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Abstract

It is shown that the space of functionsrofeal variables with finite total variation in the sense of
Vitali, Hardy and Krause, defined on a rectangﬂ’ec R", is a Banach algebra under the pointwise
operations and Hildebrandt—Leonov’s norm. This result generalizes the classical case of functions of
bounded Jordan variation on an intervﬁlz [a, b] for n = 1 and a previous result of the author in
[Monatsh. Math. 137(2) (2002) 99-114] fer= 2.
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1. Introduction

The purpose of this paper is to characterize Lipschitzian superposition (Nemytskii) oper-
ators in the space of functions ofeal variables (with arbitrary € N) having finite total
variation in the sense of Vitali, Hardy and Krause as a continuation of the studi&@]in
for n = 2. All main results of this paper have been announcddiril5].
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Let | be a nonempty set (a rectanglel®¥ below), R’ be the algebra of all functions
f : I — R mappingl into the realsR equipped with the usual pointwise operations and
h : I x R — R be a given function. TheuperpositionNemytski operator H = Hj, :
R! — R’ generated by is defined by

Hf(x)=H(f)(x)=h(x, f(x), xel, feR. (1.1)

The functionh is called thegeneratorof H.
If I = 15 = [a, b] is a closed interval ofit, let BV(I; R) be the subset oRR! of all
functionsf of bounded (i.e., finite) Jordan total variation

Vi (f) = s;pZ |f @) = fxicpl,
17 i—1

where the supremum is taken oversalle N and all partitions? = {x;}/"_, of the interval
| (ile.,a=xpg<x1<---<xyu_1<x, = b). Classically, it is known that B¥/; R) is a
Banach algebra with respect to the nojni|| = | f(a)| + Vf(f), f € BV({; R), and
IIf-gll <2/ fIl - llgll for all functionsf andg of bounded variation oh This inequality is
a straightforward consequence of the following two inequalities (80, V111.3.3]):

fls= sup 1f)I<IfI and VI <VEDIgls+If1sV2®). (1.2
x€la,

The Banach algebra property of BY R) implies immediately that if the generatbr:

I x R — Ris given byh(x,u) = h1(x)u + ho(x), x € I, u € R, for some functions

ho, h1 € BV(I; R), then the corresponding superposition operbtonaps BM/; R) into

itself and is Lipschitzian in the sense that there exists a nonnegative coingtaitially,

L = 2]lh1||) such that

IHf1— Hf2ll<Llf1— f2ll (1.3)

for all f1, f € BV(I; R). Of course, property (1.3) with < 1 is closely connected with
the solution of the functional equatigh= H f via the classical Banach contraction theorem.

Conversely, Matkowski and M{29] proved that if the superposition operatbrgener-
ated by a functiork : I x R — R, maps BM/; R) into itself and is Lipschitzian in the
sense of (1.3), then its generatosatisfies the conditiorMatkowsKis representation

h*(x,u) =hi1(x)u + ho(x) for all x € (a,b] andu € R, 1.4

whereh*(x, u) =lim,_,_oh(y, u) is the left regularization offi in the first variable and
functionshg, h1 € BV (I; R) are continuous from the left o, b].

Note that the representation (1.4) is not the case for Lipschitzian superposition operators,
e.g., in the space of continuous functian& ; R) with the supremum norm- |s or in the
spaceL”(I; R) of Lebesgug-summable p > 1) functions onl with the standard norm:
as an example, considéfx, u) = sinu, x € I, u € R. On the other hand, in the case
of functions of one variable (1.4) holds in a large number of functional spaces involving
certain types of bounded variation property as is show8,in9,12,16,26[representation
(1.4) was found if26] in the space of Lipschitz functions d¢)) [27,28]and others; see the
references in these papers.
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In [8,10], the author showed that the Banach algebra property and representation (1.4)
are valid for a certain space of functions of two variables with finite total variation (cf.
also[13] for the case of functions with more general values than the real numbers). It is
the aim of this paper to obtain the Banach algebra property and representation (1.4) for a
space of functions ofi real variables with finite variation when € N is arbitrary (see
Section 2). For this, we establish and make use of exact equalities for mixed differences
and variations in the multiindex notation and exact estimates for them when appropriate
(not at all employing arguments involving induction). We adopt and restrict ourselves to
the definition of bounded variation in the multidimensional case originally due to Vitali,
Hardy and Kraus€{,18,20] [21, Section 111.4] [31,32]), which was redefined by Leonov
[25] to get the notions of total variation and norm (for functions of two variables these two
notions were employed if21, I11.6.3] and[22]). Other definitions of bounded variation for
functions of several variables may be found, e.g[2i23,33,34]

Although the superposition operatdiis well studied in many classical functional spaces
(ideal, Lebesgue, Orlicz, Holder, Sobolev, etc.[8]), little is known about its properties
in spaces of functions of bounded variation even of one variable (except for certain partial
results[3, Section 6.5][5,17,19,24]). So, properties of boundedness, continuity, compact-
ness, local Lipschitz continuity, differentiability, ., of H are yet to be studied, and our
results are the first step into the general theory of superposition operators in a bounded
variation context for functions of several real variables.

The paper is divided into two Parts, | and Il. Part | is organized as follows. In Section
2, we introduce definitions and notations, present our main results (Theorems 1 and 2) and
briefly comment on the main results of Part Il (Theorem 4). Section 3 and the first part
of Section 4 (on mixed differences) are preparatory for the proof of the main results. In
Section 5, we give some generalizations of our results when functions under consideration
have their values in normed linear spaces.

2. Definitions and main results

Let N be the set of positive integers,c N be fixed and\g = {0} U N. The coordinate

representation of a pointe R"” willbe writtenasx=(x; |i € {1,...,n})=(x1, ..., xp).
If y=(1,...,yn) € R",wesaythak =y, x<y,y=>x orx <y (in R*) providedx; = y;,
xi<yi,yizx;orx;<y; foralli € {1,...,n}, respectively, and we set+ y = (x1 +

V1, .o Xn +yp) @ndx —y = (x1 — y1,..., X, — yp). If x<y in R", we define then-
dimensional rectanglg’ (possibly degenerated) with the endpoiidy as the Cartesian
product ofn closed intervals:

n
1 =TTl il = Lxa, yal o x [, ] = {2 € R" [ x <2<y,
i=1

In what followsa, b € R" with a < b are fixed and the rectanglé is the domain of most
functions under consideration, called thesic rectangle

Elements ofNg = (Np)”" are said to benultiindicesand will be denoted, as a rule, by
Greek letters. Fox = (o, ..., o,) € Ny andx € R" we sefja| = oy + - - - + , (the order
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of o) andox = (o1x1, ..., %,x,) € R". The zero multindex = (0, ...,0) € Nj and
the unit multiindex 3 = (1, ..., 1) € NG will be denoted simply by 0 and 1, respectively;
each time the dimension of the zero/unit multiindex will be clear from the context. Setting
Zo(m)={o € Ny | a<1}and.o/ (n)=/o(n)\{0}, we have #7(n)=2" and #/ (n)=2" -1
where #¢ designates the number of elements in the«get

For the sake of brevity we adopt the followirgnvention unless otherwise stated, a
summation over multiindices will be understood orettimensionainultiindices, the range
of the summation being usually specified under the summation sign. For instance, the sum
> vess oy Will be written asy o, < ;.

Let I” be the basic rectangl¢, : I — R andx,y € R", x <y. TheVitali nth mixed
difference of bn the subrectanglg] ¢ 17 is the quantity[32]:

md,(f. )= Y D f@+00—x). (2.1)

0<0<1

For example, ift = 1, we have mg(f, I}) = f(x) — f(y); for n = 2 we find.«Zo(2) =
{(0,0), (1,0), (0, 1), (1, 1)}, and so,

mda(f, I3E92) = f(x1, x2) — f(y1, x2) — f(x1, y2) + (1, ¥2);

and if n = 3, then .«/o(3) = {(0,0,0), (1,0, 0), (0,1,0),(0,0,1), (1,1,0), (1,0, 1),
0,1, 1), (1,1, 1)}, which implies

Mds(f, Iiiiine) = f(x1, X2, x3) — f (1, X2, X3) — f(x1, y2, x3) — f(x1, X2, ¥3)
+ (1, y2, x3)+ f(¥1, x2, y3)+ f(x1, y2, y3)— f (V1. y2. ¥3).

We say that? is a (ne) partition of I{f if there exista multindex=(k1, ..., x,;) € N"and

a collection of points[o] = (x1(01), ..., x,(0y,)) from If indexed byo = (01, ..., 0,) €
N with ¢ <k and satisfyingc[0] = a, x[x] = b andx[oc — 1] < x[¢] in R" for all ¢ € N",
1<o<k,suchthat? ={x[o] | 0 € Nj, o <«} (in other wordsZ is the Cartesian product
of ordinary partitions of intervalgs;, b;],i =1, ..., n). We will denote such a partition by
2 = {x[a]}¥_,. Note thatZ? is the union of nonoverlapping subrectanglg[g’]_ll over all
1<o<k.

TheVitali nth variation [25,32] of f : If — Ris defined by

Va(f, Iy =sup " Imd,(f, L7 ), (2.2)

7 1<o<k

where the supremum is taken over all multiindiges N" and all partitions? = {x[c]}}_,
of 1Y 1f n = 1, Vi(f, 1) is the usual Jordan variatior ().

In order to define the notion of the total variationfafe need the notion of lower order
(less tham) variation off, which is initially due to Hardy and Kraug&8,20,25] Given
o € ./ (n) andx € R", we define thdéruncation of x byx by

xlo=@ilie{l,...,n},0=1) e R™
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and set

b
IfLoc:IaLL[)f: [] [ai, bi].
iE{l,...,n},d,‘=l

Clearly,x|1=x, I?|1=1/,andifx € I?, thenx |« € I”|afor all & € ./ (n). For example,
if x = (x1, x2, x3, x4) anda = (0, 1, 0, 1), we havex |« = (x2, x4) andI? |« = [az, ba] x
[aa, ba].

If f:10 — R,z eI’ anda € /(n), we define theéruncated functiory? : I2|o — R
with the base at as follows:

fixlw = fz+akx —2z), xell. (2.3)

The idea behind this is thgt: depends only of| variablesy; € [a;, b;] (i.e., for which
o; = 1), and the other variables are fixed and equat;tif o; = 0). For example, if
o=(0,1,0,1) andx = (x1, x2, x3, x4), then £ (x2, x4) = fZ(x|o) = f(z1, X2, 23, x4). It
is clear thatf{ = f on 1’ foranyz € I?.

Now, givenf : I? — R ando € /(n), the functionf? : I?|« — R with the base at
z = a depends only oif| variables, and so, making use of the above definition (2.2) (and
(2.1)) withn replaced bya|, f replaced byf¢ and1? replaced byl? | «, we get the notion
of the (Hardy—Krauselx|-variation of f which we denote by, (f4, I%|0).

Thetotal variationof f : 1> — R in the sense of Hildebrang21, 111.6.3] and Leonov
[25] (see alsd10,11) is defined by

TV ID = Y Vig(fd 12 L. (2.4)

0#a<1
For the first three dimensioms= 1, 2, 3 we have, respectively,

TV(f, I’) = VP(f), the usual Jordan total variation,

TV(f. 1)) = VI f (L a2) + VE2(f (a1, ) + Va(f. ID),

TV(f. 1)) = VI f (a2, a)) + VE2(f (a1, - a3)) + VI3 (f (a1, az, )
+ Va(f (o az), 1ZEE2) + Va(f (- a. ). 12109
+ Va(f(a, - ), 12223 + Va(f, I)).

We define thespace of functions of finite total variatidim the sense of Vitali, Hardy and
Krause) as BVIZ; R) = {f : I? — R | TV(f, 1Y) < 0o} and equip it with the norm[21,
111.6.3] if n =2,[25] for all n € N):

IfIl=1f @] +TV(f, I2), feBVULR). (2.5)

It was shown by Hildebrand®1, 11.4.2] (for n = 2) and Leono\25, Corollary 4](for

n e N) that the space BU/; R) above coincides with the set of all functions of finite
variation in the modification of Hardy and Krause (df,18,20). Also, in[21, 111.6.3] (for
n=2) and[25, Corollary 2](for arbitraryn) it was proved that BV/?; R) is a Banach space



564 V.V. Chistyakov / Nonlinear Analysis 62 (2005) 559-578

with the norm (2.5). The two notions (2.4) and (2.5) were effectively uséd, ifheorem
2],[21, 111.6.5], [22, Theorem 3.2{for n = 2),[25, Theorem 4and[14] (if » € N) in order
to obtain a pointwise Helly’s selection principle for functions from @¥: R) (even for
more general values of functions than the real numbers).

The main result of Part | of this paper, to be proved in Section 4, is atheorem, generalizing
Theorem 1 fronj10] for n = 2:

Theorem 1. The spac®V (I7; R) is a Banach algebra with respect to the usual pointwise
operations and norni2.5),and the following inequality holds

If-gll<2"I£1 - ligll,  f. g € BVUIL; R).

This theorem is based on the following fundamental estimate for the variation of any
order of the producfg in terms of appropriate variations tAndg separately (for the sake
of convenience we seéfy(fy', If 10) = |f(a)]):

Theorem 2. If £, g € BV(IL; R) andy € «/(n), then

Vin(f -5 1< Y 2Py (L 1 Vig (e 121D (2.6)
0< o, By,
oat+f>y

As a corollary of Theorem 1 for superposition operators we have:

Corollary 3. If ho, h1 € BV(I2; R) andh(x, u) = hy(x)u + ho(x), x € I?, u € R, then
the superposition operator H generated by h mBp%/2; R) into itself and is Lipschitzian
IHf — Hgll<2"||hall - |f — gl forall f, g € BV(IZ; R).

More corollaries of the main result are presented in Sections 4 and 5.

Now we briefly comment on the main results of Part Il. It turns out that Corollary 3 almost
characterizes Lipschitzian superposition operaltbom the space B¥?; R). Essentially,
this may be stated as follows (see the complete formulation in Part Il, which is to appear in
this journal):

Theorem 4. Let H : R’ — R! be the superposition operator generated by a function
h: 1 xR — Raccording to(1.1)with 7 = I2. If H mapsBV (/%; R) into itself and is
Lipschitzian(in the sense dfL.3)), then there exist two functiors, 21 € BV (I?; R) such
that the Matkowski representation holtlen, . . o 2(y, u)=h1(x)u+ho(x) forall x e If,
x>a,andu € R.

Taking this and Corollary 3 into account we obtain a complete characterization of Lip-
schitzian superposition operators generated by functiowkich are left-continuous as
functionsx — h(x, u).

The above results are extensions of the resulf@9h(for n = 1) and[10] (for n = 2) to
the case of arbitrary € N.
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3. Properties of mixed differences

Two fundamental properties of ma&andV,, are known, namehadditivity, i.e., if Z =
{x[61}%_, is a partition off? and f : I? — R, then

md, (£ 1= 3 md(A ) and V(a1 = S0 Va(f 2T

1<o<k 1<o<k

and gequentigl lower semicontinuityi.e., if a sequence of function$ : I > R jeN,
converges pointwise off to a functionf : I — Ras;j — oo, then

Vo (f, 1LY < lim inf V, (f;, ID)
Jj—o0

Consequently, these two properties are also valid foetlheariationV, for eachx € o7 (n)
(in their formulation one should take into account obvious modifications), and the second
one is valid for the total variation TV.

In order to get more properties of the total variation, we need a number of relations
between mixed differences of all orders. First, let us explicitly calculate the lower order
mixed difference of a functiorf : 1> — R at any base € I°.

Lemmab5. If f: 1) — R x,y eI, x<y,z € I? andx € o/ (n), then

M (f5, L= Y (D f+alx —2) + 0y — x)). (3.1)

0<0<u

In particular, if z = a or z = x, we haverespectively

My (£ 13 L2) = Mo (f5 5 1) L), (3.2)
mdo(fy Bl = > D fx+00-x). (3:3)
0<O<ua

Proof. Toprove (3.1), we observe thatar .«7(]«|) ifand only if there exists a uniqukee
/o(n) such that) <o andn = 0| o, in which caseén| = 0| <|al; infact, if n= (71, ..., )
andi € {1,...,n},weset); =0if o; =0 andb; =1; if o; isthejthunitine, j=1,..., |«|.
Taking into account that

xlo+n(yle—xlo) =xla+ Olo)(yle —x[o) = (x + 0(y — x)) [«
and that, by (2.3),

folx +0(y —x)) o) = fz+alx + 00y —x) —2))
=flz+alx —2)+ (@0)(y — x))
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and since mg(fZ, I3 o) = mdjy (fZ, IxyLL;‘), we have according to (2.1):

mdy (5. Bl = > (=DM fEerla+n(yle—x()
ne/o(loh)

= > DU e+t -2+ 0 —x),

0<O<u

where we have used the fact thdt= 0 if and only if 0 <.

Equality (3.3) is a consequence of (3.1) with: x.

Now, (3.2) follows from (3.1) and (3.3): in fact, setting= a + a(x — a) we find for
0<a(i.e.,0u=0)thatd(y — x") =0(y — x) and

mdy (ff. = Y Dfa'+00 —x)=mdy(fy I, O

0<O<a

The next lemma is a variant of Theorem 2 (and remark following it) f{a&j written in
different (and easier) notation and provided with an easier proof.

Lemma 6. Givenf : If - R,x,ye If, x <y,andy € /(n), we have

fa+90 =)= f@= Y )" mdy(fy, I7'19).

O#a<y

Proof. As it is seen from (3.3), the right-hand side of the equality can be written as the
sum of terms of the formg f (x + f(y — x)) over all multiindices$ € Ng with <. Let

us calculate the factoks; for all 0< <. By (3.3), the valug—1)# £ (x + B(y — x)) is
contained in the mixed difference md f;, I ) for eacho € .7 (n) with f<a<y. So,

if o € o(n), f<a<yandi = |a|, then maxdl, |f|} <i <]y, and since (as usual we set
0r=1)

m!

#oe o) | p<a<y o =it =C M wherec], = T

then taking into account the right-hand side of the equality in lemma we get

, (3.4)

7] )
= Y, A
i=max1,|fl}
Applying the binomial formula we findp = —1,c; =0if 0 <|f| < |yl andc, = 1. [

As a consequence of Lemma 6 and definition (2.4), we get the following Leonov’s in-
equality[25, Corollary 5]

If) = FOISTV(L L), feBVULR), x,yell, x<y. (3.5)

Since the total variation (2.4) is defined via truncated functions with the bazewedt
need a formula (if it existy expressing md, (f5, I1 |«) by means of mixed differences of
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functionsfg for somepf € .o/ (n). Fortunately, such a formula, of fundamental importance
for the whole subsequent material, can be given as follows:

Lemma 7. If f:I” - R,x, y € I’, x <y, anda € .o/(n)\{1}, then

md(f5, 17100 = (=D >~ () md g (5, 11070 1B, (3.6)

a<p<1

Proof. We will compare the right-hand sides of equalities (3.6) and (3.3). Applying (3.1) to

md g (ff. Iji;‘(g’:j)) |B) and noting that = « for >« we get the following expression

for the right-hand side of (3.6):

DT D YT ()M f @t (o —om) (x—a)+(om) (y—x)).  (3.7)

2<p< 0<n<p

Since 1€ {f € /(n) | f=a}, (3.7) can be written as the sum over @l .o7o(n) of
terms of the formey; f (@ + (¢ + 7 — o) (x — a) + () (y — x)). In order to calculate
constants;, we note that if the above term is contained in (3.7), then there gxastd
n satisfyinga < <1 and 0<n < such thate + n — o = o + i — oy and oy = ofj,
whencen =17. So, in the rest of the proof we writgin place of; and calculate,,. We set
w=maxa, n} = (maxX{o;, n;} | i € {1,...,n}), sothat K |u|<n. Since for|u| <i<n
we have (cf. also (3.4))

#Hpe o)) p2a p=n, |fl=i)=#p eS| p>uIfl=i)=C,

it follows from (3.7) that

n n—|p|
( i ~i—lul Pall
ey = (_1)|1|+|11| Z (_1)1Cn—\/1| — (_1)|0€\+|11|+|H| Z (—1)/ Ci—l/l\
i=|ul Jj=0

(=1l if |l =n,
z{(—nm+mﬂﬂa—1wﬂmzo it |l <n. (3.8)
Let us show thalu| = n if and only if = max{«, n} = 1 if and only if there exists a unique

0 € o/p(n) such thatf <o andn=1—a+ 0. (3.9)

Infact, given0<a,n=1—oa+0andi € {1, ..., n}, we have: if;; =1, theny;, =1, and if
o; =0, thend; =0, and soy; =#; = 1. Conversely, condition méx, 1} = 1 implieso; =1
orn; =1, sothat; +#n; >1foralli € {1,...,n}, and it sufficesto sét=o +n — 1.

Now, letf € Zo(n), 0< o (cf. (3.3)). Setting;j=1— o + 6, by (3.9) and (3.8), we have:
Il =n — |a| + 10|, |l = n, o =0, 4+ — ooy = 1 ande, = (- 1)!’!, and so,

enfla+ @+n—anx—a)+ @y —x)) =D+ 00 - x)).

As it is seen now from (3.9) and (3.8), = 0 in the other cases.[]
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4. Banach algebra BI2; R)

As the first step in the proof that BY?; R) is a Banach algebra, in the next lemma we
show that thenth mixed difference of the produgtg of two functionsf andg can be split
into the sum of certain products with factors dependind @amdg separately.

Lemma 8. If f, g : If — Randx, y € If,x <y, then

md, (fg, Iz) = md, (f, I})g(x) + f(y)Md, (g, 1)

+ Y D+ 0 —x) - ()]
Oeof (n)\{1}

x [g(x +0(y —x)) — g(x0)].
Proof. Taking into account definition (2.1), we have:

mdy(fg. 1= Y (=D fx+ 00y —x))g(x +0(y — x))

0<0<1
=md,(f, I;)g(x) + (=" fFMIg() — gx)]

+ Y DG+ 00— x))glx + 0y — x)) — g(x)].
e/ (m\{1}

Noting that, according to the binomial formula,

n—1 n
Y. U= D6 =1+ (Z (—1>"C:;> - (D"

Oe.of (n)\{1} i=1 i=0
= —1-(-D", 4.1)

we get
Yoo D 0y — ) —g@l= Y (—Dgx+ 00y — 1))
Oe.of (n)\{1} Oe.o/ (n)\{1}
+g@) + (=D"g(x)
=md,(g. ) — (=D"[g(y) — g(x)].

Writing out the expression far-1)"[g(y) — g(x)] and substituting it into the above equality
we obtain the desired equality[]

Actually, the mixed difference md fg, 1) can be developed as the sum of products of
certain mixed differences dfandg separately.
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Lemma. If f,g: 1> — Randx,y e I/, x <y, then
md, (fg. I{) = md, (f. [7)g(x) + f(y)md,(g. I)

+=Dn Yy { > (—1)'“mdm(f;’,I,;‘;(l_o)(x_a)w)}

Oe/ M\{1} |1-0<a<

x { > D mdg (e 150 Lﬁ)} -

0<p<1

Proof. We first show that the following equality holds:

Yo EDOF G+ 00 — X)) = FOILg(x + 0y — X)) — g(x)]
e (n)\{1}
= Y M4 g LA — )My (s} E10). (4.2)
Oeof/ (m\{1}

It will be proved in two steps, and for the sake of clarity the right-hand side of this equality
will be written with 0 replaced by;:

o mdy (ST LA = )My (83 1 L. (4.3)
neo/ (m\{1}

1. We transform the sum (4.3) by applying equality (3.3) to the mixed differences, noting
that0(1 — n) = 0 for <1 — 5 and changing the summation index in the third sum
below:

md, (ST o LA =)
= Y Do —x)+ 00y —x —n(y — 0D

0<0<1—n

= Y D a+m+00-x)

0<0<1—n

=" {(—D”f(y) + Y D e+ A - x>)}

N<ASLA#L
and also,

mdy gy, Bl =gx) + Y (=DMg(x + pu(y — x))
O#u<n
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and so, (4.3) is equal to

{ > (—1)’7'*”} (g

neo/ (m\{1}

+f(y){ > (=ph (—1)'“g(x+u(y—x))}

nes/ (m\(1) 0£u<n

{ Yooy (—1)')"f(X+?»(y—X))} g(x)

nes/ (m\{1) N<A<LA#L

+ ) <—1)"7[ > (—1)')"f(x+?»(y—X))}

nes/ (m)\{1} n<A<LA#L

x [ Y DM+ puy - x))} : (4.4)

O0#u<n
2. In steps 2a—2d we compare the respective coefficients (in square brackets) in (4.4) and
the expression on the left in (4.2) and show that they are equal.
2a. The factor byf (y)g(x) on the leftin (4.2) is, by virtue of (4.1), equal Egemn)\{l}
(—1)'9‘ =—1-(—1)". The respective coefficient in (4.4) is

DG L C N W G WU C M E B C b
nes/ (m\{1} nes (m\{1}
= —(-1)" -1

2b. The value-Y"5c .y (—D'"'g(x + 0(y — x)) is the factor byf (y) on the left in
(4.2). In the respective coefficient in (4.4)# 0 can assume any valye<r for n €
o/ (n)\{1},i.e.,u € o7/ (n)\{1},and so, this coefficientis oftheforE?@/(n)\{l} cyg(x+
7(y — x)). In order to calculate,, we fixy € .o/(n)\{1} and note thap corresponds
to thosen € o7/(n)\{1}, for whichn>y. So, if y<n<1,n # 1 andi = ||, then
[7I<i<n—1.Since (cf. (3.4)# € oA (n) | y<n, In|=i}= C;:'{;", from the second
term in (4.4) and the binomial formula we find

1 n-1-1y|
=3 CVTHIC T =1t 3 —hic)y,
i=0

i=[yl

n—|yl )
=)' Y D6~ G = (=" (=) = (=l
j=0
and so, the respective coefficients are equal.

2c. We have-3"gc o) (=)' £(x + 6(y — x)) timesg(x) on the leftin (4.2). In the
respective coefficientin (4.4)# 1 can assume any valuezn for n € .o/ (n)\{1}, i.e.,
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A € o/ (n)\{1}, and so, this coefficient is of the forﬁ.’,emm\{l} oy f(x +7(y —x)).
The multiindexy € .o/ (n)\{1} corresponds to thosg € ./ (n)\{1}, for which n<y.
So, if 0 <y, n # 0andi = 5|, then 1<i <|y|. Since (again cf. (3.4)){# € ./ (n) |
n<y, nl =i} = Cliyl’ from the third term in (4.4) and the binomial formula we get

71 171
o= (=D*ch =" Y i) -1 =—(=D".
i=1 i=0
The remaining term on the left in (4.2) is the sum ovefal ./ (n)\{1} of terms of
the form(—l)‘()'f(x +0(y — x))g(x + 0(y — x)). We will show that it is equal to the
fourth termin (4.4). Itis easily seen that the fourth term in (4.4) can be rewritten in the
form

> Cpof (x +7(y = 1)gx + 5(y — x)).
7,06/ (M\{1},0<y
Let us fixy, 6 € «/(n)\{1}, 6<y, and evaluate, ;. For this, we note that the term
fx + 790 —x))g(x + d(y — x)) is contained in the fourth term of (4.4) for those
n € o/ (n)\{1}, for which 6 <5 <y. Since fori = || we have|d|<i<|y| and #{n €
)| o<n<y, Inl=i}= C'=1L from the fourth term in (4.4) we find

71-1o1"
1 . 171161 _
_ )i+ 13 3yl i
o= ) (=D Ciplio =DM X0 DTy
i=|0| j=0
[ = ) if |6] = |y| or, equivalently =1,
Tl =oPla— =Pl =0 if 18] <|y| or, equivalently & s .

Thus, the proof of (4.2) is complete.

. In order to establish the equality in Lemma, let us rewrite the mixed differences

md,_g,(- - -) and mdp, (- - -) on the right from (4.2) in accordance with Lemma 7. Set-
tinga=1— 0 and replacingby x 4+ 0(y — x) in Lemma 7 and noting tha&| =n — |0|
and

IX+9(,V*X)+(1*9)(yﬂc*@(y*x)) 7
a+(1-0)(x+0(y—x)—a) — Ta+(1-0)(x—a)’

we have
FO0—x) 1y
md,0/(f1p " Ly L= 0)
= (_1)n_|0| Z (_1)|Ot| md\%|(fo(a’ I;«I»(lff))(xf(l) ch)a
1-0<a<1
and similarly,

mdy (g5 1310) = (=D 3" (=P mdyg g5, LTI 1B
0<p<1

It remains to substitute these expressions into (4.2) and apply Lemnia 8.
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Remark 10. Let N, be the number of terms on the right in the equality in Lemma 9. Since

HA M\ =2" -2, #{o € A(n) | a=1—0,|a| =i} =C._ (('f, ‘\%P) forn —0|<i<n

and#{fie Z/(n) | f=0,|fl=i}= Criz:llgl for |0| <i <n, we have:

Nn=2+2" - ( > G- |00||)>) (Z G, 'fé) =2+ (2" — 22210,

i=n—|0| i=|0|

or N, = (2" — 1)% + 1. In particular,N1 = 2, N» = 10, N3 = 50, N4 = 226, N5 = 962,
Ng = 3970. Ifn = 1, the equality in Lemma 9 is well known:

mdi(fg, Ii) = (fe)(x) — (f)(y) = (f(x) — F())gx) + f(M(gx) — g()

and it implies the second inequality in (1.2); foe= 2 it is explicitly written in[10] (proof
of Theorem 1). We have found the equality in Lemma 9 by studying the easesand 3
(obviously, the case = 1 gives nothing).

Now we are in a position to prove the fundamental estimate in Theorem 2.
Proof of Theorem 2. 1. In the first step we will prove estimate (2.6) foe 1:
Va(fe, 1< Y0 2Py (i 1o Vig (g, 121 (4.5)

0<a, <,
at+f>1

Let 7 = {x[c]};_, be an arbitrary partition ot(f, so thatx € N, x[0] = a, x[x] = b and
x[oc — 1] <x[o] for all ¢ € N", 6 <k. Settingx = x[o¢ — 1] andy = x[o] in Lemma 9,
taking the absolute values, summing over afl¢ < x and applying (2.5) and (3.5), we find

> imd.(fe. )

1<o<k

< > Imdy(f L) Ig(xlo — 1)
1<o<k
+ Y If&loD] - Imdy(g. )
1<o<k

+ ) [ > ML L e a)“‘”}

1<o<k e/ {1} | 1-0<a<1
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x[o—1]+0(x[6]—x[o—1])
X Z |md\ﬁ|(g[3’ a+0(x[o—1]—a) Lﬁ)'
0<p<L

<Vulf IDgl + 11 £ V(g 12)

+ Z Z Z Z My (fy» I;—E-O;]l—(?)(x[a—l]—a) L]

Oco/ (n)\{1} 1-0<a<l 0<P<LL1<0<K

[o—1]+0(x[o]—x[c—1])
x Mg (8 1\ eatnaray LA (4.6)

Letus estimate the terfmdg (- - -)| in (4.6). Sincd;:gg__;; cC I;’:gg:f)) fora<x <y<b,
we have

b+0(x[a]—-b)

Ix[071]+0(x[0]7x[0 1))
a+0(x[o—1]—a)

a+0(x[c—1]—a) cl

and so, the definition of|5 and the monotonicity oV, imply

x[a 1]4+-0(x[6]—x[o—1]) x[o— l+9(x[a x[o—1])
|md|/3|(gﬁ, a+0(x[o—1]—a) Lﬂ)|<Wﬁ|(gﬁ, a+0(x[o—1]— LA)

b+9(x[0'] b)
<V\ﬁ|(g/3’ a+0(x[o—1] a)l-ﬂ)

As an I:ig((;‘[[g] 1]) 2 = I” is the union of nonoverlapping rectangles (here the union over
o]0 being understood in the sense that it is taken only over thgsk< ¢; < k;, for which

0; = 1), the additivity property o¥|s yields:

J¥lo—L+0(x[o1-x[o-1) b+0la1-b)
Z |md|.3\(g[5’ a+0(x[o—1]—a) Lﬁ)|< Z V|.B\(g/f a+0(x[o—1]—a) Lﬁ)

al0 all
b
= Vip(g§ 121P). 4.7
Asimilar estimate holds fgmd (- - -)| from (4.6): we seff=1—0, note that'” (-0 r—ay) C
b+(1—0)(y—b
Iai((l—()))((j—a)) for a <x < y <b and, therefore,
x[o] b+0(x[c]—b) b+9(x [61-b) b
Ia+(179)(xl071Jfa) [a+§(x[a 1]—a) and u a+0(x[6—1]—a) =1,
[ald
and arguing as above we find
b+6(x[a] b)
Imd (£ 1, a+<1 0)xlo—11-ay OIS Vil (F5 a+0(x[o—1]—a) L2,
which after summing over|D <o |0< k|0 gives
b
Y imdig (£ I ) ot LN S Vi (5 12190, (4.8)

al0
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Taking into account tha; ;<. = )59 2_, 5, from (4.6)—(4.8) we have:

> imd(fe. )

1<o<k

<Vulfs IDlIgl + 11 £V (g, 1D)

+ Y XY Ve Vi) 1L

feo/ (M\{1} 1-0<a<L < P<

Since we have séty( fy', 1210) = | f(a)| (cf. the text preceding Theorem 2), by (2.4) and
(2.5) we have

Ifl=1f@l+ > Vig(ff = > Vig(fi 1212 (4.9)

oo/ (n) oe.o/o(n)

and so, taking the supremum over all partitichef I{f in the last estimate, we get:

Valfe ID< Y D Y ViU I Vig (e 121D (4.10)

Oecton) 1-0<a<1 0<p<L

- > CapVil (f5+ 12 L) Vi (g5 1g LB). (4.11)

o, fedon),a+p>1

Givena, 8 € o/o(n) with a + > 1, let us evaluate the numbeyg. To suchx andf there
correspond) € .«Zp(n) from (4.10) such that + o« <0< f. Supposing: — |o| = |1 —
o| <i<|f| and noting that (cf. (3.4))

#0 € o) | 1—a<O<B, 0] =i} =], "1

|Bl=(n—al)’
we find from (4.10) and the binomial formula
[ _ IBl—(n=lal) ;
B i—(n—lo)) J — olo|+|fl—n
Capp = Z Clﬁ\—(n—lot\) - Z Clﬁ\—(n—la\) =2 '
i=n—|al j=0

Now, inequality (4.5) follows immediately from (4.11).
2. In order to prove (2.6), we will apply inequality (4.5). Let us fix .</(n) and note
that(fg)5 = ffg{; in fact, giveny e 12, by virtue of (2.3) we have:

([0 =(fe)a+y(y —a) = fla+y(y —a)gla+y(y —a))
= OWg G = (e L.
Replacing 1= 1, by 1]y in (4.5), so that1]y| = |y|, we get:
Vi (£ 1217)
= Vi (85 L)

<Y 2R (s UL Vig (8 DL

o festo(ly).
o +B =1y
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We employ the observation from the proof of Lemma 5: giver’ € .«7o(|y|), there exists
a unique paiXe, f) € .«Zo(n) x .oZo(n) such thate<y, <y, o =aly, f =By, loal = |o/|
and|f| = | f|; moreover, condition’ + 8 > 1|y impliesa + B> 7. Let us show that

Vi (57 Uyt 1) = Vi (fi 12190, (4.12)

Taking into account the equalitix|y)|(x]y) = x|« for any x € R" (sincea<y) and
definition (2.3) we find

bly bly By L)) bl b
UL = U L@l = Loy = Lo = oL

andify e 12,

(FO3F L) = (FOSI G L) = fialy + @Gl — aly)
=fila+aly —a)lly) = fla+y(a+aly —a) —a))
=fla+aly —a) = f;(lo)

and so,(f;’)“w . In this way, we have proved (4.12) and, along with it, inequality (2.6)

o T
aswell. O

Proof of Theorem 1. 1. One can easily check that axg; R) is alinear space and the func-
tional (2.5) isanormonit (the property f || =0 implies f =0’is a consequence of (2.5) and
(3.5)). In order to prove the completeness{b@t}ﬁl be a Cauchy sequence in BY; R),

i.e, |l fj— fkll = 0Oasj, k — oo.Then, by (2.5) and (3.5{)fj(x)};‘;l isa Cauchy sequence

in R for all x € I, and so, there exists a functigh: 12 — R such thatf;(x) — f(x)
asj — oo forall x e 1. From inequality TV (f;, I2) — TV (fx, IDISTV(fj — fi, 10)
and the lower semicontinuity of TV we find T, 12) <lim inf ;.o TV (f}, 1) < 0, i.€.,
f € BV(I?; R). Again, by the lower semicontinuity of TV,

TV(f; — £ ID<liminf TV(f; = fi, IH< Iim |1fj — fil. ke N
k— 00 k— 00

and the Cauchy property t{)fj}j?o , implies

lim sup TV (fj — £, 1)< lim lim | fj — fil| =0
j—00 k—o00

j—o00

sothat| f; — f|| - 0 asj — oo.

2. In order to prove the inequality in Theorem, givea «7o(n), we set#(y) ={(a, f) €
o(n)x.Zon) | a<y, f<y, o+ >y} and note th@yey/o(n) AB(y)=.Ao(n)x o) =
Lo(n)? andB(y) N BG") =0 if Y £ 9. Infact, if (o, f) € Zo(n)?, then(a, ) € B()
withy=max{o, f}=a+f—af.Also,if (a, ) € B(Y)NA(), thenmaXa, f} < min{y’, 1"}
ando + > max{y’, 7"}, whencey ="
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Settinguy (f) = Vi (f2, I o) for o € Zo(n) and f € BV (I2; R) and applying (4.9)
and (2.6) (which trivially holds also for= 0) and the remarks above, we get:

Ifgl= > v Y Y 29, (f) up(e)

yelo(n) yelo(n) (o,f)eB(y)

<2 Y Y why©=2" Y w(Hup)
yedon) (a,f)eB(y) (P eton)?

=21 Y v || > v@ | =271 Il
o€/ o(n) Peto(n)

and the proof of Theorem 1 is complete.]

Remark 11. From the theory of Banach algebras one knows that the norm (2.5) can always
be replaced by an equivalent nofimlll on BV(I?; R) such that
- gl <A lgll, £, g € BV(I;’; R). (4.13)

In fact, givenf € BV(I%; R), letM : BV(I2; R) — BV(I?; R) be the continuous linear
operator defined by/(g) = fg and|[M ;| =su|M (gl : llgll = 1} be the operator
norm of M ;. Settingll flll = |M || and noting thatV s, = My o M,, we get (4.13), and
I FI<IIFII< 2 £l forall £ € BV(IL; R).

Remark 12. If hg, hq € BV(I[’;; R) and| k1|l <1/2", then, by Banach’s contraction theo-
rem and Corollary 3, there exists a unique functfoa BV(If,’; R) such thati1(x) f (x) +
ho(x) = f(x) forall x € I°.

GivenN e N, let (RV)% = (R%)" be the algebra of all functiorfsmapping? into
RN h Ifj x RN — R be a function of: + N variables)i = h(x1, ..., xp, u1, ..., un),

and letH), : (R¥)%d — Rl be thesuperposition operatadefined by
Hif)@) = hx, fi@). ..., fy), x eIl f=f.... fx) e RN,
We endow the Cartesian product

BV RV =BVUL R) x --- x BV(UIZ; R)

N times

with the productnornfj f |y ="~ || fill for f=(f1, ..., fn) € BV R)V. Clearly, the
space B\(Ij; R)Y is a Banach algebra with respect to the componentwise
pointwise operations, and for ] ¢ € BV(I2; R)V the following inequality holds:

If-glin<2'IflInlgln.

Corollary 13. Lethg,h1, ..., hy € BV(I?; R). Defineh : I? x RN — Rbyh(x, uy, ...,
uN)zho(x)+ZfV:1 hi(X)uj,x € Ia”, (ut, ..., uy) € R¥.Thenthe superposition operator
H, mapsBV (12; R)Y into BV (I2; R) and is Lipschitzian
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5. Some generalizations

Theorem 1 is valid (with the same proof) if we replace the target sRaiceit by any
Banach algebral, | - |); the definition of the corresponding space 8Y: U) is straight-
forward.

More generally, letJ, V and W be normed linear spaces over the same fieldr C
and the norms denoted by the same symibdl (which would not lead to ambiguities).
Suppose there exists a bilinear mappMg U x V — W such thaiM (u, v)| < |u] - |v]
forall u € U andv € V. The following generalization of Theorem 1 holds:f €
BV(I’; U) andg € BV(I?; V), then the product functiorf - ¢ : 12 — W defined by
(f-9)(X)=M(f(x), g(x)), x € IY, belongs tBV (I?; W), and the inequality in Theorem
1 holds

If (U,|-]) and(V, |- |) are normed linear spaces, we denotellg}J); V) the normed

linear space of all linear continuous operators flonmto V. Denote byEU’f the space of
all functions f : 1> — U mappingI? into U. Givenh : I? x U — V, thesuperposition

operatorH : U — V! is defined as in (1.1) with € 7 and f € R’ replaced by ¢ 1’
and f € U, respectively.

Theorem 14.If U and V are normed linear spaces:; € BV(I?; L(U; V), ho €
BV(IL; V) and h(x, u) = hi(x)u + ho(x), x € I?, u € U, then H mapsBV(1%; U)
into BV (1%; V) and is Lipschitzian
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