
Software Engineering 2012, 2(4): 174-179
DOI: 10.5923/j.se.20120204.11

An Analytical Model of Tests Generation Process for
Mobile Applications

E. E. Khatko1, V. A. Filippov2,*

1Moscow Institute of Physics and Technology, State University, Moscow, Russian Federation
2Moscow Institute of Electronics and Mathematics of National Research University a higher School of Economy, Moscow, Russian

Federation

Abstract Because of rapid mobile technologies expansion, there is a gap between the complexity of mobile applications
and the complexity of employed testing techniques. This paper is aimed at reducing the gap from the practical point of view.
Tests generation techniques are widely spread, but none of them are optimized for mobile applications. This paper proposes
an analytical model of tests generation process, which is based on prototypes and takes mobile specificity into consideration.
Along with this an analysis of existing tests generation approaches has beenmade. The flowchart of the proposed model has
been submitted with the model. The efficiency of the model has been described in the numerical results section.

Keywords Testing, Tests Automation, Tests Generation, Mobile Applications

1. Introduction
In the last few years, mobile technologies have been

rapidly expanding in everyday life. Almost every person on
earth has a mobile telephone. Mobile devices are becoming
more and more complex as new types of devices such as
Smartphones, Communicators, Tablets, etc., have appeared.
Such devices hardware hasconfigurations similar to
yesterday’s desktops’, and thus they should be treated as
complex hardware and software systems controlled by
operating systems. In the era of conventional phones, testing
processes were simple as well. Manual testing processes
predominated. However, accelerated evolution of mobile
devices leads to formation of a technology gap between the
complexity of mobile applications and the complexity of the
corresponding testing methods. Manual testing is no longer
enough these days. A new complex approach with special
test automation tools should come in its place. Therefore the
problem of testing methods optimization is very important
from the exploratory point of view and urgent from the
practical point of view.

Tests generation based on an application model or proto
type is one of the optimization ways that couldbe followed
(in this paper prototypes are considered as models which
describe applications based on user interface). Further model
or prototype use depends on the way of formalizing the
generation problem.

* Corresponding author:
filbob@infoline.su (V. A. Filippov)
Published online at http://journal.sapub.org/se
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

2. Analysis of Existing Tests Generation
Techniques

There are different methods of formalizing the generation
problem, but most of them do not take mobile specificity into
consideration. In particular[1] describes an approach to UI
level tests generation. The test suite generated this way,
however, does not meet the requirement of mobile
applications test criterion[2]. In[3] WEB-related tests
generation techniques are described. The proposed approach
makes use of WEB specificity – client-server architecture of
the application and user-application sessions.Therefore this
approach can’t be used for mobile tests generation.

There is a formalization that is based on an application’s
representation as an extended finite state machine[4]. It’s
well known[5] that extended finite state machines can be
represented as graphs. EFSM’s states are considered as
graph nodes and EFSM’s transitions – as graph
edges.Therefore the tests generation problem is reduced to
the graph traversal problem.Mobile applications testing
coverage criterion[2], in terms of graph traversal, requires a
maximum edge coverage result of traversal.[6]
describesformal methods of tests generation. One of them is
a «T-method» which is aimed at solving the Chinese
Postman Problem (CPP)[7]. There are many particular
solutions of the CPP,e.g. [7] describes a solution, based on
the graph matching theory.

According to Euler Circuit Theorem[8] the graph has
Euler’s circuit if and only if it’s strongly connected and its
vertices are all of an even degree. Therefore one can’t solve
the CPP problem for an arbitrary graph. The overall goal of a

 Software Engineering 2012, 2(4): 174-179 175

traversal is to approach the “solution” as closely as possible,
namely: perform the traversal through all edges with a
minimum number of each edge recurrences.

To solve the stated traversal problem, it’s appropriate to
use graph path-finding algorithms. The main complication
here is that the problem doesn’t define the start and end
points of the path. The graph should be traversed until all of
the edges are covered. There are different path-finding
algorithms, so an appropriate modification of one of them
could lead to a desired solution.

The Dijkstra's algorithm[9]finds closest paths from one
node to the others. This algorithm is not suitable for dynamic
graphs, where edges’ weights are changed according to the
current context of the EFSM’s variables. The same situation
is with the Bellman-Ford algorithm[9].

The Floyd-Warshall algorithm[10]finds closest paths
between each pair of graph nodestherefore it’s not suitable,
because the EFSM graph may change dynamically after each
transition is made, so all pairs’ closest paths should be
recalculated too often.

The Algorithm *A [11]is the minimal-cost path finding
algorithm. It’s a greedy algorithm which uses heuristics to
find the most suitable route “at the current moment”.There
are modifications [12]which allow traversing a graph until
all edges are covered. A modification of *A which is
capable of containing the graph’s parameters and finding the
path according to them is proposed in this paper.

The costs function F is the base of the algorithm’s logic.
The next edge to be covered is chosen according to the
current F value. The smaller the F value, the more
suitable the corresponding transition is.

3. Analytical Model of Tests Generation
Process

Having studied the CPP and the Euler circuit finding
problems[13], it’s proposed to use the following approach of
finding the “next” edge to cover while staying in the “current”
one.Let F G H= + , where G isthe path costs from the
beginning edge to the “next” one. H – heuristics that
estimates the path costs from the next edge to the closest
uncovered edge.

. ,
()

0,
e price e cList

G e cList K
e cList

∈
= + × ∉

,

where e - thecurrent edge, .e price - weight of the
current edge, K - scale factor.

max ()i ii Nodes
K in out

∈
= + – where iin / iout - the number

of incoming / outgoing edges forthe i - thnode.
_ _ _H path to closest unc= – path costs to the

closest uncovered edge.
During the traversal process:

• Before each G and H calculation, thegraph is updated
according to the EFSM condition of the “next” edge. The
edges that become inaccessible in context of the condition
are removed from the graph temporarily, until the next
transition.
• The path to the closest uncovered edge is calculated,

using the BFS algorithm[9].
Formally:

[]1 2, ,..., nT t t t= -thearray of all EFSM transitions.

[],|i iC t t соvered= − -thearray of all covered
transitions. The array is changed during the traversal process.

[]1 2, ,..., nW w w w= - thearray of all edges weights. The
array is changed during the traversal process.

1,
0,

i
i

i

t C
c

t C
∈

=  ∉
 - theflag which indicates if the current

edge is covered.

iP - thepath from the current edge to the closest
uncovered one.

N -thescale factor that prioritizes conditions: uncovered
edges are chosen first, after that the closest edge to the next
uncovered one is chosen.

So the following is the expression of finding the F value
for the i -th edge:

 (4)

Flowchart of the analytical model
Let’s consider a flowchart of finding the path which

covers all edges of the EFSM graph. The elements “Find F
value” and “Estimate extra ‘brake cycle’ conditions” will be
covered below, as they are not that simple.

Findingthe F value

 - thebase expression.

To find the value of for the -th transitionit’s required

to find the following sum: . The procedure based on

BFS algorithms is used for finding the sum.In Figure 2the
flowchart of the procedure is presented.

Extra brake conditions
There are circumstances which brake the main cycle,

returning the AppError: «Unable to find next transition in the
current context, because of incorrect prototype parameters»
• Found paths are all equal to each other and contain all

graph edges for all of the remaining successors of the
current edge
• No paths are found for each of the remaining successors

of the current edge

()
i

i i i
P

F C c N w= + × +∑

()
i

i i i
P

F C c N w= + × +∑

iF i

i

i
P

w∑

176 E. E. Khatko et al.: An Analytical Model of Tests Generation Process for Mobile Applications

Figure 1. Flowchart of the analytical model

 Software Engineering 2012, 2(4): 174-179 177

Figure 2. Finding F value flowchart

4. Numerical Results
Let’s estimate the efficiency of the proposed modelwith

the help of following expression[2]:
()()

(()) (())
comp GF G

N comp G L comp G
=

×
, where

EFSM graph complexity (, , ,)comp K M P C :
2 2 2 2 2() ()comp G K M V C P= + + + , where

K – thenumber of graph nodes
M –thenumber of graph edges
P – thenumber of graph parameters
C – thenumber of graph edge conditions
V –thepriority factor
On average, the number of mobile application states lies

within the following edges: []2,..., 20K ∈ .The graphs of
mobile applications EFSMs are always connected, therefore,

the minimum number of edges is: 1MINM K= − .The
estimate of the maximum number of edges is:

2MAX
K MaxM ×

= , where max ()i ii Nodes
Max in out

∈
= + -

the maximum sum of incoming and outgoing edges through
all the nodes. Thus, the average edges number is:

21
2 4

K Max MaxM K K× +
= + − ≈ . The analysis of

the existing prototypes shows, that the average Max value is

5, so
7 2
4

M K K≈ ≈ .

Several EFSMs were taken to measure the efficiency of
the proposed model. EFSMs parameters were taken to meet
the above conditions. The test case generator[14] was chosen
as the opponent model. This tool is used for tests generation
based on prototypes. It works with prototypes, represented

178 E. E. Khatko et al.: An Analytical Model of Tests Generation Process for Mobile Applications

with graphml –an XML based graph description language.
The tool allows setting different stop conditions, including
the “100% transitions coverage” condition. This generator

also makes use of the *A algorithm, but probably with a
different F expression. The following results were obtained
when measuring generation processes efficiency:

Table 1. Efficiency of the proposed analytic model

Prototype graph K M P C Proposed model Opponent model

6 8 1 1 2,89 2,17

6 9 1 2 2,48 2,26

6 15 2 6 2,61 1,81

13 26 5 6 1,74 0

16 36 9 11 2,34 0

16 48 2 18 2,69 2,51

21 66 3 23 2,42 2,60

The following are the curves of the obtained results.

 Software Engineering 2012, 2(4): 174-179 179

Figure 3. Efficiency of the proposed analytic model

It can be stated from this curves, that the proposed model
is more efficient than the analogue model, evidently because
of the “correct” expression of the F function.

5. Conclusions
The analysis of existing tests generation approaches has

been made. An analytical model of tests generation process
which is based on prototypes and takes mobile specificity
into consideration is proposed. The scheme of the proposed
model is submitted. The efficiency of the model is described
in the numerical results section.

REFERENCES
[1] Рубинов, К. В., Веденеев, В. В. and Парфенов, В. Г. Метод

разработки тестов для программных интерфейсов
приложений на основе конечно-автоматной модели
тестирования. Санкт-Петербург: Санкт-Петербургский
государственный университет информационных
технологий, механики и оптики.

[2] Khatko, E. E. and Fillipov, V. A. Mobile applications testing
processes metrics and optimization criteria. Software
Engineering. 2012, Vol.?

[3] Шмейлин, Б. З. Современные технологии тестирования
WEB приложений. Системы и средства информатики.
2009, pp. 138-147.

[4] Хатько, Е. Е. Об одном методе тестирования
«мобильных» приложений. Труды МФТИ. 2012.

[5] Карпов, Ю. Г. Теория автоматов. Санк-Петербург: Питер,
2003.

[6] Ural, H. Formal methods for test sequence generation.
Computer communications. 1992, Vol. 15.

[7] Johnson, E. and Edmonds, J. Matching, Euler tours and the
Chinese postman. Ontario: University of Waterloo, Waterloo,
Ontario, Canada, 1972.

[8] Skiena, S. Eulerian cycle / Chinese postman. The algorithm
design manual. New York: Springer, 2012.

[9] —. The algorithm design manual – Graph Traversal. The
algorithm design manual. London: Springer, 2008, pp.
162-169.

[10] Кормен, Т. Х., et al. Алгоритмы: построение и анализ.
Москва: Вильямс, 2006.

[11] Decher R., Pearl J. Generalized Best-First Search Strategies
and the Optimality of A*. Journal of the Association for
Computing Machinery. 1985, Vol. 32, 3.

[12] Современные проблемы фундаментальных и прикладных
наук. Хатько, Е. Е. Москва, Долгопрудный: s.n., 2010.
Один способ реализации алгоритма генерации тестов в
тестировании на основе моделей. Vol. 1, pp. 92-95. 52.

[13] Edmonds, J. Matching, Euler tours and the Chinese postman.
Canada: University of Waterloo, 1972.

[14] Хатько, Е. Е. and Филиппов, В. А. Алгоритмы генерации
тестовых сценариев для повышения качества
программного обеспечения многозадачных
пользовательских комплексов. Качество. Инновации.
Образование. 2011, Vol. 10, pp. 47-52.

[15] Open Source Software Engineering Tools. mbt.tigris.org.
[Online] http://mbt.tigris.org/.

[16] Khatko, E and Fillipov, V. Mobile applications tests
processes metrics and criteria. International Journal of
Networks and Communications. ?, 2012, Vol. ?

	1. Introduction
	2. Analysis of Existing Tests Generation Techniques
	3. Analytical Model of Tests Generation Process
	4. Numerical Results
	5. Conclusions

