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Quantization of Drinfeld zastava in type C
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To Vladimir Drinfeld on his 60th birthday

Abstract

A Drinfeld zastava is a certain closure of the moduli space of maps from the projective
line to the Kashiwara flag scheme of an affine Lie algebra ĝ. In case g is the symplectic
Lie algebra spN , we introduce an affine, reduced, irreducible, normal quiver variety Z
which maps to the zastava space isomorphically in characteristic 0. The natural Poisson
structure on the zastava space Z can be described in terms of the Hamiltonian reduction
of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra.
The quantum Hamiltonian reduction of the corresponding quotient of its universal
enveloping algebra produces a quantization Y of the coordinate ring of Z. The same
quantization was obtained in the finite (as opposed to the affine) case generically in the
work of Gerasimov-Kharchev-Lebedev-Oblezin (2005). We prove that Y is a quotient
of the affine Borel Yangian. The analogous results for g = slN were obtained in our
previous work.

1. Introduction

1.1. This note is a continuation of [FR14], where we have studied the Drinfeld zastava spaces
Zd(ŝlN ) from the viewpoint of invariant theory. Given a collection of complex vector spaces
(Vl)l∈Z/NZ with dimension vector dim(Vl)l∈Z/NZ = (dl)l∈Z/NZ = d along with a collection of
vector spaces (Wl)l∈Z/NZ with dimension vector dim(Wl)l∈Z/NZ = (1, . . . , 1), we consider the
space Md = {(Al, Bl, pl, ql)l∈Z/NZ} =⊕

l∈Z/NZ

End(Vl)⊕
⊕

l∈Z/NZ

Hom(Vl, Vl+1)⊕
⊕

l∈Z/NZ

Hom(Wl−1, Vl)⊕
⊕

l∈Z/NZ

Hom(Vl,Wl)

of representations of the following chainsaw quiver:
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Furthermore, we consider the closed subscheme Md ⊂ Md cut out by the equations Al+1Bl −
BlAl + pl+1ql = 0 for all l, and two open subschemes M s

d ⊂ Md (resp. M c
d ⊂ Md) formed by

all {(Al, Bl, pl, ql)l∈Z/NZ} such that for any Z/NZ-graded subspace V ′• ⊂ V• with AlV
′
l ⊂ V ′l ,

and BlV
′
l ⊂ V ′l+1 for all l, if pl(Wl−1) ⊂ V ′l for all l, then V ′• = V• (resp. if V ′l ⊂ Ker ql for

all l, then V ′• = 0). The group G(V•) =
∏
l∈Z/NZGL(Vl) acts naturally on Md preserving the

subschemes Md,M
s
d ,M

c
d .

According to [FR14], [BF11], the action of G(V•) on Md ∩M s
d ∩M c

d is free, and the quotient

(Md ∩M s
d ∩M c

d)/G(V•) is naturally isomorphic to the moduli space
◦
Zd of based maps of degree

d from the projective line to the Kashiwara flag scheme of the affine Lie algebra ŝlN . More-
over, the categorical quotient Md//G(V•) is naturally isomorphic to the Drinfeld zastava closure

Zd(ŝlN ) ⊃
◦
Zd. Furthermore, the scheme Md//G(V•) ' Zd(ŝlN ) is reduced, irreducible and nor-

mal. One of the crucial points in proving this consists in checking that (Md ∩M s
d ∩M c

d) ⊂ Md is
dense, while Md ⊂Md is a complete intersection.

1.2. One of the goals of this note is to extend the above results to the case of zastava spaces
for the affine symplectic Lie algebra ŝpN (in case N is even). We prove that any zastava scheme
for ŝpN is reduced, irreducible and normal. Note that these properties of zastava schemes were
established in [BF11] for all finite dimensional simple Lie algebras.

To this end we again invoke invariant theory. Following [BS00], we equip W :=
⊕

l∈Z/NZWl

with a symplectic form such that Wl and Wk are orthogonal unless l + k = N − 1. We equip
V :=

⊕
l∈Z/NZ Vl with a nondegenerate symmetric bilinear form such that Vl and Vk are or-

thogonal unless l + k = 0. In particular, we must have d−l = dl for all l, so that the col-
lection d is encoded by d := (d0, d1, . . . , dN/2). We denote by O(V•) the Levi subgroup of the
orthogonal group O(V ) preserving the decomposition V :=

⊕
l∈Z/NZ Vl. We consider the space

M−1d ⊂ Md of representations of the quadratic chainsaw quiver formed by all the selfadjoint

collections A∗l = Al, B
∗
l = B−l−1, p

∗
l = q−l. We denote by M−1d ⊂ M−1d the scheme-theoretic

intersection Md ∩M−1d .

We prove that M−1d ∩M
s
d = M−1d ∩M

c
d ⊂ M−1d is dense, while M−1d ⊂ M−1d is a complete

intersection. We deduce that the categorical quotient M−1d //O(V•) is reduced, irreducible and

normal. Furthermore, we prove that the action of O(V•) on M−1d ∩ M
s
d = M−1d ∩ M

c
d is free

and that the quotient (M−1d ∩M
s
d)/O(V•) is naturally isomorphic to the moduli space

◦
Zd(ŝpN )

of based maps of degree d from the projective line to the Kashiwara flag scheme of the affine
Lie algebra ŝpN . Moreover, the categorical quotient M−1d //G(V•) is naturally isomorphic to the

Drinfeld zastava closure Zd(ŝpN ) ⊃
◦
Zd(ŝpN ).
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1.3. Quite naturally, we would like to extend the above results to the case of the affine orthogonal
Lie algebra ŝoN . To this end we change the parities of the bilinear forms in 1.2. That is, we equip
W with a nondegenerate symmetric bilinear form, and we equip V with a symplectic form. The
corresponding space of representations of the quadratic chainsaw quiver is denoted by M1

d , and
the corresponding Levi subgroup of Sp(V ) is denoted by Sp(V•). It is still true that the action of
Sp(V•) on M1

d∩M s
d = M1

d∩M c
d is free, and the quotient (M1

d∩M s
d)/Sp(V•) is naturally isomorphic

to
◦
Zd(ŝoN ).

However, we encounter the following mysterious obstacle: M1
d is not irreducible in general, and

M1
d∩M s

d = M1
d∩M c

d is only dense in one of its irreducible components. For this reason the categor-

ical quotient M1
d//Sp(V•) is not isomorphic to the zastava space Zd(ŝoN ) in general. The simplest

example occurs when d is the affine simple coroot of ŝoN , that is, d = (. . . , 0, 1, 2, 1, 0, . . .).

1.4. Following [FR14], we describe the natural Poisson structure on Zd(ŝpN ) in quiver terms.
It is obtained by the Hamiltonian reduction of a Poisson subvariety of the dual vector space
of a (non-semisimple) Lie algebra a−1d with its Lie-Kirillov-Kostant bracket. Now the ring of

functions C[Zd(ŝpN )] admits a natural quantization Y−1
d

as the quantum Hamiltonian reduction

of a quotient algebra of the universal enveloping algebra U(a−1d ). The algebra Y−1
d

admits a

homomorphism from the Borel subalgebra Y−1 of the Yangian of type C in the case of a finite
zastava space. We prove that this homomorphism is surjective. In the affine situation, there is
an affine analog Ŷ−1 of Y−1 (it is no longer a subalgebra in the Yangian of ŝpN ), and we define
it explicitly by generators and relations. We prove that there is a surjective homomorphism
Ŷ−1 → Y−1

d
. Moreover, we write down certain elements in the kernel of this homomorphism and

conjecture that they generate the kernel (as a two-sided ideal). These elements are similar to
the generators of the kernel of the Kamnitzer-Webster-Weekes-Yacobi homomorphism from the
shifted Yangian to the quantization of the transversal slices in the affine Grassmannian. In fact,
as explained in [KWWY12], Y−1

d
as a filtered algebra is the limit of a sequence of quantum

coordinate rings of transversal slices.

2. A quiver approach to Drinfeld zastava for symplectic groups

2.1 Quadratic spaces

We will recall the convenient terminology introduced in [KP82]. Let U be an N -dimensional
complex vector space equipped with a nondegenerate bilinear form (, ) such that (u, v) = ε(v, u).
It will be called a quadratic space of type ε (shortened to orthogonal space if ε = 1 and symplectic
space if ε = −1). We denote by Gε(U) the subgroup of GL(U) leaving the form invariant. So we
have Gε(U) = O(N) or Sp(N) according to whether ε = 1 or ε = −1.

Let A 7→ A∗, End(U) → End(U) be the canonical involution associated with the form, that
is, (Au, v) = (u,A∗v) for any u, v ∈ U . More generally, for a linear operator B ∈ Hom(U, ′U) we
denote by B∗ the adjoint (or transposed) operator B∗ ∈ Hom( ′U∗, U∗).

We choose a basis w0, . . . , wN−1 in a quadratic space W of type ε = −1 such that for
0 6 l < N/2 we have (wl, wm) = δm,N−1−l (note that N is necessarily even). The linear span
of wl will be denoted by Wl

∼= C. We will often parametrize the base vectors by the elements
of Z/NZ. We define I := {0, 1, . . . , N/2} ⊂ {0, . . . , N − 1} = Z/NZ. We set I = I0 t I1 where
I0 = {1, . . . , 12N − 1}, I1 = {0, 12N}.
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We choose another quadratic space V of type −ε = 1 decomposed into a direct sum
V =

⊕
l∈Z/NZ Vl such that Vl is orthogonal to Vm unless l + m = 0 ∈ Z/NZ. We denote the

dimension of Vl by dl. We set d := (dl)l∈I .

We denote by G−ε(V•) the Levi subgroup of G−ε(V ) preserving the decomposition
V =

⊕
l∈Z/NZ Vl. It is isomorphic to O(V0)×O(VN/2)×

∏
0<l<N/2GL(Vl).

2.2 Quadratic chainsaw quivers

Following [FR14, 2.3], we consider the affine space M ε
d of collections (Al, Bl, pl, ql)l∈Z/NZ where

Al ∈ End(Vl), Bl ∈ Hom(Vl, Vl+1), pl ∈ Hom(Wl−1, Vl), ql ∈ Hom(Vl,Wl) satisfy the following
selfadjointness conditions: A∗l = A−l, B

∗
l = B−l−1, p

∗
l = q−l. Here we view pl (resp. ql) as a

vector (resp. covector) of Vl using the identification of all Wm with C.

Following loc. cit., we consider the subscheme Mε
d ⊂ M ε

d parametrizing the d-dimensional
representations of the chainsaw quiver with bilinear form (or the quadratic chainsaw quiver for
short), cut out by the equations Al+1Bl −BlAl + pl+1ql = 0 for all l.

Clearly, Mε
d is acted upon by the Levi subgroup G−ε(V•). We denote by Zεd the categorical

quotient Mε
d//G−ε(V•).

Assumption. From now on we set ε = −1.

2.3 Examples

We consider three basic examples in types C1, C2, C̃1.

2.3.1 Type C1. We take N > 2, d0 = . . . = dN/2−1 = 0, dN/2 = d. We have VN/2 = V =

Cd, AN/2 = A = A∗ ∈ End(V ), B1 = 0, p1 = p ∈ V, q1 = q ∈ V ∗, q(v) = (p, v). Thus
Mε
d = End+(V ) ⊕ V and Zεd = (End+(V ) ⊕ V )//O(V ), where End+(V ) ⊂ End(V ) stands for

the linear subspace of selfadjoint operators (symmetric matrices). By classical invariant the-
ory, the ring of O(V )-invariant functions on End+(V ) ⊕ V is freely generated by the func-
tions a1, . . . , ad, b0, . . . , bd−1, where am := Tr(Am), and bm = (p,Amp). Hence Zεd ' A2d.

2.3.2 Type C2. We take N = 4, d0 = 0, d1 = d2 = d3 = 1. We have V1 = V2 = V3 = C,
and hence all our linear operators act between 1-dimensional vector spaces and can be written
just as numbers. Hence M ε

d has coordinates A1 = A3, A2, B1 = B2, q2 = −p2, q1 = p3, q3 = p1,
and Mε

d is cut out by a single equation B1(A1 − A2) = p2p3. The group G−ε(V•) is the product
GL(V1)⊗O(V2) ' C∗ × {±1} with coordinates c ∈ C∗, s = ±1. It acts on M ε

d as follows:

(c, s) · (A1, A2, B1, p1, p2, p3) = (A1, A2, csB1, c
−1p1, sp2, cp3) .

The ring of C∗×{±1}-invariant functions on Mε
d is generated by the functions A1, A2, b12 := p22,

b01 := p1p3, b02 := p2B1p1, b03 := B2
1p

2
1 with three quadratic relations: b02(A1 −A2) = b01b12,

b03(A1 − A2) = b01b02, b
2
02 = b12b03. Thus Zεd is a 4-dimensional (noncomplete) intersection of

three quadrics in A6. According to S. Kovács (private communication) and computations by
G. Leuschke and A. Verbitsky with the package Macaulay2, Zεd is reduced, not Q-Gorenstein,
but is Cohen-Macaulay and normal, and has rational singularities.

2.3.3 Type C̃1. We take N = 2, d0 = d1 = 1. We have V1 = C = V2, and hence all our linear
operators act between 1-dimensional vector spaces and can be written just as numbers. Hence
M ε
d has coordinates A1, A2, B0 = B1, q0 = p0, q1 = −p1 and Mε

d is cut out by a single equation

169



Michael Finkelberg and Leonid Rybnikov

B0(A1 − A0) + p1q0 = 0. The group G−ε(V•) is the product O(V0) × O(V1) ' {±1} × {±1}
with coordinates (s1, s2). The ring of {±1}×{±1}-invariant functions on Mε

d is generated by the

functions A0, A1, b1 := p21, b0 := p20, s := B2
0 with a single relation b1b0− s(A0−A1)

2 = 0. Note
the coincidence with the output of [FR14, Example 2.8.3].

2.4 The dimension of Mε
d

We define the factorization morphism Υ : Mε
d → Ad =

∏
l∈I(A(1))(dl) so that the component Υl

is just SpecAl.

Proposition 2.1. Every fiber of Υ has dimension dimG−ε(V•) +
∑

l∈I dl.

Proof. We use the same argument as in the proof of [FR14, Prop. 2.11]. Let us list the minor
changes necessary in the quadratic case. The dimension estimate for a general fiber is reduced to
the dimension estimate for the zero fiber where all Al are nilpotent. By the adjointness condition,
(A•, B•, p•, q•) is determined by its components Al for 0 6 l 6 N/2, Bl for 0 6 l < N/2, pl for
0 < l 6 N/2, ql for 0 6 l < N/2, and A0 ∈ End+(V0), AN/2 ∈ End+(VN/2). Note that
dim End+(Vl) = dl(dl + 1)/2 for l = 0, N/2, while dimO(Vl) = dl(dl − 1)/2 for l = 0, N/2.
The dimension of the space of nilpotent selfadjoint operators in End+(Vl) equals dl(dl− 1)/2 for
l = 0, N/2. More generally, the space O+

λ ⊂ End+(Vl) of nilpotent selfadjoint operators of Jordan
type λ (a partition of dl) is a finite union of O(Vl)-orbits, all of the same dimension dimO+

λ =
dimOλ/2 (where Oλ is the nilpotent GL(Vl)-orbit consisting of the nilpotent matrices of Jordan
type λ), see [KR71, Prop. 5]. The argument of the proof of [FR14, Prop. 2.11] implies that, for
example, the dimension of the space of (A0, A1, B0, p1, q0) subject to A1B0 −B0A0 + p1q0 = 0 is
at most d0(d0−1)/2+d21−d1+min(d0, d1)+max(d0, d1). Summing up the similar estimates over
0 6 l < N/2, we obtain the desired inequality dim Υ−1(0, . . . , 0) 6 dimG−ε(V•) +

∑
l∈I dl. The

opposite inequality follows from the computation of the generic fiber of Υ, and the proposition
follows.

The following corollary is proved the same way as [FR14, Cor. 2.12].

Corollary 2.2. The subscheme Mε
d is an irreducible reduced complete intersection in M ε

d .

Theorem 2.3. The categorical quotient Zεd is a reduced irreducible normal scheme.

Proof. We use the same argument as in the proof of [FR14, Thm. 2.7.a)]. We just list the minor
changes necessary in the quadratic case. As in loc. cit., we have to check the normality of the
open subscheme U ⊂ Zεd defined as the preimage under the factorization morphism Φ : Zεd → Ad

of an open subset Û ⊂ Ad formed by all the colored configurations where at most two points
collide. As in loc. cit., this reduces to a few basic checks we already performed in the examples:
2.3.1 when two points of the same color 0 or N/2 (outmost color for short) collide; [FR14, 2.8.1]
when two points of the same color l, 0 < l < N/2 (innermost color for short) collide; 2.3.2
when a point of an outmost color collides with a point of an inmost color; 2.3.3 when two points
of different outmost colors collide; [FR14, 2.8.2] when two points of different innermost colors
collide. This completes the proof of the theorem.

2.5 Symplectic zastava

For d = (d0, . . . , dN/2) ∈ NI we consider the affine zastava space for the symplectic Lie group

G = SpN introduced in [BFG06], where it is denoted by UdG;B. In the present paper we will
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denote it by Zdε . It is a reduced irreducible affine scheme containing as an open subscheme the

(smooth) moduli space
◦
Zdε of degree d based maps from P1 to the affine flag scheme of G = SpN .

Recall that SpN is the fixed point subgroup of the involutive pinning-preserving outer auto-
morphism σ : SLN → SLN . This automorphism acts on the affine flag scheme of SLN , and on
the zastava spaces Zd for SLN . More precisely, we define d = (d̃0, . . . , d̃N−1) ∈ NN as follows:
for 0 6 l 6 N/2 we have d̃l = dl, and for 0 < l < N/2 we set d̃N−l = dl. Then σ acts on Zd, and

the fixed point subscheme (with the reduced closed subscheme structure) is isomorphic to Zdε .

In other words, Zdε is the closure in Zd of
◦
Zdε
∼= (

◦
Zd)σ.

Recall the chainsaw quiver variety Zd introduced in [FR14]. Thm. [FR14, 2.7.b)] constructs
a morphism η : Zd → Zd, and [BF11, Thm. 3.5] proves that η is an isomorphism. We will

identify Zd and Zd via η. Under this identification the open subscheme
◦
Zd corresponds to the

open subscheme
◦
Zd formed by the closed orbits of stable and costable quadruples (A•, B•, p•, q•),

that is, such that V• is generated by the action of A•, B• from the image of p•, and V• contains

no nonzero subspaces in Ker q• closed with respect to A•, B•. The fixed point subscheme (
◦
Zd)

σ

coincides with
◦
Zεd, the open subscheme of Zεd formed by the closed orbits of stable (equivalently,

costable) quadruples (A•, B•, p•, q•) ∈ Mε
d, cf. [BS00, Table 1 and Prop. 3.3].

Lemma 2.4. The closed embedding
◦
Zεd
∼= (
◦
Zd)

σ ↪→
◦
Zd extends to the closed embedding Zεd ↪→ Zd.

Proof. It suffices to check that any G−ε(V•)-invariant function on Mε
d extends to a

∏N−1
l=0 GL(Vl)-

invariant function on Md. This is immediately seen on the generators provided by classical in-
variant theory.

Now, since
◦
Zεd is dense in Zεd = (Zd)

σ, we conclude that Zεd ⊂ Zd = Zd coincides with the

closure of (
◦
Zd)

σ in Zd = Zd . Since the symplectic zastava scheme Zdε also coincides with this
closure, we arrive at the following result.

Theorem 2.5. There is a canonical isomorphism η : Zεd
∼−→Zdε making the following diagram

commutative:
Zεd −−−−→ Zd

η

y yη
Zdε −−−−→ Zd

,

where the horizontal morphisms are the closed embeddings of the σ-fixed points subschemes.

Corollary 2.6. The symplectic zastava scheme Zdε is normal.

3. Hamiltonian reduction

3.1 Poisson structures

According to [FKMM99] (cf. [FR14, 3.1,3.3]), the smooth scheme
◦
Zd carries a canonical sym-

plectic structure which extends as a Poisson structure to Zd = Zd. This Poisson structure was

constructed in [FR14] via Hamiltonian reduction. The restriction of the symplectic form on
◦
Zd

to
◦
Zdε
∼= (

◦
Zd)σ coincides with the canonical symplectic form [FKMM99] on

◦
Zdε . We conclude that
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the canonical symplectic structure on
◦
Zdε extends as a Poisson structure to Zdε

∼= Zεd and that
the σ-fixed point embedding Zεd ↪→ Zd is Poisson. In the next subsection we will construct this
Poisson structure on Zεd via Hamiltonian reduction.

3.2 Classical reduction

Recall the Hamiltonian reduction definition of the Poisson bracket on zastava spaces in type A
(see [FR14]). We “triangulate” the chainsaw quiver in the following way:

Vl−1

Al−1

��

Bl−1

��44444444444444 ql−1

// Wl−1

pl

��














Wl

pl+1

��55555555555555
Wl+1 pl+2

// Vl+2

A′l+2

��

Vl

A′l

WW Vl

Al

WW
Bl //

ql

DD														
Vl+1

A′l+1

WW
Vl+1

Al+1

WW

Bl+1

DD��������������

ql+1

[[77777777777777
.

For a pair of vector spaces U, V define the following 2-step nilpotent Lie algebra:

n(U, V ) := U ⊕ V ∗ ⊕ (U ⊗ V ∗) ,

where the space U ⊗ V ∗ is central, [U,U ] = [V ∗, V ∗] = 0, and for u ∈ U, v∨ ∈ V ∗ one has
[u, v∨] = u⊗ v∨.

To define the Poisson structure, we attach to each triangle of our graph the following Lie
algebra:

al := (gl(Vl)⊕ gl(Vl+1)) o n(Vl, Vl+1)

(the semidirect sum is with respect to the tautological action of gl(Vl) on Vl and gl(Vl+1) on V ∗l+1).

Consider the Lie algebra

ad :=
⊕

l∈Z/NZ

al =
⊕

l∈Z/NZ

(gl(Vl)⊕ gl(Vl+1)) o n(Vl, Vl+1) .

The coadjoint representation of ad is the space a∗d = {(Al, A′l, Bl, pl, ql)l∈Z/NZ}, where

Al ∈ End(Vl), A′l ∈ End(Vl), Bl ∈ Hom(Vl, Vl+1), pl ∈ Vl, ql ∈ V ∗l .

Consider the subvariety Sd ⊂ a∗d defined by the following equations:

BlAl +A′l+1Bl + pl+1ql = 0, l ∈ Z/NZ . (1)

Let gl(Vl)diag be the diagonal gl(Vl) inside gl(Vl)⊕ gl(Vl) ⊂ ad and let π : a∗d → gl(Vl)
∗
diag be

the projection. Then the Drinfeld zastava space Zd is identified with the Hamiltonian reduction

Sd///
⊕

l∈Z/NZ

gl(Vl)diag = π−1(0) ∩ Sd//
∏

l∈Z/NZ

GL(Vl)diag .

This provides a natural Poisson bracket on Zd.

The involution σ acts on the space a∗d as follows:

Al 7→ −A′∗N−l, A′l 7→ −A∗N−l, Bl 7→ B∗N−l, pl 7→ q∗N−l, ql 7→ p∗N−l .
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Remark 3.1. Strictly speaking, σ is not an involution on a∗d since p∗∗ = −p and q∗∗ = −q, but
becomes an involution after the Hamiltonian reduction.

To describe the fixed point set, we consider the half of the chainsaw quiver formed by the
vertices l ∈ I. Define the Lie algebra

aεd :=

N
2
−1⊕

l=0

al =

N
2
−1⊕

l=1

(gl(Vl)⊕ gl(Vl+1)) o n(Vl, Vl+1) .

The coadjoint representation of aεd is the space

aε∗d = {(Al, A′l, Bl, pl, ql)l∈I0 , A0, q0, B0, A
′
N
2

, pN
2
} ,

where

Al ∈ End(Vl), A′l ∈ End(Vl), Bl ∈ Hom(Vl, Vl+1), pl ∈ Vl, ql ∈ V ∗l .
The invariant subvariety Sεd ⊂ aε∗d is again defined by the equations (1):

BlAl +A′l+1Bl + pl+1ql = 0, l = 0, . . . ,
N

2
− 1 .

Let o(Vl) ⊂ gl(Vl) ⊂ aεd for l ∈ I1 be the orthogonal Lie subalgebra and let

π : aε∗d →
⊕
l∈I0

gl(Vl)
∗
diag ⊕

⊕
l∈I1

o(Vl)
∗

be the projection. Then the symplectic Drinfeld zastava space Zεd is identified (as a Poisson
variety) with the Hamiltonian reduction

Sεd///
⊕
l∈I0

gl(Vl)diag ⊕
⊕
l∈I1

o(Vl) = (π−1(0) ∩ Sεd)//
∏
l∈I0

GL(Vl)diag ×
∏
l∈I1

O(Vl) .

We denote the group
∏
l∈I0 GL(Vl)diag ×

∏
l∈I1 O(Vl) simply by Gd, and the corresponding Lie

algebra
⊕

l∈I0 gl(Vl)diag ⊕
⊕

l∈I1 o(Vl) by gd.

3.3 Quantum reduction

The natural quantization of the coordinate ring C[aε∗d ] is the enveloping algebra U(aεd). It will be
convenient to gather the generators of U(aεd) (that is, the basis elements of the Lie algebra aεd)
into the following U(aεd)-valued matrices:

Ak, Bk, qk, A
′
l, pl, 0 6 k <

N

2
, 0 < l 6

N

2
.

According to [FR14], the coefficients of the following matrices form a subspace R ⊂ U(aεd)
invariant with respect to the adjoint action:

BlAl +A′l+1Bl + pl+1ql, l = 0, . . . ,
N

2
− 1, i = 1, . . . , dl+1, j = 1, . . . , dl . (2)

Equivalently, U(aεd)R is a two-sided ideal in U(aεd)).

The natural quantization of the coordinate ring of the space Zεd is the quantum Hamiltonian

reduction Yεd :=
(
U(aεd)/U(aεd)(R+ gd)

)Gd
. The ring Yεd has a natural filtration coming from the

PBW filtration on U(aεd).

Proposition 3.2 (PBW property). We have gr Yεd = C[Zεd].
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Proof. The proof is a word for word repetition of that of Proposition 3.28 from [FR14].

We consider the following elements of Yεd:

al,r := TrArl , r = 1, 2, . . . , l ∈ I ;

bl,s := qlA
s
l pl, s = 0, 1, . . . , l ∈ I .

We also introduce the following elements:

bk,l;sk,...,sl := qlA
sl
l Bl−1A

sl−1

l−1 Bl−2 . . . BkA
sk
k pk, k 6 l ∈ Z, si ∈ Z>0 . (3)

ck,l;sk,...,sl := BlA
sl
l Bl−1A

sl−1

l−1 Bl−2 . . . BkA
sk
k , l = k +mN, si ∈ Z>0 . (4)

From the definitions we get the following relations.

Lemma 3.3. Let k < l + 1. Then

[bk,l;0,...,0, bl+1,0] =


bk,l+1;0,...,0,0 l ± k 6= 0, 2 mod N, 2l + 2 6= 0 mod N ,
2bk,l+1;0,...,0,0 2l + 2 = 0 mod N ,
bk,l+1;0,...,0,0 − bk−1,l;0,...,0,0 l + k = 0 mod N ,
2(bk,l+1;0,...,0,0 − bk−1,l;0,...,0,0) l + k = 0 mod N, 2l + 2 = 0 mod N ,
bk,l+1;0,...,0,0 − bk−1,l;0,...,0,0 l − k = 2 mod N .

Lemma 3.4. For k 6 m 6 l, we have [am,r, bk,l;sk,...,sl ] = λbk,l;sk,...,sm+r−1...,sl + L, where λ ∈
C\{0}, L ∈ Yεd is expressed in bk′,l′;sk′ ,...,sl′ with l′−k′ < l−k and degL 6 deg bk,l;sk,...,sm+r−1...,sl
with respect to the PBW filtration.

Proof. Straightforward.

Lemma 3.5. (C1 case) Let p0, p1, A0, A1, B be the (matrices of) generators of the algebra ad for
N = 2. Then the algebra Yεd is generated by al,r := TrArl , bl,0 := p∗l pl with l = 0, 1, r = 1, . . . , dl.

Proof. According to Lemma 3.4, it suffices to check that the invariants of the form p∗0(B
∗B)mp0,

p∗1B(B∗B)mp0, p
∗
0(B

∗B)mB∗p1, p
∗
1(BB

∗)mp0 and Tr(BB∗)m can be expressed in al,r, bl,0. This
is easily checked by induction on m.

Proposition 3.6. The algebra Yεd is generated by al,r, bl,s with l ∈ I, r = 1, . . . , dl and
s = 0, . . . , dl − 1.

Proof. Arguing in the same way as in Proposition 3.35 of [FR14] we reduce the problem to
expressing bk,l;0,0,...,0 and c0,mN ;0,...,0 in al,r, bl,s.

By Lemma 3.3 for l− k < N − 1 we have bk,l;0,0,...,0 = λ[[. . . [bk,0bk+1,0] . . . , bl−1,0], bl,0], where
λ is a nonzero number. Thus the bk,l;0,0,...,0 with l − k < n can be expressed in al,r, bl,s. Suppose
that bk,k+mN−1;0,0,...,0 for some m ∈ Z+ can be expressed in al,r, bl,s, then for l − k < N we
have bk,l+mN ;0,0,...,0 = λ[[. . . [bk,k+mN−1;0,0,...,0bk+N+1,0] . . . , bl+N−1,0], bl+N,0]. Thus bk,l+mN ;0,0,...,0

with l − k < N can be expressed in al,r, bl,s as well. So, the problem reduces to expressing
bk,k+mN−1;0,...,0,0 and c0,mN ;0,...,0 in al,r, bl,s.

Let D = (d0, dN
2

). Define the homomorphism Φ : U(aεD)→ U(aεd) by

Φ(A0) = A0, Φ(A1) = AN
2
, Φ(B) = BN

2
−1 ·BN

2
−2 · . . . ·B0 ,

Φ(p0) = p0, Φ(p1) = BN
2
−1 · . . . ·B1p1 .
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Note that Φ(YεD) ⊂ Yεd. By Lemma 3.5, YεD is generated by the elements al,r := TrArl ,
bl,0 := p∗l pl with l = 0, 1, r = 1, . . . , dl. We have Φ(a0,r) = a0,r, Φ(a1,r) = aN

2
,r, Φ(b0,0) = b0,0,

Φ(b1,0) = b1,N−1;0,...,0. Thus everything from Φ(YεD) can be expressed in al,r, bl,s. On the other
hand, Φ(b0,2m−1;0,...,0) = b0,mN−1;0,...,0 and Φ(c0,2m;0,...,0) = c0,mN ;0,...,0.

4. Yangians

4.1 The Yangian of spN
Let (ckl)k,l=1,2,...,N/2 stand for the symmetrized Cartan matrix of spN . That is, ckk = 4 for
k = N/2, ckk = 2 for 0 < k < N/2, ckl = 0 for |k − l| > 1, ckl = −1 for 0 < k, l < N/2 and
l = k ± 1, and ckl = −2 otherwise.

The Yangian Y (spN ) is generated by x±k,r,hk,r, k = 1, 2, . . . , N/2, r ∈ N, with the following
relations:

[hk,r,hl,s] = 0, [hk,0,x
±
l,s] = ±cklx±l,s , (5)

2[hk,r+1,x
±
l,s]− 2[hk,r,x

±
l,s+1] = ±ckl(hk,rx±l,s + x±l,shk,r) , (6)

[x+
k,r,x

−
l,s] = δklhk,r+s , (7)

2[x±k,r+1,x
±
l,s]− 2[x±k,r,x

±
l,s+1] = ±ckl(x±k,rx

±
l,s + x±l,sx

±
k,r) , (8)

[x±k,r, [x
±
k,p,x

±
l,s]] + [x±k,p, [x

±
k,r,x

±
l,s]] = 0, k = l ± 1, k ∈ I, l ∈ I0, ∀p, r, s ∈ N , (9)

∑
σ∈S3

[xk,rσ(3) , [xk,rσ(2) , [xk,rσ(1) ,xl,s]]] = 0, k = l ± 1, k ∈ I, l ∈ I1, ∀r1, r2, r3, s ∈ N . (10)

We will consider the “Borel subalgebra” Yε of the Yangian, generated by the x+
k,r and hk,r.

For a formal variable u we introduce the generating series hk(u) := 1 +
∑∞

r=0 hk,ru
−r−1 and

x+
k (u) :=

∑∞
r=0 x

+
k,ru

−r−1.

We also consider a bigger algebra DYε, the “Borel subalgebra of the Yangian double”, gen-
erated by all Fourier components of the series hk(u) := 1 +

∑∞
r=0 hk,ru

−r−1 and x+
k (u) :=∑∞

r=−∞ x+
k,ru

−r−1 (that is, the generating series x+
k (u) are infinite in both positive and negative

directions) with the defining relations (5,6,8,9,10). The algebra Yε is then the subalgebra gener-
ated by the negative Fourier components of the x+

k (u) and hk(u) due to the PBW property of
the Yangians. We can then rewrite Eqs. (6,8) in the following form:

hk(u)x+
l (v)

2u− 2v − ckl
2u− 2v + ckl

= x+
l (v)hk(u) . (11)

x+
k (u)x+

l (v)(2u− 2v − ckl) = (2u− 2v + ckl)x
+
l (v)x+

k (u) . (12)

The function (2u − 2v − ckl)/(2u − 2v + ckl) here is understood as a formal power series in
u−1, v−1, u−1v, hence Eq. (11) is well defined.
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Following [FR14], we will use a little bit different generators of the Cartan subalgebra of the
Yangian,

Ak(u) := udk +Ak,0u
dk−1 + . . .+Ak,ru

dk−r−1 + . . . , (13)

obtained as the (unique) solution of the system of functional equations:

hk(u) = Ak(u+
1

2
)−1Ak(u−

1

2
)−1Ak−1(u)Ak+1(u)(u+

1

2
)dk(u− 1

2
)dku−dk−1u−dk+1 , (14)

for k = 1, 2, . . . , N2 − 1, and

hN
2

(u) =AN
2

(u+ 1)−1AN
2

(u− 1)−1AN
2
−1(u)AN

2
−1(u+

1

2
)

· (u+ 1)
dN

2 (u− 1)
dN

2 u
−dN

2 −1(u+
1

2
)
−dN

2 −1 .

(15)

Here we take A0(u) = 1

Lemma 4.1. The generators Ak(u) of DYε satisfy the relations

Ak(u)x+
l (v)

2u− 2v + 1
2ckkδkl

2u− 2v − 1
2ckkδkl

= x+
l (v)Ak(u) . (16)

Lemma 4.2. Let Ak(u) and x+
l (u) be the generating series of DYε. Then the series

ak(u) =
Ak(u− 1

4ckk)

Ak(u+ 1
4ckk)

= 1− dku−1 −
∞∑
r=1

ak,ru
−r−1 and x+

l (u)

satisfy the following commutator relations:

[ak(u),x+
l (v)](u− v) = −

1
4c

2
kkδkl

u− v
x+
l (v)ak(u), [ak(u),al(v)] = 0 . (17)

The series ak(u), x+
l (u) generate DYε with the defining relations (17), (8) and (9), and their

negative Fourier components generate Yε.

Proof. For k 6= l the relation is obvious, for k = l we have

ak(u)x+
k (v)

u− 1
4ckk − v + 1

4ckk

u− 1
4ckk − v −

1
4ckk

·
u+ 1

4ckk − v −
1
4ckk

u+ 1
4ckk − v + 1

4ckk
= x+

k (v)ak(u) .

therefore

ak(u)x+
k (v)

(u− v)2

(u− v)2 − 1
4c

2
kk

= x+
k (v)ak(u) .

One can inductively express Ak,r in ak,s with s 6 r+ 1, hence DYε is generated by ak(u) and
x+
l (u). On the other hand, the quotient of C[ak,r]

∞
r=1 ·DY+ by relation (17) is C[ak,r]

∞
r=1 ⊗DY+

as a filtered vector space. The same argumentation holds for Yε. The assertion follows.

4.2 The Yangian of ŝpN
Let (ckl)k,l∈I stand for the symmetrized Cartan matrix of ŝpN . That is, ckk = 4 for k = 0 or
k = N/2, ckk = 2 for 0 < k < N/2, ckl = 0 for |k − l| > 1, ckl = −1 for 0 < k, l < N/2 and
l = k ± 1 and ckl = −2 otherwise.
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As for the finite case, we will consider the “affine Borel Yangian”. This is an associative
algebra Ŷε generated by the series

x+
k (u) :== 1 +

∞∑
r=0

xk,ru
−r−1 , (18)

Ak(u) := udk +

∞∑
r=0

Ak,ru
dk−r−1 , (19)

with k ∈ Z, subject to the relations

Ak(u)Al(v) = Al(v)Ak(u) , (20)

x±k (u)x±l (v)(2u− 2v ∓ ckl) = x±l (v)x±k (u)(2u− 2v ± ckl) , (21)

where (ckl) stands for the symmetrized Cartan matrix of C̃n, and

Ak(u)x+
l (v)

2u− 2v + 1
2cklδkl

2u− 2v − 1
2cklδkl

= x+
l (v)Ak(u) , (22)

in the sense that the negative Fourier components of the LHS and RHS are equal, and the Serre
relations (9) and (10).

4.3 Symplectic Yangians and symplectic zastava spaces

Theorem 4.3. The algebra Yεd is a quotient of the Borel Yangian Ŷε of ŝpN by some ideal
containing Ak,r = 0 for r > dk.

Proof. For k ∈ I, l ∈ I0, we introduce the following generating series in Yεd:

ak(u) := 1− dku−1 −
∞∑
r=1

ak,ru
−r−1, bl(u) :=

∞∑
s=0

bl,su
−s−1 . (23)

For l ∈ I1, i = 1, 2, . . . , dl, we introduce the following generating series in U(aεd) (warning:
these are not in Yεd):

b
(i)
l (u) :=

∞∑
s=0

b
(i)
l,su
−s−1, b

(i)
l,s := (Asl pl)

(i) , (24)

the i-th coordinate of the vector Asl pl in the orthonormal basis of Vl. We then have the following
result (see [FR14]).

Lemma 4.4. The following relations hold:

(u− v)[bk(u), bk(v)] = (bk(u)bk(v) + bk(v)bk(u)) for k ∈ I0 , (25)

2(u− v)[bk(u), bl(v + dl)] = −(bk(u)bl(v + dl) + bl(v + dl)bk(u)) for k, l ∈ I0, l = k + 1 , (26)

(u− v)[ak(u), bl(v)] = − δkl
u− v

bl(v)ak(u) for k ∈ I, l ∈ I0 . (27)
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2(u− v)[b
(i)
k (u), b

(j)
k (v)] = ckl(b

(i)
k (u)b

(j)
k (v) + b

(j)
k (v)b

(i)
k (u)) for k ∈ I1, i, j = 1, . . . , dl , (28)

2(u− v)[b
(i)
k (u), bl(v + dl)] = ckl(b

(i)
k (u)bl(v + dl)+bl(v + dl)b

(i)
k (u))

for k ∈ I1, l = k + 1, i = 1, . . . , dl ,
(29)

2(u− v)[bk(u), b
(i)
l (v + dl)] = ckl(bk(u)b

(i)
l (v + dl)+b

(i)
l (v + dl)bk(u))

for l ∈ I1, l = k + 1, i = 1, . . . , dl ,
(30)

(u− v)[ak(u), b
(i)
l (v)] = − δkl

u− v
b
(i)
l (v)ak(u) for k ∈ I, l ∈ I1, i = 1, . . . , dl . (31)

Proof. This follows from Propositions 3.24 and 3.32 of [FR14].

Lemma 4.5. We have

[bk,r2 , [bk,r1 , bl,s]] + [bk,r1 , [bk,r2 , bl,s]] = 0 for k, l ∈ I0, |k − l| = 1 , (32)

[bk,r2 , [bk,r1 , b
(i)
l,s ]] + [bk,r1 , [bk,r2 , b

(i)
l,s ]] = 0 for k ∈ I, l ∈ I1, |k − l| = 1, i = 1, . . . , dl , (33)

[b
(i)
k,r2

, [b
(j)
k,r1

, bl,s]] + [b
(j)
k,r1

, [b
(i)
k,r2

, bl,s]] = 0 for k ∈ I1, l ∈ I, |k − l| = 1 i, j = 1, . . . , dk . (34)

Proof. This follows from Proposition 3.32 of [FR14].

For l ∈ I, let Dl(u) be the (unique) solution of the functional equation

al(u) := Dl(u−
1

2
)Dl(u+

1

2
)−1. (35)

We have

Dl(u)bk(v)
2u− 2v + δkl
2u− 2v − δkl

= bk(v)Dl(u) for k ∈ I0

and

Dl(u)b
(i)
k (v)

2u− 2v + δkl
2u− 2v − δkl

= b
(i)
k (v)Dk(u) for k ∈ I1 .

Set b̃
(i)
k (u) := Dk(u− 1

2)−1b
(i)
k (u). From Lemma 4.4, we have

b̃
(i)
k (u)b̃

(j)
k (v) = b̃

(j)
k (v)b̃

(i)
k (u) .

Note that the rest of the relations for b
(i)
k from Lemma 4.4 also hold for b̃

(i)
k .

For l ∈ I1, i, j = 1, . . . , dl, set

b̃
(ij)
l (u) := D(u− 1

2
)b̃

(i)
l (u)b̃

(j)
l (u+ 1) . (36)

Note that

b̃
(ii)
l (u)b̃

(jj)
l (v)

u− v + 2

u− v − 2
= b̃

(jj)
l (v)b̃

(ii)
l (u) (37)
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and

b̃
(ii)
l (u)bk(v)

u− v + 1

u− v − 1
= bk(v)b̃

(ii)
l (u) (38)

for |k − l| = 1.

For l ∈ I1, set b̃l(u) =
∑dl

i=1 b̃
(ii)
l (u). By Proposition 3.6, we see that the algebra Yεd is

generated by (the Fourier coefficients of) Dl(u), bk(u) for k ∈ I0 and b̃k(u) for k ∈ I1. Now the
theorem reduces to the following result.

Lemma 4.6. There is a homomorphism ϕd : Ŷε → Yεd sending Ak(u) to Dk(u +
∑k

m=1 dm) and

x+
l (u) to bl(u+

∑l
m=1 dm) for l ∈ I0 and to b̃l(u+

∑l
m=1 dm) for i ∈ I1.

Proof. We need to prove the quadratic relations and the Serre relations for the elements Dl(u),
bk(u). The quadratic relations follow from the relations (37) and (38). The proof of the Serre
relations is entirely similar to that of Proposition 3.32 from [FR14].

According to the Newton identity (see Theorem 7.1.3 of [Mol07]), we have

al(u) =
Cl(−u+ dl)

Cl(−u+ dl − 1)
, (39)

where Cl(u) is the Capelli determinant. This means that D(u) = C(−u+ dl − 1
2). In particular,

Dl,r = 0 for r > dl.

Conjecture 4.7. Yεd = Ŷε/{Ak,r | r > dk}.
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