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Abstract. We discuss how the curvature and the strain density of an atomic lattice gener-
ate the quantization of graphene sheets as well as the dynamics of geometric quasiparticles
propagating along the constant curvature/strain levels. The internal kinetic momentum of a
Riemannian oriented surface (a vector field preserving the Gaussian curvature and the area)
is determined.
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1. INTRODUCTION

Graphene and other “one-atom thick” giant 2D-molecules materialize in a sense the mathematical
notion of abstract surfaces [1]. However, to be geometrically stable, materialized surfaces of this
kind, freely suspended in 3D Euclidean space, are to be curved and strained [2]-[7]. The curvature
and strain generate some intrinsic fields which act on charge carriers similarly to magnetic and
electric fields [8]-[12]. The pseudo-magnetic field arising in this way forces the trajectories of charge
carriers to form cycles analogous to the Larmor ones. These cycle currents can be regarded as
intrinsically generated “geometric” quasiparticles, whose size (de Broglie wavelength) correlates
with the curvature radius and effective length of the lattice strain. Certainly, the size of geometric
quasiparticles is smaller than the size of the geometrically stable area in which they live.

Quasiparticles of this kind can propagate as a whole along the surface in the absence of any
external fields, just due to the inhomogeneity of the Riemann metric and strain. This dynamics,
in the basic semiclassical approximation, preserves the state density as well as a curvature/strain
symplectic form (Poisson brackets) on the surface [13]-[16]. At the quantum level, this leads to
the occurrence of quantum structure making the surface coordinates noncommutative (like in the
case of Landau-Peierls guiding center coordinates on the plane [17]-[19]). The surface area is to
be treated as a quantum “phase space,” where the role of “Plank scale” is played by the inverse
scale of the curvature or/and of the lattice strain density. Thus, 2D-materials attaining geometric
stability become quantum surfaces.

Note that, in general, the strength of the intrinsic pseudo-magnetic field in graphene is composed

of two sources as
st K/2, (1.1)

where the signs + reflect the direction of the pseudospin, K stands for the Gaussian curvature of
the graphene surface, and the function s can be referred to as the strain density of the atomic
lattice on the surface. The strain density is determined by using a linear combination of the first
derivatives of the strain tensor components in a specific coordinate system attached to the axes of
the lattice [8].

The geometric quasiparticles on the graphene surface exist if and only if at least one of two
magnitudes (1.1) is essentially nonzero. The bands on the surface on which both the strain density
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s and the curvature K are zero or small are areas of quantum instability, where the carbon 2D-
lattice is flat, not stretched, and therefore is not going to keep its surface geometry and may
be transformed to another shape (tube, fullerene, or schwarzite) or just crumpling to somewhat
not two-dimensional. These unstable bands can be treated as “articulations” joining geometrically
stable and quantized pieces of the graphene surface.

Using this viewpoint, we have considered in [16] the charge carriers spectrum on graphene-like
surfaces taking into account the strength of the external magnetic field or the internal strain and
ignoring the curvature contribution. In the present note, we complete this consideration by including
the graphene curvature. We especially look at regions at which the curvature contribution dominates
over the strain, and obtain the dynamics of geometric quasiparticles preserving the curvature and
the area of the surface. The generator of this flow is a vector field which can physically be treated
as an internal kinetic momentum of the Riemannian surface due to its curvature inhomogeneity.

This classical picture of geometric quasiparticle dynamics in graphene sheets is essentially cor-
rected by the quantum topological condition, a la Planck. The number of quantum states of the
quasiparticle turns out to be proportional to the integral of the density (1.1) over the graphene
area in question. In the case of small strain s ~ 0, as we prove below by using the Gauss—Bonnet
theorem, the only way to obtain a sufficiently large number of quantum states, more than 1, is to
assume that K < 0. Thus, one can conclude that nonstrained graphene areas of positive Gauss-
ian curvature repel geometrical quasiparticles; these objects can naturally live in areas of negative
curvature or, alternatively, they need a strong enough strain of the atomic lattice.

2. GRAPHENE ALGEBRA

The charge carriers in graphene at energies near the bottom of the conductivity zone mimic the
Dirac fermions [20], [21]. The simplest version of quantum Hamiltonian is as follows (for details
and generalizations, see, e.g., [6], [22], [23]):

~

H =vvy-p, v ~ 10® cm/sec, (2.1)

where 7 us a pseudospin and p is the kinetic momentum. In each local coordinate system ¢ = (¢', ¢*)
on the graphene (orientable) surface, the following relations hold between components of v and p:

V™ =2¢"(q), [y = iRl (a) (2-2)
and also relations involving coordinates:
@, bm] = 005, [dq™ =0, @7 =0. (2.3)

Here [, ] stands for the ordinary commutator and [-,-]; for the anticommutator.

The mutual relations between components of the kinetic momentum p are as follows [16]:

. ) 1 o
[pjapm] = ZhQ(Sjm(Q) + ZRsljm(Q)’y l)v (24)
where .
7 = . (25)

The tensor g~ = ((¢?™)) in (2.2) represents the inverse metric on the surface. The tensor

ijsl = ngR

T
msl
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in (2.4) is the curvature of the metric connection with the Christoffel symbols I'7} of (2.2):

msl - a Flm 8lrgm + lﬂsﬂkam - Flscmv (26)
m 1 mr
il =39 (O1gjr + 0j91r — Orgji)- (2.7)

One can also include the torsion terms occurring due to dislocations in the atomic lattice [24]
into the connection coefficients I';

The tensor S = ((Sjn,)) in (2.4) is generated by the internal strain density s of the atomic lattice
on the surface. More precisely, S has the form S = sJ, where the skew-symmetric covariantly
constant tensor J is defined by the relation

J12 =+ detg,

where the sign (£) detects the consistency or inconsistency of the given local coordinate system
with the chosen orientation of the surface.

Note that, for the Hamiltonian (2.1) to be self-adjoint, it is to be considered on the Hilbert space
where all coordinate operators ¢’ are self-adjoint and the inner product is given by the Riemannian
measure over the given surface. This follows from the second relation in (2.2) and from the identities

Orlny/detg =T,

which follow from (2.7).

Relations (2.2)—(2.4) generate an associative algebra indeed, since the Jacobi identities for double
commutators and anticommutators hold. Namely, the Jacobi identity for the triple p, p,~ follows
from definition (2.6) and from the property Rsijm = Rjmsi; the Jacobi identity for the triple p,~,y
follows because the connection (2.7) preserves the metric ¢ = ((g;jm)); the Jacobi identity for the
triple p, p, p follows from the closedness of the form

= (1/2)Sjm(q)dqj A dg™ = +s+/det gdg* A dg? (2.8)

and from the second Bianchi identity (actually, in our two-dimensional case, it holds automatically).

Note that the commutators v*! (2.5) occurring in (2.4), together with y™, generate the “Lie
algebra”

[,Ym’,ysl] — 9 (gms,}/l gml,}/s)

. 2.9
A7) = 2i(g Y 4 g™ g A gy, 29
We also note that )
sl\2
= . 2.10
O = o (2.10)

This follows from the anticommutation relations (2.2).
Our analysis of the algebra (2.2)-(2.4) is based, first of all, on the key relation (2.4). This shows
that, near the bottom levels, we have

h~ (2.11)

s

where [, stands for the characteristic scale of the strain-curvature field S + iRv. In this case,

I
/AN b
lq',P'] E
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by the first relation (2.3), where [ stands for the characteristic scale of “large” inhomogeneity of the
graphene sheet and ¢’ = ¢/l and p’ = (I, /h)p are the normalized coordinates and momenta, ¢’ ~ 1
and p’ ~ 1. If the parameter € = [, /l in (2.12) is small, then one can separate the “slow variables”
q' (for which [¢/,p'] ~ €) from the “fast variables” ~, p’ (for which [y,~]+ ~ 1, [p/,p'] ~ 1) by using
the standard adiabatic approximation.

The spectrum of the Hamiltonian (2.1) H = (hv/l.)v - p' can be readily computed in the sub-
algebra of fast variables 7, p’ producing a series of pseudo-Landau levels, i.e., energies of different
size circular currents. Each pseudo-Landau level, except for the zero one, is actually a function
depending on the slow variables. These variables are not just ¢’, but are chosen from the additional
condition that they commute with the fast variables up to £2. This condition can be achieved only
if the slow variables are admitted to be noncommutative (the way in which the “leading center”
coordinates occurred). Finally, one obtains a series of Hamiltonians over the surface with nontrivial
commutators between coordinates. These Hamiltonians determine quantum states and the classical
dynamics of geometric quasiparticles on the graphene quantum surface, which could be very useful
in the “strain electronics” [25].

3. STRAIN QUASIPARTICLES

Recall results of [16] (for details, see [13-15]) related to the case in which the strain dominates
the curvature on the right-hand side of (2.4).

Theorem 3.1. Assume that the tensor S = ((Sjn,)) does not degenerate on the area in question
of the graphene surface and dominates the curvature field. Then the following statements hold.

(i) The Hamiltonian (2.1) in the low-energy approximation is equivalent to the direct sum of the
pseudo-Landau level Hamiltonians

H(Q) = +hoVk - 47N (Q), k=0,1,2,... (3.1)

where ot
N = (1/(2n))y/|det S|/det g = |s|/2m (3.2)
on the quantum surface with nontrivial commutation relations between coordinates:

[Q7,0™] = iS™Y™(Q) + small corrections. (3.3)

The “small correction” summands in (3.3) are chosen to provide the correct behavior (invariance)
after the change of local quantum coordinates Q7 in higher orders with respect to the semiclassical
small parameter 1. /1, where l,. characterizes the scale of the strain density,

|s| ~ 1/12. (3.4)

(ii) For k # 0, the classical dynamics of quasiparticles on the surface generated by the kth
Hamiltonian (3.1) reads

dQ
©_ 3.5
M- ) (35)
with respect to the Poisson brackets {-,-} on the surface corresponding to relations (3.3), i.e.,
{A,B} =h 18719, AD; B.
The Hamilton-type system (3.5) reads as an equation of Maxwell-Lorentz type:

4
curl § = £, (3.6)
v
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GRAPHENE AS A QUANTUM SURFACE 29

where the “current density” j is defined by
. def 7[' 3/2 dQ
= —N —_— .
J TN QL (3.7)

(curl §)™ &ef v,;8mi

and the circulation vector field

1s defined by the Levi-Civita covariant derivative V applied to the tensor S whose indices are raised
by means of the metric.

(iii) The function N (3.2) and the form & (2.8) are preserved by the flow generated by the dynam-
ical system (3.6). The Planck-type discretization rule for the symplectic form (2.8), or, equivalently,
the discretization rule for the integral strain

1 1
+ sdo=n+ - = N=N,, n=0,12 ..., (3.8)

27 Jyn 2

(where
def

OXIN] = {N(Q) = N}
and do stands for the Riemannian measure on the surface), implies the semiclassical asymptotics
of the near-zero eigenvalues of the Hamiltonian (2.1):

Ejn ~ +hoy/k - ATN,,. (3.9)

Note that, in view of (3.8), the function N (3.2) determines the state density'of quasiparticles
on pseudo-Landau levels. The quasiparticles propagate along the curves {N(Q) = N,,} surrounding
the ares with the discrete flux (3.8) on the graphene surface. If the energy (3.9) is about the Fermi
energy ¢, the bound (3.4) for the strain density s correlates with the value of the Fermi momentum
pr = ep/v and with the estimate for the kinetic momentum (2.11); the spatial quasiparticle size
I, then correlates with the Fermi wavelength I = hi/pp.

4. CURVATURE QUASIPARTICLES

In contrast to the previous section, assume that the curvature contribution dominates the lattice
strain contribution in (2.4). In such a situation, one can replace the commutation relation (2.4) of
the graphene algebra by the relation

[ﬁjvﬁm] = (ih2/4)Rsljm78l-

The entire algebra (2.2), (2.3), (2.4a) is very interesting from the mathematical point of view, be-
cause it is generated by the metric tensor exclusively. Therefore, any consequences derivable from
representation theory and spectral theory for this algebra and for the Hamiltonian (2.1) contain
information on geometrical properties of Riemannian surfaces. For instance, the procedure of adi-
abatic separation of variables and of the reduction to the pseudo-Landau levels, briefly described
at the end of Sec. 2, produces a curvature-preserving flow on the Riemannian surface which can
physically be interpreted as the Hamiltonian flow of quasiparticles in graphene. Let us now go into
details.

IThe actual density of states in graphene is equal to 4N because of two possible values of a pseudospin and two
possible choices of a valley (corners of the Brillouin zone).
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The principal difference of the purely “curvature case” from the purely “strain case” is the
presence of generators v*! on the right-hand side of (2.4a). However, since we deal with a 2-
dimensional surface, the only nonzero generator is v'2 = —y2!, and (2.4a) reads

o ih?
(D1, 2] = 7R1212’Yl2-

It follows from (2.10) that the spectrum of 7' consists of numbers +1/+/det g at each point of the
surface. Thus, on the eigenspaces of ¥'2, one obtains a scalar right-hand side in the relation for the
momentum components,

L ih? ih?
[P1,P2] = j271?1212/ detg = ﬂ:TK det g,

where K stands for the Gaussian curvature of the surface,

def 1 ;
K = §RsljmgS]glm'
Now we can just apply the results of [16] claimed in the previous section (Sec. 3) by choosing the
value K there, instead of the strain density s. For instance, the function (3.2) is

K
N K]

== (4.1)

in this case. Thus, we obtain the following “curvature copy” of Theorem 3.1.

Theorem 4.1. Let the surface be oriented. Assume that the Gaussian curvature K does not
vanish on the area in question of the surface. Then the Hamiltonian (2.1) over the metric generated
algebra (2.2), (2.3), (2.4a), in the low-energy approximation, is equivalent to the direct sum of the
Hamiltonians

H=+mVEK|(Q), k=0,1,2,,.... (4.2)

In (4.2), the noncommutative coordinates Q= (Ql, QQ) on the quantum surface obey the relation
N] Am . 2 —1jm A .

[Q7,Q™] = Fi ?J I (Q) + small corrections. (4.3)

The pair of signs F on the right-hand side of (4.3) corresponds to the pair of opportunities to choose
the direction of the pseudospin (i.e., some eigensubspace of the generator ¥'2). The notion of “small
corrections” was explained in Theorem 3.2 (a).

For k # 0, the classical dynamics of quasiparticles on the surface generated by the kth Hamil-
tonian (4.2) and by relations (4.3) is given by

m*% = +kh(J 10 |K|)(Q), (4.4)

where the effective mass my is determined by the relation H = ML v2.

The flow generated by the dynamical system (4.4) preserves the Gaussian curvature K and the
surface area do. The Planck-type discretization rule, corresponding to relations (4.3) or, equiva-
lently, the discretization rule for the integral curvature

1
4 E[N]
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where
O[N] < {|K| = 47N},

implies the semiclassical asymptotics (3.9) for the near-zero eigenvalues of the Hamiltonian (2.1).

Note that, by (4.2), one can estimate the nonzero pseudo-Landau levels,

B
HNZ—”\/E,

where [, stands for the effective curvature radius,
K ~1/2.

Comparing with
Er = hv/lp,

we see that the Fermi wavelength

lp ~ 1, /VEk

correlates with the curvature radius. We also see from (4.5) that the quasiparticles propagate along
the curves surrounding areas with discrete values of the integral Gaussian curvature. This dynamics
is controlled by the system (4.4) whose right-hand side khJ0In | K| can be referred to as the internal
kinetic momentum of the Riemannian surface (on the kth pseudo-Landau level).

The dynamics of strain quasiparticles which is caused by the lattice stretch was described in
(3.6) by using the electromagnetic terminology, including “current density” and “Maxwell-Lorentz
equation”. In contrast to this language, we represent the dynamics of curvature quasiparticles in a
“mechanical” form (4.4) by introducing the notion of effective mass

My = %\/k\K].

However, it should be noted that equation (4.4) is not of Newton or Einstein type and, as it
seems, has no direct analog in mechanics or general relativity. The flow generated by the internal
momentum of the surface is due to the spinor framing (2.2), (2.3), (2.4a) originated from the metric
field on the surface.

Remark 4.1. Note that, by the Gauss—Bonnet theorem, the integral curvature of any piece X
of surface on which K > 0 is estimated as

1
/ Kdo <1, (4.6)
47T »

and equality in (4.7) is realized only for the closed sphere (fullerene) 3 ~ S2. Thus, the discretization
rule (4.6) either fails to hold or holds only for the single index n = 0. This means that, on such
pieces of the graphene surface, quantum states cannot exist at all or only one state exists (for each
pseudo-Landau level &k = 1,2,...). We conclude that the areas on the graphene sheet with K > 0
repel the states of curvature quasiparticles?.

However, on pieces with K < 0, the discretization rule (4.6) can hold for many values of n,
and therefore many quantum states of the quasiparticles can exist in these areas. Hence the purely
curvature quasiparticles, as quantum objects, naturally live in negatively curved graphene areas.

2This is in a good correspondence with the statement of [26] that the pentagon rings in the carbon lattice repel the
charge density (recall that pentagons give the cases of positive curvature and heptagons those of negative curvature
in graphene).
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Except for trivial saddle surface or one-sheet hyperboloids (e.g., “worm-holes” [27]) one can
mention “schwartzites” ([28], [29]) and the carbon foam [30] as interesting cases. For this type of
surfaces X, the total integral curvature (in the compact case) is given by the Gauss—Bonnet relation,

1
/Kdo’zl—g(Z),
47 b))

where g stands for the topological genus. Some phenomena observed in topologically complicated
graphene-type structures [31] probably can be related to the existence of currents of the curvature
quasiparticles on negatively curved surfaces.

Remark 4.2. In the general situation, the pseudo-Landau level Hamiltonians in graphene sheets

look as
/ 1
‘H = +thv 2k]sj:§K], k=1,2,...,

where the mixture of the strain density and the curvature controls the dynamics and the spectrum
of geometric quasiparticles. The integral of the mixed magnitude |s+ %K |, presented in the general
discretization rule similar to (3.8) or (4.5), due to a large contribution of strain, can take values
in a wide interval, and therefore many quantum states of geometric quasiparticles can exist even
on positively curved graphene pieces (see, for instance, [32]). On the other hand, on negatively
curved graphene sheets, the contribution of strain is small enough [33], and so the curvature effects
probably dominate indeed.

5. “ZERO” QUASIPARTICLES

In the previous sections, we dealt with excited pseudo-Landau levels and the corresponding
geometric quasiparticles in graphene. In the present section (the last one, and very short), we
discuss a conjecture related to the zero-level quasiparticles.

An ordinary-type atomic lattices whose connectedness is determined by short-range electron
orbitals (up to valence zone) cannot be two-dimensional geometrically in tens nanometers or more
scale in view of the Landau—Peierls theorem [34]. That is why one could try to explain the large-scale
geometric stabilization of the graphene surfaces by the existence of interlacing long electron orbitals
staying not inside the ordinary molecular shells but just at the boundary between the valence zone
and the conductivity zone (at the Dirac point). In other words, our conjecture is that the electron
orbitals taking part in the geometric stabilization of freely suspended graphene could be just the
geometric quasiparticles, i.e., the pseudo-Larmor circular currents, at the zero pseudo-Landau level
with the index k£ = 0, in our notation.

Such “zero” quasiparticles are generated by the effective pseudo-magnetic fields, i.e., by the lat-
tice strain and the curvature, whereas they are indifferent to the inhomogeneity of these fields. More-
over, the existence of zero modes for the Dirac operator (2.1) is indifferent to relative magnitude
of the strain-curvature radius (de Broglie wave length) I, ~ (|s| + |K|/2)~!/2. In the semiclassical
regime, the dynamics like (3.6), (4.4) for the “zero” quasiparticles is

dQ
=< =0.
dt

Thus, in average, the “zero” quasiparticles generate no actual current, as is to be for molecular
orbitals.

If one agrees that a part of the energy of “zero” quasiparticles is spent to the geometric stabi-
lization of the lattice, then it could explain the anomaly small width of the zero pseudo-Landau
level in free graphene [35] (unusually small values of the Stoner parameter).
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Further, let the graphene sheet be placed into a weak electric field &, of several volts. Then the
general dynamics of geometric quasiparticles like (3.6), (4.4) admits an additional pseudo-Hall drift
directed perpendicularly to £. This pseudo-Hall current interferes and competes with the geometric
current considered in Secs. 3 and 4 (see [16]). However, specifically, for the “zero” quasiparticles
which have no geometric current component, the only contribution to dynamics is given by the
pseudo-Hall component,

N

dt h s+ K/2
The pseudo-Hall dynamics is generated by the lattice strain, the surface curvature, and the electric
field &€ = VU. This semiclassical dynamics preserves the strain-curvature area |s & K/2|do on the
graphene surface, as well as the electric potential U, i.e., the current lines of “zero” quasiparticles
on the graphene sheet placed into electric field are equipotential.

If one accepts that a part of the “zero” quasiparticles energy is spent to the geometric stabi-
lization of the graphene lattice, then the pseudo-Hall current actually has to be less then that
pointed above. This reduction agrees with the fact that, on the zero pseudo-Landau level, the Hall
resistance is observed to have an anomalous behavior [36] under a weak electric field.

During the Hall drift, the interaction thus conjectured between “zero” quasiparticles and the
lattice would imply the deformation of the lattice in the direction perpendicular to the electric
field. This deformation changes the lattice strain. As a result, by increasing the electric field, one
pushes the system to jump to the next (nonzero) pseudo-Landau level, and thus to change its
pseudo-Hall resistance sharply (as in [36]).
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