork, London, 1963.
[22] D. Idczak, S.Walczak, OnHelly’s theorem for functions of several variables and its applications to variational

problems, Optimization 30 (1994) 331–343.
[23] L.D. Ivanov, Variations of Sets and Functions, Nauka, Moscow, 1975 (Russian).
[24] M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83 (2) (1981) 354–356.
[25] A.S. Leonov, On the total variation for functions of several variables and amultidimensional analog of Helly’s

selection principle, Mat. Zametki 63 (1998) 69–80 (Russian); English translation: Math. Notes 63 (1998)
61–71.

[26] J. Matkowski, Functional equations and Nemytskii operators, Funkcial. Ekvac. 25 (2) (1982) 127–132.
[27] J. Matkowski, On Nemytskii operator, Math. Japon. 33 (1988) 81–86.
[28] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlinear Anal. 30 (2) (1997)

719–726.
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