Projections of Orbital Measures, Gelfand–Tsetlin Polytopes, and Splines

Grigori Olshanski*

Communicated by J. Faraut

Abstract. The unitary group $U(N)$ acts by conjugations on the space $\mathcal{H}(N)$ of $N \times N$ Hermitian matrices, and every orbit of this action carries a unique invariant probability measure called an orbital measure. Consider the projection of the space $\mathcal{H}(N)$ onto the real line assigning to an Hermitian matrix its $(1,1)$-entry. Under this projection, the density of the pushforward of a generic orbital measure is a spline function with N knots. This fact was pointed out by Andrei Okounkov in 1996, and the goal of the paper is to propose a multidimensional generalization. Namely, it turns out that if instead of the $(1,1)$-entry we cut out the upper left matrix corner of arbitrary size $K \times K$, where $K = 2, \ldots, N - 1$, then the pushforward of a generic orbital measure is still computable: its density is given by a $K \times K$ determinant composed from one-dimensional splines. The result can also be reformulated in terms of projections of the Gelfand–Tsetlin polytopes.

Mathematics Subject Classification 2010: 22E30; 41A15.
Key Words and Phrases: Orbital measure, Gelfand–Tsetlin polytope, B-spline, Harish-Chandra-Itzykson-Zuber integral.

1. Introduction

Orbital measures. Let $\mathcal{H}(N)$ be the space of $N \times N$ Hermitian matrices. For $K = 1, \ldots, N - 1$, we denote by $p^K_N : \mathcal{H}(N) \to \mathcal{H}(K)$ the linear projection consisting in deleting from the matrix $H \in \mathcal{H}(N)$ its last $N - K$ rows and columns. We call $p^K_N(H)$, the image of H under this projection, the $K \times K$ corner of H.

The unitary group $U(N)$ acts on $\mathcal{H}(N)$ by conjugations, and because $U(N)$ is compact, each orbit of this action carries a unique invariant probability measure, which we call the orbital measure. Given an orbital measure μ on $\mathcal{H}(N)$, denote by $p^K_N(\mu)$ its pushforward under projection p^K_N. Our goal is to describe $p^K_N(\mu)$.

The orbits in $\mathcal{H}(N)$ (and hence the orbital measures) can be indexed by N-tuples of weakly increasing real numbers $X = (x_1 \leq \cdots \leq x_N)$, the matrix

*Work partially supported by a grant from Simons Foundation (Simons–IUM Fellowship) and the project SFB 701 of Bielefeld University.
eigenvalues. Let $\mathcal{X}(N) \subset \mathbb{R}^N$ denote the set of all such X’s. Given $X \in \mathcal{X}(N)$, we write O_X and μ_X for the corresponding orbit and orbital measure, respectively.

Since $p^N_N(\mu_X)$ is a $U(K)$-invariant probability measure on $\mathcal{X}(K)$, it can be uniquely decomposed into a continual convex combination of orbital measures, governed by a probability measure $\nu_{X,K}$ on the parameter space $\mathcal{X}(K)$. That is, $\nu_{X,K}$ is characterized by the property that, for an arbitrary Borel subset $S \subseteq \mathcal{X}(N)$,

$$(p^N_K(\mu_X))(S) = \int_{Y \in \mathcal{X}(K)} \mu_Y(S)\nu_{X,K}(dY).$$

The measure $\nu_{X,K}$ can be called the radial part of measure $p^N_K(\mu_X)$.

Main result. Denote by $\mathcal{X}^0(N)$ the interior of $\mathcal{X}(N)$; that is, $\mathcal{X}^0(N)$ consists of N-tuples of strictly increasing real numbers. If $X \in \mathcal{X}^0(N)$, then $\nu_{X,K}$ is absolutely continuous with respect to Lebesgue measure on $\mathcal{X}(K) \subset \mathbb{R}^K$, and the main result, Theorem 3.3, gives an explicit formula for the density of $\nu_{X,K}$.

In the case $K = 1$ the target space of the projection is the real line, and the density in question coincides with a B-spline, a certain piecewise polynomial function on \mathbb{R} (this fact was observed by Andrei Okounkov). In the general case, it turns out that the density of $\nu_{X,K}$ is expressed through a $K \times K$ determinant composed from some B-splines.

As the reader will see, the proof of Theorem 3.3 is straightforward and elementary. The main reason why I believe the result may be of interest is the very appearance of splines, which are objects of classical and numerical analysis, in a problem of representation-theoretic origin.

Gelfand–Tsetlin polytopes. Before explaining a connection with representation theory I want to give a different interpretation of the measure $\nu_{X,K}$.

For $X \in \mathcal{X}(N)$ and $Y \in \mathcal{X}(N-1)$, write $Y \prec X$ or $X \succ Y$ if the coordinates of X and Y *interlace*, that is

$$x_1 \leq y_1 \leq x_2 \leq \cdots \leq x_{N-1} \leq y_{N-1} \leq x_N.$$

Given $X \in \mathcal{X}(N)$, the corresponding *Gelfand–Tsetlin polytope* P_X is the compact convex subset in the vector space

$$\mathbb{R}^{N-1} \times \mathbb{R}^{N-2} \times \cdots \times \mathbb{R} = \mathbb{R}^{N(N-1)/2},$$

formed by triangular arrays subject to the interlacement constraints:

$$P_X := \{(Y^{(N-1)}, \ldots, Y^{(1)}) \in R^{N(N-1)/2} : X \succ Y^{(N-1)} \succ \cdots \succ Y^{(1)}\}.$$

Consider the map assigning to a matrix $H \in O_X$ the array formed by the collections of eigenvalues of its corners $p_{N-1}^N(H), p_{N-2}^N(H), \ldots, p_1^N(H)$. It is well known (see Corollary 3.2 below) that this map projects the orbit O_X onto the polytope P_X and takes μ_X to the uniform measure on P_X (that is, the normalized Lebesgue measure). Next, given $K = 1, \ldots, N-1$, consider the natural projection $P_X \rightarrow \mathcal{X}(K)$ extracting from the array $(Y^{(N-1)}, \ldots, Y^{(1)})$ its Kth component $Y^{(K)}$. The measure $\nu_{X,K}$ is nothing else than the pushforward of the uniform measure under the latter projection.
Discrete version of the problem: relative dimension in Gelfand–Tsetlin graph. Let $\mathcal{GT}_N := \mathcal{X}(N) \cap \mathbb{Z}^N$ be the set of weakly increasing N-tuples of integers. The elements of \mathcal{GT}_N are in bijection with the irreducible representations of the group $U(N)$: with $X = (x_1, \ldots, x_N) \in \mathcal{GT}_N$ we associate the irreducible representation T_X with signature (=highest weight) $\hat{X} := (x_N, \ldots, x_1)$. Here we pass from X to \hat{X}, because the coordinates of signatures are usually written in the descending order, see Weyl \[13\].

Let $X \in \mathcal{GT}_N$ and consider the finite set $P_X^{\mathbb{Z}} := P_X \cap \mathbb{Z}^{N(N-1)/2}$ consisting of integral points in the polytope P_X. Let us replace the uniform measure on P_X by the uniform measure on $P_X^{\mathbb{Z}}$ (that is, the normalized counting measure). Next, given $K = 1, \ldots, N-1$, we consider again the same projection $P_X \to \mathcal{X}(K)$ as before and denote by $\nu_{X,K}^{\mathbb{Z}}$ the pushforward of the uniform measure on $P_X^{\mathbb{Z}}$. Evidently, $\nu_{X,K}^{\mathbb{Z}}$ is a probability measure with finite support.

Elements of $P_X^{\mathbb{Z}}$ are the Gelfand–Tsetlin schemes (also called Gelfand–Tsetlin patterns) with top row X; they parameterize the elements of Gelfand–Tsetlin basis in T_X. By the very definition of $\nu_{X,K}^{\mathbb{Z}}$, for $Y \in \mathcal{GT}_K$, the quantity $\nu_{X,K}^{\mathbb{Z}}(Y)$ (the mass assigning by $\nu_{X,K}^{\mathbb{Z}}$ to Y) equals the fraction of the schemes with the Kth row equal to Y. This quantity is the same as the relative dimension of the isotypic component of T_Y in the restriction of T_X to the subgroup $U(K) \subset U(N)$.

The Gelfand–Tsetlin graph has the vertex set $\mathcal{GT}_1 \sqcup \mathcal{GT}_2 \sqcup \ldots$ and the edges formed by couples $Y \prec X$. In the terminology of Borodin–Olshanski \[3\], $\nu_{X,K}^{\mathbb{Z}}(Y)$ is the relative dimension of the vertex $Y \in \mathcal{GT}_K$ with respect to the vertex $X \in \mathcal{GT}_N$. In \[3\], we derived a determinantal formula for the relative dimension (see also Petrov \[11\] for a different proof). That formula can be viewed as a discrete version of the formula of Theorem 3.3.

I first guessed the formula of Theorem 3.3 by degenerating the “discrete” formula of \[3\]. However, this is not an optimal way of derivation, because the discrete case is much more difficult than the continuous one. I am grateful to Alexei Borodin for the suggestion to study the degeneration of the “discrete” formula. Note that from the comparison of the measures $\nu_{N,K}$ and $\nu_{X,K}^{\mathbb{Z}}$ it is seen that the former should be related to the latter by a scaling limit transition.

2. Preliminaries

The fundamental spline with $n \geq 2$ knots $y_1 < \cdots < y_n$ can be characterized as the only function $a \mapsto M(a; y_1, \ldots, y_n)$ on \mathbb{R} of class C^{n-3}, vanishing outside the interval (y_1, y_n), equal to a polynomial of degree $\leq n-2$ on each interval (y_i, y_{i+1}), and normalized by the condition

$$\int_{-\infty}^{+\infty} M(a; y_1, \ldots, y_n) da = 1.$$

Here is an explicit expression:

$$M(a; y_1, \ldots, y_n) := (n-1) \sum_{\substack{i: y_i > a \geq \min \{r: y_i \neq y_r\}}} (y_i - a)^{n-2} \frac{\prod_{r: r \neq i} (y_i - y_r)}{\prod_{r: r \neq i} (y_i - y_r)}.$$ \hspace{1cm} (1)
In particular, for $n = 2$

$$M(a; y_1, y_2) = \frac{1_{y_1 < a < y_2}}{y_2 - y_1}.$$

Remark 2.1. The above definition is taken from Curry–Schoenberg [4]. In the subsequent publications, Schoenberg changed the term to B-spline. The latter term became commonly used. However, in the modern literature, it more often refers to the function

$$B(a; y_1, \ldots, y_n) := (y_n - y_1) \sum_{i: y_i > a} \left(\frac{(y_i - a)^{n-2}}{\prod_{r: r \neq i} (y_i - y_r)} \right),$$

which differs from $M(a; y_1, \ldots, y_n)$ by the numerical factor $(y_n - y_1)/(n - 1)$; see, e.g., de Boor [2] or Phillips [12]. The normalization in (2) has its own advantages, but we will not use it. Note also that $M(a; y_1, \ldots, y_n)$ is a special case of Peano kernel, see Davis [5], Faraut [7].

We need two well-known formulas relating $M(a; y_1, \ldots, y_n)$ to divided differences (see, e.g., [4], [7]).

Recall that the divided difference of a function $f(x)$ on points y_1, \ldots, y_n is defined recursively by

$$f[y_1, y_2] = \frac{f(y_2) - f(y_1)}{y_2 - y_1}, \quad f[y_1, y_2, y_3] = \frac{f[y_2, y_3] - f[y_1, y_2]}{y_3 - y_1},$$

and so on; the final step is

$$f[y_1, \ldots, y_n] = \frac{f[y_2, \ldots, y_n] - f[y_1, \ldots, y_{n-1}]}{y_n - y_1}.$$

(3)

Next, set

$$x^+_s = \begin{cases} x^s, & x > 0 \\ 0, & x \leq 0. \end{cases}$$

In this notation, the first formula in question is

$$M(a; y_1, \ldots, y_n) = (n - 1)f[y_1, \ldots, y_n], \quad \text{where } f(x) := (x - a)^{n-2},$$

(4)

and the second formula is

$$f[y_1, \ldots, y_n] = \frac{1}{(n - 1)!} \int M(a; y_1, \ldots, y_n)f^{(n-1)}(a)da.$$

(5)

In (5), f is assumed being a function on \mathbb{R} with piecewise continuous derivative of order $n - 1$. In particular, (5) is applicable to $f(x) = (x - t)^{n-1}$, which is used in the lemma below.

To shorten the notation, let us abbreviate $Y := (y_1 < \cdots < y_n)$.

Lemma 2.2. Fix \(n = 2, 3, \ldots \) and an \(n \)-tuple \(Y = (y_1 < \cdots < y_n) \in \mathcal{X}^0(N) \). For an arbitrary \(b \in \mathbb{R} \) set
\[
f_b(x) := (x - b)^{n-1}, \quad x \in \mathbb{R}.
\]
One has
\[
\int_{-\infty}^{c} M(a; Y) da = 1 - f_c[Y], \quad c \in \mathbb{R},
\]
(6)
\[
\int_{b}^{c} M(a; Y) da = f_{b}[Y] - f_{c}[Y], \quad b < c,
\]
(7)
\[
\int_{b}^{+\infty} M(a; Y) da = f_b[Y], \quad b \in \mathbb{R}.
\]
(8)

Proof. To check (7), we apply (5) to \(f(x) = f_b(x) - f_c(x) \), which is justified, see the comment just after (5). Then in the left-hand side of (5) we get \(f_b[Y] - f_c[Y] \).

Next, observe that the \((n-1)\)th derivative of \(f_t(x) \) equals \((n-1)! x^{n-1-1} \) so that
\[
f^{(n-1)}(a) = (n-1)! (1_{a \geq b} - 1_{a \geq c}) = (n-1)! 1_{b \leq a < c}.
\]

Therefore, in the right-hand side we get \(\int_{c}^{b} M(a; Y) da \), which proves (7).

Now (8) follows from (7) by setting \(c = +\infty \), and (6) follows from (8), because the total integral of the \(M(a; Y) \) equals 1. \(\blacksquare \)

3. Projections of orbital measures

We keep to the notation of Sections 1 and 2.

Given \(X \in \mathcal{X}(N) \), the pushforward of the orbital measure \(\mu_X \) under the map
\[
O_X \ni H \mapsto \text{the spectrum of } p_{N-1}^{N}(H)
\]
can be viewed as a probability measure on \(\mathcal{X}(N-1) \) depending on \(X \) as a parameter; let us denote it by \(\Lambda_{N-1}^N(X, \cdot) \) or \(\Lambda_{N-1}^N(X, dY) \). We regard \(\Lambda(X, dY) \) as a Markov kernel.

By classical Rayleigh’s theorem, the eigenvalues of a matrix \(H \in \mathcal{X}(N) \) and its corner \(p_{N-1}^{N}(H) \) interlace. Therefore, the measure \(\Lambda_{N-1}^N(X, \cdot) \) is concentrated on the subset
\[
\{ Y \in \mathcal{X}(N-1) : Y \prec X \} \subset R^{N-1}.
\]
(9)

Proposition 3.1. Assume \(X = (x_1, \ldots, x_N) \in \mathcal{X}^0(N) \). Then the measure \(\Lambda_{N-1}^N(X, \cdot) \) is absolutely continuous with respect to Lebesgue measure on the set \(\{ Y \in \mathcal{X}(N-1) : Y \prec X \} \), and the density of \(\Lambda_{N-1}^N(X, \cdot) \), denoted by \(\Lambda_{N-1}^N(X, Y) \), is given by
\[
\Lambda_{N-1}^N(X, Y) = (N-1)! \frac{V(Y)}{V(X)} 1_{Y \prec X},
\]
(10)
where we use the notation
\[
V(X) = \prod_{j>i} (x_j - x_i)
\]
and the symbol $1_{Y \prec X}$ equals 1 or 0 depending on whether $Y \prec X$ or not.

Proof. To the best of my knowledge, a published proof first appeared in Baryshnikov [1, Proposition 4.2]. However, the argument given in [1] was known earlier: it is hidden in the first computation of the spherical functions of the groups $SL(N, \mathbb{C})$ due to Gelfand and Naimark, see [8, §9]. Note also that a more general result can be found in Neretin [9].

Here is a different proof. Consider the Laplace transform of the orbital measure μ_X:

$$\hat{\mu}_X(Z) := \int e^{\text{Tr}(ZH)} \mu_X(dH),$$

where Z is a complex $N \times N$ matrix. The integral in the right-hand side is often called the Harish-Chandra–Itzykson–Zuber integral. Its value is given by a well-known formula (see, e.g., Olshanski–Vershik [10, Corollary 5.2]):

$$\hat{\mu}_X(Z) = c_N \prod_{j>i} \left(z_j - z_i \right) \left(x_j - x_i \right),$$

where z_1, \ldots, z_N are the eigenvalues of Z and

$$c_N = (N-1)!(N-2)! \ldots 0!$$

(note that the right-hand side of (12) does not depend on the enumeration of the eigenvalues of Z).

The claim of the proposition is equivalent to the following equality: Assume that the entries in the last row and column of Z equal 0, so that Z has the form

$$Z = \begin{bmatrix} \tilde{Z} & 0 \\ 0 & 0 \end{bmatrix},$$

where \tilde{Z} is a complex matrix of size $(N-1) \times (N-1)$; then

$$\hat{\mu}_X(Z) = \frac{(N-1)!}{V(X)} \int_{Y \prec X} V(Y) \hat{\mu}_Y(\tilde{Z}) dY.$$

(14)

To prove (14), consider the matrix $T := [e^{z_i x_j}]$ in the right-hand side of (12). Since Z has the form (13), at least one of the eigenvalues z_1, \ldots, z_N equals 0. It is convenient to slightly change the enumeration and denote the eigenvalues as $z_0 = 0, z_1, \ldots, z_{N-1}$. In accordance to this we will assume that the row number i of T ranges over $\{0, \ldots, N-1\}$ while the column index j ranges over $\{1, \ldots, N\}$. Since $z_0 = 0$, the 0th row of T is $(1, \ldots, 1)$. Let us subtract the $(N-1)$th column from the Nth one, then subtract the $(N-2)$th column from the $(N-1)$th one, etc. This gives $\det T = \det \tilde{T}$, where \tilde{T} stands for the matrix of order $N-1$ with the entries

$$\tilde{T}_{i,j} = e^{z_i x_{j+1}} - e^{z_i x_j} = z_i \int_{x_i}^{x_j} e^{z_i y} dy, \quad i, j = 1, \ldots, N-1.$$
It follows
\[\det \tilde{T} = z_1 \ldots z_N \int_{Y < X} dY \det [e^{z_i y_j}]_{i,j=1}^{N-1}, \]
so that
\[\hat{\mu}_X(Z) = c_N \frac{z_1 \ldots z_N \int_{Y < X} dY \det [e^{z_i y_j}]_{i,j=1}^{N-1}}{\prod_{N-1 \geq j > i \geq 0} (z_j - z_i) \cdot V(X)} . \]

Next, because \(z_0 = 0 \), the product over \(j > i \) in the denominator equals
\[z_1 \ldots z_N \prod_{N-1 \geq j > i \geq 1} (z_j - z_i), \]
so that the product \(z_1 \ldots z_N \) is cancelled out. Taking into account the fact that \(\hat{\mu}_Y(\tilde{Z}) \) is given by the determinantal formula similar to (12) and using the obvious relation \(c_N = (N - 1)!c_{N-1} \) we finally get the desired equality (14).

From Proposition 3.1 it is easy to deduce the following corollary (see also [1, Proposition 4.7] and Defosseux [6]).

Corollary 3.2. Fix \(X \in \mathcal{Z}^0(N) \) and let \(H \) range over \(O_X \). The map assigning to \(H \) the collection of the eigenvalues of the corners \(p^N_K(H) \), where \(K = N - 1, N - 2, \ldots, 1 \), projects \(O_X \) onto the Gelfand–Tsetlin polytope \(P_X \) and takes the measure \(\mu_X \) to the Lebesgue measure multiplied by the constant
\[\frac{(N - 1)! (N - 2)! \ldots 0!}{V(X)} . \]

In particular, the volume of \(P_X \) in the natural coordinates is equal to the inverse of the above quantity.

Recall that \(\nu_{X,K} \) stands for the radial part of the \(K \times K \) corner of the random matrix \(H \in O_X \), driven by the orbital measure \(\mu_X \) (see Section 1), and \(M(a; y_1, \ldots, y_n) \) denotes the fundamental spline with \(n \) knots \(y_1, \ldots, y_n \) (see [1] and (1)).

Theorem 3.3. Fix \(X = (x_1, \ldots, x_N) \in \mathcal{Z}^0(N) \). For any \(K = 1, \ldots, N-1 \), the measure \(\nu_{X,K} \) on \(\mathcal{Z}^K \) is absolutely continuous with respect to Lebesgue measure and has the density
\[M(a_1, \ldots, a_K; x_1, \ldots, x_N) := c_{N,K} \frac{V(A) \det [M(a_j; x_i, \ldots, x_{N-K+i})]_{i,j=1}^{K}}{\prod_{(j,i) : j-i \geq N-K+1} (x_j - x_i)} , \tag{15} \]
where
\[c_{N,K} = \prod_{i=1}^{K-1} \binom{N - K + i}{i} . \]
Note that for $K = 1$ the right-hand side reduces to the fundamental spline with knots x_1, \ldots, x_N. Thus, in the case $K = 1$ the theorem says that the density of the measure $\nu_{N,1}$ on \mathbb{R} coincides with the spline $M(a; x_1, \ldots, x_N)$. This simple but important claim is due to Andrei Okounkov, see [10, Proposition 8.2].

Proof. We argue by induction on K, starting with $K = N - 1$ and ending at $K = 1$.

Step 1. Examine the case $K = N - 1$, which is the base of induction. We have $\nu_{X,N-1}(dA) = \Lambda_{N-1}^N(X, dA)$. By proposition 3.1 the measure $\Lambda_{N-1}^N(X, \cdot)$ on \mathbb{R}^N is absolutely continuous with respect to Lebesgue measure and has density $\Lambda_{N-1}^N(X, A)$ given by [10]. Thus, we have to check that $\Lambda_{N-1}^N(X, A)$ coincides with the quantity $M(a_1, \ldots, a_{N-1}; x_1, \ldots, x_N)$ given by the right-hand side of (15), where we have to take $K = N - 1$. That is, the desired equality has the form

$$(N - 1)! V(A) \frac{V(X)}{V(\mathbb{R})} \mathbf{1}_{A < X} = c_{N,N-1} \frac{V(A) \det [M(a_j; x_i, x_{i+1})]_{i,j=1}^{N-1}}{\prod_{(j,i): j - i \geq 2} (x_j - x_i)}.$$

Since $c_{N,N-1} = (N - 1)!$, the desired equality reduces to

$$\det [M(a_j; x_i, x_{i+1})]_{i,j=1}^{N-1} = \mathbf{1}_{A < X} \frac{1}{(x_2 - x_1)(x_3 - x_2) \cdots (x_N - x_{N-1})}.$$

Observe that the (i, j)-entry in the determinant is the quantity

$$M(a_j; x_i, x_{i+1}) = \frac{1}{x_{i+1} - x_i},$$

which vanishes unless $a_j \in [x_i, x_{i+1}]$. Since $a_1 \leq \cdots \leq a_{N-1}$, the determinant vanishes unless $A < X$. Furthermore, if $A < X$, then the matrix under the sign of determinant is diagonal, so the determinant equals the product of the diagonal entries, which equals

$$\frac{1}{(x_2 - x_1)(x_3 - x_2) \cdots (x_N - x_{N-1})},$$

as required.

Step 2. Given $K = 1, \ldots, N - 1$, we consider the superposition of Markov kernels

$$\Lambda_K^N := \Lambda_{N-1}^N \Lambda_{N-2}^N \cdots \Lambda_{K+1}^N.$$

In more detail, the result is a Markov kernel on $\mathbb{R}^N \times \mathbb{R}^K$ given by

$$\Lambda_K^N(X, dA) = \int \Lambda_{N-1}^N(x, dY^{(N-1)}) \Lambda_{N-2}^N(Y^{(N-1)}, dY^{(N-2)}) \cdots \Lambda_{K+1}^N(Y^{(K+1)}, dA),$$

where the integral is taken over variables $Y^{(N-1)}, \ldots, Y^{(K+1)}$. Obviously, $\Lambda_K^N(X, dA) = \nu_{X,K}(dA)$, which entails the recurrence relation

$$\nu_{X,K-1} = \nu_{X,K} \Lambda_{K-1}^K, \quad K = N - 1, N - 2, \ldots, 2,$$

(16)
where, by definition, $\nu_{X,K} \Lambda_{K-1}^K$ is the measure on $\mathcal{X}(K-1)$ given by

$$
(\nu_{X,K} \Lambda_{K-1}^K)(dB) = \int_{A \in \mathcal{X}(K)} \nu_{X,K}(dA) \Lambda_{K-1}^K(A,dB). \quad (17)
$$

Step 3. Assume now that the claim of the theorem holds for some $K \geq 2$ and deduce from this that it also holds for $K-1$. To do this we employ (16) and (17).

First of all, (16) and (17) imply that $\nu_{X,K} \Lambda_{K-1}^K$ is absolutely continuous with respect to Lebesgue measure on $\mathcal{X}(K-1)$ and has the density

$$
(\nu_{X,K} \Lambda_{K-1}^K)(B) = \int_{A \in \mathcal{X}(K)} \nu_{X,K}(dA) \Lambda_{K-1}^K(A,B), \quad B \in \mathcal{X}(K-1). \quad (18)
$$

Let us compute the integral explicitly. By the induction assumption, $\nu_{X,K}$ is absolutely continuous and has density (15). Therefore, integral (18) can be written in the form

$$
\int_{A \in \mathcal{X}(0)(K)} M(a_1, \ldots, a_K; x_1, \ldots, x_N) \Lambda_{K-1}^K(A,B) da_1 \ldots da_K.
$$

Write $B = (b_1, \ldots, b_K)$. Substituting the explicit expression for $\Lambda_{K-1}^K(A,B)$ given by Proposition 3.1, we rewrite this as

$$
(K-1)! V(B) \int_A \frac{M(a_1, \ldots, a_K; x_1, \ldots, x_N)}{V(A)} da_1 \ldots da_K, \quad (19)
$$

where the integration domain is

$$
-\infty < a_1 \leq b_1, \ldots, b_i \leq a_{i+1} \leq b_{i+1}, \ldots, b_{K-1} \leq a_K < +\infty. \quad (20)
$$

Next, plug into (19) the explicit expression for $M(a_1, \ldots, a_K; x_1, \ldots, x_N)$ given by (15). Then the factor $V(A)$ is cancelled out and we get

$$
\frac{c_{N,K}(K-1)! V(B)}{\prod_{(j,i): j-i \geq N-K+1} (x_j - x_i)} \int_A \det [M(a_j; x_i, \ldots, x_{N-K+1})]_{i,j=1}^K da_1 \ldots da_K \quad (21)
$$

with the same integration domain (20).

Put aside the pre-integral factor in (21) and examine the integral itself. It can be written as a $K \times K$ determinant,

$$
\det[F(i,j)]_{i,j=1}^K,
$$

where

$$
F(i,j) := \int_{b_{j-1}}^{b_j} M(a; Y_i) da
$$

and

$$
Y_i := (x_i, \ldots, x_{N-K+i})
$$

with the understanding that $b_0 = -\infty$ and $b_K = +\infty$.
We are going to prove that
\[
\det[F(i,j)]_{i,j=1}^{K} = (N - K + 1)^{K-1} \prod_{i=1}^{K-1} (x_{N-K+i+1} - x_i)
\]
\[
\times \det[M(b_j; x_i, \ldots, x_{N-K+i+1})]_{i,j=1}^{K-1}.
\]
This will justify the induction step, because
\[
c_{N,K} = c_{N,K-1} \cdot \frac{(N - K + 1)^{K-1}}{(K-1)!}
\]
and
\[
\prod_{i=1}^{K-1} (x_{N-K+i+1} - x_i) \prod_{(j,i): j-i \geq N-K+1} (x_j - x_i).
\]

Step 4. It remains to prove (22). We evaluate the quantities $F(i,j)$ using Lemma 2.2, where we substitute $n = N - K + 1$ and $Y = Y_i$. Then we get that the matrix entries $F(i,j)$ are given by the following formulas:

- The entries of the first column have the form $F(i,1) = 1 - f_{b_i}[Y_i]$ by (6).
- The entries of the jth column, $2 \leq j \leq K - 1$, have the form $F(i,j) = f_{b_{j-1}}[Y_i] - f_{b_j}[Y_i]$ by (7).
- The entries of the last column have the form $F(i,K) = f_{b_K}[Y_i]$ by (8).

We have $\det F = \det G$, where the $K \times K$ matrix G is defined by
\[
G(i,j) := F(i,j) + \cdots + F(i,K).
\]
The entries of the matrix G are
\[
G(i,1) = 1, \quad G(i,j) = f_{b_{j-1}}[Y_i], \quad 2 \leq j \leq K.
\]

Next, we get $\det G = \det H$ with the $(K - 1) \times (K - 1)$ matrix H defined by
\[
H(i,j) := F(i + 1, j + 1) - F(i,j), \quad 1 \leq i, j \leq K - 1.
\]
Observe now that
\[
H(i,j) = f_{b_j}[Y_{i+1}] - f_{b_i}[Y_i],
\]
which can be rewritten as
\[
H(i,j) = (x_{N-K+i+1} - x_i) \frac{f_{b_j}[x_{i+1}, \ldots, x_{N-K+i+1}] - f_{b_i}[x_i, \ldots, x_{N-K+i+1}]}{x_{N-K+i+1} - x_i}
\]
\[
= (x_{N-K+i+1} - x_i) f_{b_j}[x_i, \ldots, x_{N-K+i+1}] \quad \text{by (3)}
\]
\[
= \frac{1}{N - K + 1} (x_{N-K+i+1} - x_i) M(b_j; x_i, \ldots, x_{N-K+i+1}) \quad \text{by (4).}
\]
This shows that the determinant $\det H = \det[H(i,j)]_{i,j=1}^{K-1}$ equals the right-hand side of (22). Since $\det H = \det F$, this completes the proof.

Acknowledgement. I am grateful to Jacques Faraut for valuable comments.
References

Grigori Olshanski
Institute for Information Transmission Problems
19 Bolshoy Karetny
Moscow 127994, Russia
and
Independent University of Moscow
11 Bolshoy Vlasievsky
Moscow 119002, Russia
and
National Research University
Higher School of Economics
20 Myasnitskaya Ulitsa
Moscow 101000, Russia
olsh2007@gmail.com

Received February 20, 2013
and in final form February 22, 2013