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1 Introduction
The time-dependent Schrödinger equation is the key one in many fields from
quantum mechanics to wave physics. It should be often solved in unbounded
space domains. A number of approaches were developed to deal with such
problems using approximate transparent boundary conditions (TBCs) at the
artificial boundaries, see review [1].

ar
X

iv
:1

40
5.

31
47

v2
  [

m
at

h.
N

A
] 

 2
2 

M
ay

 2
01

4



2 A. Zlotnik and I. Zlotnik

Among the best methods are those using the so-called discrete TBCs,
see [2, 6, 8] and [3]-[5], [13], remarkable by clear mathematical background
and the corresponding rigorous stability theory as well as complete absence
of spurious reflections in practice. Higher order methods of such kind are of
special interest due to their practical efficiency. To solve the 1D generalized
Schrödinger equation on the axis or half-axis, any order finite element in space
and the Crank-Nicolson in time method with the discrete TBCs has recently
been constructed, studied and verified [11, 13].

In this paper, we present results on stability of the method in two norms
and engage the Richardson extrapolations of increasing orders to improve sig-
nificantly the accuracy in time step. To demonstrate its nice practical error
properties in various respects, we present enlarged results of the error analysis
in numerical experiments on the propagation of the Gaussian wave package for
three rather standard examples: the free propagation in Example 1, tunnel-
ing through a rectangular barrier in Example 2 and a double barrier stepped
quantum well in Example 3 (the last is the most complicated one in [1]). The
method is truly able to provide high precision results in the uniform norm
(required in some problems in quantum mechanics) for reasonable computa-
tional costs that is unreachable by the 2nd order methods in either space or
time step and not demonstrated previously.

Comparing our results to the previous ones, we obtainmuch more accurate
results using much less amount of both space elements J and time steps M .
In particular, concerning Example 3, we achieve the relative uniform in time
and L2 in space error e = 4E−6 using only J = 36 (!) and M = 2016 for the
9th degree finite elements and the Richardson 6th order extrapolation method
versus the best e = 4E−4, J = 6000 and M = 16000 presented in [1].

2 The Cauchy problem and numerical methods
We deal with the Cauchy problem for the 1D time-dependent generalized
Schrödinger equation on the whole axis

i~ρDtψ = Hψ := −~ 2

2 D(BDψ) + V ψ on R× R+, (1)
ψ|t=0 = ψ0(x) on R. (2)

Hereafter ψ = ψ(x, t) is the complex-valued unknown wave function, i is the
imaginary unit and ~ > 0 is a physical constant. The x-depending coefficients
ρ,B, V ∈ L∞(R) are real-valued and satisfy ρ(x) > ρ > 0 and B(x) > B > 0.
Additionally Dt = ∂

∂t and D = ∂
∂x are the partial derivatives.
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We also assume that, for some (sufficiently large) X0 > 0,

ρ(x) = ρ∞, B(x) = B∞ > 0, V (x) = V∞ and ψ0(x) = 0 for |x| > X0. (3)

More generally, it could be assumed that ρ, B and V have different constant
values for x 6 −X0 and for x > X0. Let Ω = (−X,X) for some X > X0.

We consider the weak solution ψ ∈ C([0,∞);H1(R)) having Dtψ ∈
C([0,∞);L2(R)) and satisfying the integral identity

i~(ρDtψ(·, t), ϕ)L2(R) = LR(ψ(·, t), ϕ) for any ϕ ∈ H1(R), (4)

for any t > 0. Hereafter we use the standard complex Lebesgue and Sobolev
spaces and a Hermitian-symmetric sesquilinear form related to H:

LI(w,ϕ) := ~ 2

2 (BDw,Dϕ)L2(I) + (V w,ϕ)L2(I), with I = R or Ω.

Let . . . < x−J = −X < x−J+1 < . . . < xJ = X < . . . be a mesh on R and
∆j := [xj−1, xj ] be elements, for any integer j. We set hj := xj − xj−1 and
assume that x−J+1 6 −X0, xJ−1 > X0 and hj = h for j 6 −J + 1 or j > J .
Let hmax = maxj hj .

For n > 1, let H(n)
h,∞ be the finite element space of (piecewise polynomial)

functions ϕ ∈ H1(R) such that ϕ|∆j
are complex polynomials of the degree

no more than n, for any integer j. Let H(n)
h be the restriction of H(n)

h,∞ to Ω̄.
Let ω τM be the uniform mesh in [0, T ], for some T > 0, with nodes tm =

mτ , 0 6 m 6M , and τ = T
M . Let ∂tY m := Ym−Ym−1

τ and stY m := Ym−1+Ym
2 .

We introduce the FEM-Crank-Nicolson approximate solution Ψ: ω τM →
H

(n)
h,∞ satisfying the integral identity

i~(ρ∂tΨm, ϕ)L2(R) = LR(stΨm, ϕ) for any ϕ ∈ H(n)
h,∞ and 1 6 m 6M, (5)

compare with (4), and the initial condition Ψ|t=0 = Ψ0 ∈ H
(n)
h,∞, where Ψ0

approximates ψ0. This method is well defined and stable as it follows from
[11]. But it cannot be practically implemented since the number of unknowns is
infinite at each time level. Nevertheless it is possible to restrict its solution from
R to Ω̄ by imposing the discrete TBCs at x = ±X provided that Ψ0(xj) = 0
for |j| > J − 1.

This restriction Ψ = Ψ(τ): ω τM → H
(n)
h obeys the integral identity [11]

i~(ρ∂tΨm, ϕ)L2(Ω) = LΩ(stΨm, ϕ)

−~ 2

2 B∞(S(n)m
ref Ψm

X)ϕ∗(X) + ~ 2

2 B∞(S(n)m
ref Ψm

−X)ϕ∗(−X) (6)

for any ϕ ∈ H(n)
h and 1 6 m 6 M , and the initial condition Ψ|t=0 = Ψ0|Ω̄ ∈

H
(n)
h . Here Ψm

±X := {Ψl|x=±X}ml=0 and ϕ∗ is the complex conjugate of ϕ. The
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key point is that the operator S(n)m
ref has the discrete convolution form

S(n)m
ref Φm = cn

m∑
l=0

K
(n), l
ref Φm−l for Φm := {Φl}ml=0.

The analytical calculation of the kernel K(n)
ref (defined in turn as an n-multiple

discrete convolution) and the constant cn is far from being simple and is
presented in [11]; we omit the explicit expressions here. To compute the kernel,
we apply the fast algorithm for computing discrete convolutions based on FFT,
for example see [9].

Let `m(ϕ) be a conjugate linear functional on H
(n)
h that we add to the

right-hand side of (6) to study stability in more detail.

Proposition 1. Let `m(ϕ) = (Fm, ϕ)L2(Ω) with Fm ∈ L2(Ω) for 1 6 m 6M .
Then the following first stability bound holds

max
06m6M

‖√ρΨm‖L2(Ω) 6
∥∥√ρΨ0∥∥

L2(Ω) + 2
~

M∑
m=1

∥∥∥∥Fm√ρ
∥∥∥∥
L2(Ω)

τ. (7)

We introduce the “energy” norm such that

‖w‖2H+v̂ρ; Ω := LΩ(w,w) + v̂ ‖√ρw‖2L2(Ω) > 0 for any w ∈ H1(Ω), w 6≡ 0, (8)

for some real number v̂. In particular, for v̂ so large that V + v̂ρ > 0, (8) is
clearly valid. We define also the corresponding dual mesh depending norm

‖w‖(−1)
h := max

ϕ∈H(n)
h

: ‖ϕ‖H+v̂ρ; Ω=1
|〈w,ϕ〉Ω| 6 c‖w‖H−1(Ω), H−1(Ω) = [H1(Ω)]∗,

where 〈w,ϕ〉Ω is the conjugate duality relation on H−1(Ω)×H1(Ω).

Proposition 2. Let `m(ϕ) = 〈Fm, ϕ〉Ω with Fm ∈ H−1(Ω) for 1 6 m 6 M

and F 0 ∈ H−1(Ω) be arbitrary. Then the following second stability bound holds

max
06m6M

‖Ψm‖H+v̂ρ; Ω 6
∥∥Ψ0∥∥

H+v̂ρ; Ω

+4
M∑
m=1

( |v̂|
~
‖Fm‖(−1)

h +
∥∥∂tFm∥∥(−1)

h

)
τ + 4

∥∥F 0∥∥(−1)
h

. (9)

Propositions 1 and 2 are proved similarly to [11].
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For sufficiently smooth ψ, the error of the described method O(τ2 +hn+1
max)

is of the order n+ 1 (i.e., any) in hmax but only the 2nd in τ . To remove this
drawback, we further engage the classical Richardson extrapolation in time
[7]. To this end, we assume that the following error expansion holds

ψm −Ψ(τ),m =
r−1∑
k=1

gmk τ
2k +O(τ2r + hñ+1

max), 0 6 m 6M, (10)

for r = 2, 3 or 4, with some functions gk independent of the space-time mesh,
and 0 6 ñ 6 n depending on the space smoothness of ψ. Then, for r = 2, 3 and
4 and 0 6 rm 6M , we can exploit the following Richardson extrapolations

Ψ2m
2R = 4

3Ψ(τ), 2m − 1
3Ψ(2τ),m, (11)

Ψ3m
3R = 81

40Ψ(τ), 3m − 16
15Ψ(3τ/2), 2m + 1

24Ψ(3τ),m, (12)

Ψ4m
4R = 1024

315 Ψ(τ), 4m − 729
280Ψ(4τ/3), 3m + 16

45Ψ(2τ), 2m − 1
360Ψ(4τ),m. (13)

It is supposed thatM is multiple of 2 (i.e., even), 6 and 12 respectively in (11),
(12) and (13). The coefficients in these formulas are specific numbers being
uniquely found so that expansion (10) implies the higher order error bound

ψrm −Ψrm
rR = O(τ2r + hñ+1

max), r = 2, 3, 4. (14)

The more higher order Richardson extrapolations could be introduced as well.
It is not difficult to derive the Cauchy problems for the functions gk in

(10). They are similar to (1), (2) but with recurrently defined additional free
terms and zero initial function. For example, we have

i~ρDtg1 −Hg1 = − 1
24 i~ρD

3
tψ + 1

8D
2
tHψ on R× R+, g1|t=0 = 0

similarly to [7]. Clearly the right-hand side of the equation can be rewritten
shorter as 1

12 i~ρD
3
tψ.

Notice that the computation of Ψ(τ) needs asymptotically aJM + bM2

arithmetic operations (bM2 is due to the discrete convolutions), for some a > 0
and b > 0. It is easy to check that then the computation of ΨrR requires totally

3
2aJM + 5

4bM
2, 2aJM + 14

9 bM
2,

5
2aJM + 15

8 bM
2 (15)

arithmetic operations respectively for r = 2, 3 and 4. So the additional costs
for implementing the Richardson extrapolation are less than (r−1) ·50%. See
also the corresponding practical results in Table 2 below.
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The Richardson extrapolations allow to achieve much better accuracy than
the basic Crank-Nicolson discretization for the same mesh and with that:
(i) they inherit stability properties; (ii) they deal with the same discrete
TBC; (iii) they exploit the same code for passing from the current time level
to the next one (repeatedly for several time steps).

3 Numerical experiments and error analysis
In our numerical experiments, we intend to study in detail the practical error
behavior for the Richardson extrapolations. We choose ~ = 1, ρ(x) ≡ 1 and
B(x) ≡ 2 (in Examples 1 and 2) or B(x) ≡ 1 (In Example 3) (the atomic
units) and use the finite uniform space mesh xj = jh, |j| 6 J , with the step
h = X

J . Let Ψ0 ∈ H(n)
h be simply the interpolant of ψ0.

3.1. In Example 1, we rely upon the known exact solution (the scaled
Gaussian wave package) for the Cauchy problem (1), (2)

ψ = ψG(x, t) ≡ 1
4
√

2πα +
√

1 + i tα

exp
{
ik(x− x(0) − kt)− (x− x(0) − 2kt)2

4(α+ it)

}
,

where x(0), k and α > 0 are the real parameters, in the case V (x) ≡ 0 (the
free propagation of the wave). Thus the initial function takes the form

ψ0(x) = ψG(x, 0) = 1
4
√

2πα
exp

{
ik(x− x(0))− (x− x(0))2

4α

}
. (16)

It satisfies the property ‖ψ0‖L2(R) = 1. Though formally ψ0(x) 6= 0 for any x,
it decays rapidly as |x− x(0)| → ∞.

We choose the parameters x(0) = 0, k = 100, α = 1
120 and X = 0.8 thus

ensuring
∣∣ψ0(x)

∣∣ < 1E−8 for |x| > X. Notice that this limits from below the
least error that can be achieved (if required, it can be easily improved by small
increasing of X). Since maxt>0 |ψG(−X, t)| < 1E−8 as well, we can simply
pose the zero Dirichlet boundary condition Ψ|x=−X = 0 instead of the discrete
TBC at x = −X (as in [5, 11]). Let also T = 0.006. Almost the same data
were taken in several papers including [6, 5, 11, 13].

On Fig. 1, the solution is briefly represented by Ψm
4R for high n = 9 but

(J,M) = (30, 300) only, with a suitable uniform accuracy (see Table 1 below).
The wave moves to the right, spreads slightly and leaves the domain Ω̄. We
emphasize that hereafter imposing of the discrete TBC does not produces any
spurious reflections from the artificial boundary x = X (as usual).
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(b) tm = 0.0032, m = 160
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(c) tm = 0.0056, m = 280

Fig. 1. Example 1. |Ψm4R| and Re Ψm4R for n = 9 and (J,M) = (30, 300)

For any error em, we compute the mesh L2-norm ‖em‖L2
h
by applying

the compound Newton-Cotes quadrature formula to the integral in ‖em‖L2(Ω)
(each element is divided into n equal parts) and the mesh uniform norm
‖em‖Ch (especially interesting in practice) over the uniform mesh with the
step h/n in Ω̄. Looking ahead, notice that though the theory concerns mainly
L2 or H1-like norms, fortunately in general the practical error behavior in C
norm is close to L2 one; this is not obvious at all in advance.

On Fig. 2, we present the errors max06rm6M ‖ψrm−Ψrm
rR ‖, for n = 9 and

J = 90, in dependence with r = 1, 2, 3, 4 and M = 300, 600, . . . , 3000, where
we set Ψ1R = Ψ(τ) for convenience. For r = 1, i.e. without the extrapolation,
the errors decay too slowly. They decay faster and faster as r grows excepting
the case r = 4 and M > M1 = 1800, where the errors stabilize since their
lowest levels have already been achieved. Moreover, the error values decrease
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(a) in L2 space norm
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(b) in C space norm

Fig. 2. Example 1. The errors max06rm6M ‖ψrm − ΨrmrR ‖, for n = 9 and J = 90, in
dependence with r = 1, 2, 3, 4 and M = 300, 600, . . . , 3000

remarkably as r grows: the ratio

max
06m6M

‖ψm −Ψm‖/ max
06rm6M

‖ψrm −Ψrm
rR ‖, (17)
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M J = 30 J = 40 J = 50 J = 60 J = 70 J = 80 J = 90

300 2.45E−3 2.45E−3 2.45E−3 2.45E−3 2.45E−3 2.45E−3 2.45E−3
600 1.53E−4 1.15E−5 1.15E−5 1.15E−5 1.15E−5 1.15E−5 1.15E−5
900 1.41E−4 7.68E−6 6.79E−7 4.62E−7 4.57E−7 4.56E−7 4.56E−7

1 200 1.33E−4 6.73E−6 6.89E−7 1.11E−7 4.83E−8 4.63E−8 4.59E−8
1 500 1.19E−4 6.35E−6 6.70E−7 1.12E−7 2.85E−8 8.46E−9 7.91E−9
1 800 1.93E−5 6.54E−6 6.41E−7 1.12E−7 2.66E−8 8.34E−9 2.96E−9

(a) in L2 space norm

M J = 30 J = 40 J = 50 J = 60 J = 70 J = 80 J = 90

300 8.30E−3 8.27E−3 8.27E−3 8.27E−3 8.27E−3 8.27E−3 8.27E−3
600 8.26E−4 4.27E−5 3.97E−5 3.97E−5 3.97E−5 3.97E−5 3.97E−5
900 6.98E−4 2.70E−5 2.03E−6 1.63E−6 1.60E−6 1.58E−6 1.57E−6

1 200 7.26E−4 2.67E−5 1.82E−6 3.98E−7 1.81E−7 1.64E−7 1.60E−7
1 500 7.30E−4 1.97E−5 1.71E−6 3.42E−7 1.17E−7 3.69E−8 2.95E−8
1 800 6.41E−4 2.42E−5 1.68E−6 3.28E−7 1.09E−7 3.75E−8 1.31E−8

(b) in C space norm
Table 1. Example 1. The errors max064m6M ‖ψ4m −Ψ4m

4R ‖, for n = 9, in dependence with
J and M

for example, for M = 600, equals (approximately) 13.6, 181 and 2473 in L2

norm as well as 11.8, 143 and 1790 in C norm whereas the ratio

max
06m6M

‖ψm −Ψm‖
∣∣
M=3000/ max

06rm6M
‖ψrm −Ψrm

rR ‖
∣∣
M=600

equals 0.54, 7.26 and 98.9 in L2 norm as well as 0.47, 5.70 and 71.6 in C norm
respectively for r = 2, 3 and 4. For M = 1800, ratio (17) equals already 122,
14588 and 1068678 (!) in L2 norm as well as 106, 11451 and 605095 in C norm
respectively for r = 2, 3 and 4. For the final M = 3000, it is even much larger:
339 and 111688 in L2 norm as well as 295 and 82000 in C norm respectively
for r = 2 and 3.

Table 1 contains the errors EJ,M := max064m6M ‖ψ4m−Ψ4m
4R ‖, for n = 9,

in dependence with J = 20, 30, . . . , 90 and M = 300, 600, . . . , 1800, and is rich
in information. Clearly the values decrease as J or M increases though they
(almost) stabilize as J increases and M is fixed or, vice versa, J is fixed and
M increases. Next, for example, for (J,M) = (30, 1200), the ratio EJ,M/E2J,M

equals (approximately) 1198 in L2 norm and 1824 in C norm that corresponds
to 2n+1 = 1024 whereas, for (J,M) = (90, 600), the ratio EJ,M/EJ,2M equals
250 in L2 norm and 248 in C norm that agrees well to 22r = 256, see (14).
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Also, for (J,M) = (40, 600), the ratio EJ,M/E2J,2M equals 2600 in L2 norm
and 2483 in C norm that shows the rapid decay of the error.

Fig. 3 demonstrates that the error ‖ψrm − Ψ(kτ), rm‖ (corresponding to
the summands of the Richardson extrapolation in (12), (13)) decays mono-
tonically but very slowly as k decreases whereas the error of the Richardson
extrapolation ‖ψrm −Ψrm

rR ‖, for r = 3 and 4, diminishes abruptly (by several
orders of magnitude), for any 0 6 rm 6M .
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(a) in L2 (left) and C (right) norms, r = 3
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(b) in L2 (left) and C (right) norms, r = 4

Fig. 3. Example 1. The errors: (a) ‖ψ3m − Ψ(kτ), 3m‖ for k = 1, 3/2, 3 and ‖ψ3m − Ψ3m
3R ‖

(r = 3), and (b) ‖ψ4m − Ψ(kτ), 4m‖ for k = 1, 4/3, 2, 4 and ‖ψ4m − Ψ4m
4R ‖ (r = 4), both

for n = 9 and (J,M) = (90, 1500), in dependence with tm

Fig. 4 exhibits the behavior of the error max063m6M ‖ψ3m−Ψ3m
3R ‖Ch , for

large M = 3000, in dependence with n = 1, 2, . . . , 9 and J = 30, 40, . . . , 150,
200, . . . , 600. Similarly to the case without the extrapolation [11], the errors
decrease monotonically and faster and faster in J as n grows. For the simplest
and common in practice case n = 1 (linear elements), unfortunately decreasing
is especially slow and the error is unacceptable. The advantage of the high
degree elements over the low degree ones is obvious. Once again the errors
stabilize (in both norms) for J > J1(n) as soon as their lowest levels have
been achieved, with J1(5) = 450, J1(6) = 250, J1(7) = 150, J1(8) = 110 and
J1(9) = 80; clearly J1(n) decreases rather rapidly as n grows. (Of course, the
errors ultimately stabilize also for smaller n but for much larger J1(n) > 600
absent on the figures.) The behavior of the similar errors in L2 norm is quite
close, with slightly better minimal values, and we omit their graphs.

In Table 2, we put the additional costs (in percents) that are required
to compute ΨrR, r = 2, 3, 4, in comparison with Ψ(τ), for n = 5 and several
J and M ; for our computations, the code in MATLAB R2013a is used on a
quad-core processor PC. The data in all the rows (except two for J = 300, 600
and M = 3000) are close to above theoretical upper bound (r−1) ·50%; some
of them are slightly more than the bound (note that expressions (15) do not
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(a) n = 3, . . . , 9 and J = 20, 30, . . . , 150
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(b) n = 1, . . . , 6 and J = 150, 200, . . . , 600

Fig. 4. Example 1. The errors max063m6M ‖ψ3m−Ψ3m
3R ‖Ch , for M = 3000, in dependence

with n and J

J M r = 2 r = 3 r = 4

120 300 53.1% 106.5% 161.4%
120 600 51.3% 102.2% 153.6%
120 3 000 45.9% 92.7% 139.1%
300 300 52.2% 106.9% 162.5%
300 600 53.6% 106.5% 159.7%
300 3 000 28.3% 63.7% 102.1%
600 300 56.4% 112.6% 168.9%
600 600 54.9% 108.4% 163.0%
600 3 000 27.6% 62.2% 100.9%

Table 2. Example 1. The additional costs for computing ΨrR versus Ψ(τ)

take into account some costs like the computation of the stiffness and mass
matrices and the discrete convolution kernel as well as details of exploiting
PC hardware, etc.). The data in the exceptional two rows are essentially less
than the bound that is also in agreement with costs (15) for J �M .

3.2. In Example 2, we treat the Cauchy problem (1), (2) for the piecewise
constant potential V = 800χI , where χI is the characteristic function of the
interval I = (0.5, 0.6), and the initial function ψ0 of form (16) with x(0) =
−0.5, k = 30 and α = 1

120 now. Thus tunneling through the discontinuous
rectangular barrier is studied.

We choose X = 1.5 and T = 0.09. Now |ψ0(x)| < 1E−13 outside Ω, and
the discrete TBCs are posed at the both artificial boundaries x = ±X. A
close example was considered in [11]. Looking ahead, notice that though the
solution is not smooth in this and the next examples owing to the discontinuity
of the potential, nevertheless the Richardson extrapolation works well.
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The behavior of |ψ| and Reψ is shown on Fig. 5. The wave moves to
the right toward the barrier, interacts with it and then is divided into two
comparable reflected and transmitted parts moving in the opposite directions.
The solution is represented by Ψ4m

4R , for high n = 9 but (J,M) = (60, 576)
only, with a suitable uniform accuracy (see Table 3 below).

Note that, for J = 30, Ī consists of exactly one element; that is why
below our J are multiples of 30. Since any simple analytical form of the exact
solution ψ is not known, below its role is played by the pseudo-exact solution
Ψ4m

4R computed for high n = 9, J = 150 and large M = 36864.
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(b) tm = 0.015, m = 96
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(c) tm = 0.0187, m = 120
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(d) tm = 0.0250, m = 160
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(e) tm = 0.0375, m = 240
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(f) tm = 0.009, m = 576

Fig. 5. Example 2. |Ψm4R| and Re Ψm4R, for n = 9 and (J,M) = (60, 576), and the scaled V

On Fig. 6, we present the errors EMr = max06rm6M ‖ψrm − Ψrm
rR ‖, for

n = 9 and J = 60, in dependence with r = 1, 2, 3, 4 and M = Mq = 288 · 2q,
q = 0, 1, 2, 3, 4 (recall that Ψ1R = Ψ(τ)). Once again, for r = 1, the errors decay
most slowly. They decay faster and faster as r grows. Notice that the behavior
of the corresponding relative errors max06rm6M ‖ψrm−Ψrm

rR ‖/‖ψrm‖ is quite
similar.

The same data as on Fig. 6 are put into Table 3 together with the corre-
sponding ratios EMq

r /E
Mq−1
r for clarity. Note that all the errors are large for the

smallestM = 288. Once again the errors decay most slowly for r = 1 but they
decay faster and faster as r grows. We can compare the ratios with their the-
oretically predicted values 22r = (4, 16, 64, 256) respectively for r = 1, 2, 3, 4
(see (10) and (14)). We see their closeness for all q for r = 1, q > 2 for r = 2,
q = 3 and 4 for r = 3 as well as q = 3 for r = 4; in any case, the ratios grows
significantly as r increases for fixed q (excepting the last value for q = r = 4
in C space norm).
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Fig. 6. Example 2. The errors max06rm6M ‖ψrm − ΨrmrR ‖, for n = 9 and J = 60, in
dependence with r = 1, 2, 3, 4 and M = 288 · 2q , q = 0, 1, 2, 3, 4

M r = 1 r = 2 r = 3 r = 4

288 0.28 – 0.29 – 0.25 – 0.24 –
576 7.23E−2 3.94 2.86E−2 10.11 1.39E−2 18.07 6.64E−3 35.42

1 152 1.81E−2 4 1.86E−3 15.39 3.03E−4 45.89 6.12E−5 108.51
2 304 4.51E−3 4 1.16E−4 16 4.86E−6 62.43 2.75E−7 222.38
4 608 1.13E−3 4 7.26E−6 16.01 7.60E−8 63.95 2.59E−9 106.18

(a) in L2 space norm

M r = 1 r = 2 r = 3 r = 4

288 0.42 – 0.48 – 0.46 – 0.45 –
576 0.1 4.01 5.22E−2 9.17 2.75E−2 16.6 1.38E−2 32.58

1 152 2.57E−2 4.02 3.32E−3 15.69 6.24E−4 44.12 1.38E−4 100.38
2 304 6.42E−3 4.01 2.07E−4 16.09 9.89E−6 63.12 6.23E−7 221.26
4 608 1.61E−3 4 1.29E−5 16.03 1.54E−7 64.15 1.19E−8 52.36

(b) in C space norm

Table 3. Example 2. The errors EMr = max06rm6M ‖ψrm − ΨrmrR ‖ and their ratios
E
Mq
r /E

Mq−1
r , for n = 9 and J = 60, in dependence with r and Mq = 288 ·2q , q = 0, 1,...,4
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Fig. 7 demonstrates the slow monotone decay of the error ‖ψrm−Ψ(kτ), rm‖
as k decreases and much less error (by several orders of magnitude) of the
Richardson extrapolation ‖ψrm−Ψrm

rR ‖, for r = 2 and especially for r = 3, on
the whole time segment [0, T ].
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Fig. 7. Example 2. The errors: (a) ‖ψ2m − Ψ(kτ), 2m‖ for k = 1, 2 and ‖ψ2m − Ψ2m
2R ‖

(r = 2), and (b) ‖ψ3m −Ψ(kτ), 3m‖ for k = 1, 3/2, 3 and ‖ψ3m −Ψ3m
3R ‖ (r = 3), both for

n = 9 and (J,M) = (60, 2304), in dependence with tm

Fig. 8 exhibits the behavior of the errors max063m6M ‖ψ3m − Ψ3m
3R ‖, in

L2 and C norms for large M = 9216, in dependence with n = 1, 2, . . . , 6
and J = 30, 60, . . . , 300. As above at the absence of the potential, the errors
decrease monotonically as J grows. They also decrease rapidly as n grows
whereas, for n = 1 (linear elements), decreasing is very slow and the error is
still unacceptable. The errors stabilize (now due to the fixed value of M), for
n = 6 and J > J1(6) = 210. Interestingly, the behavior of the corresponding
relative errors is essentially quite similar (except for n = 5), see Fig. 9.
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Fig. 8. Example 2. The errors max063m6M ‖ψ3m − Ψ3m
3R ‖, for M = 9216, in dependence

with n = 1, 2, . . . , 6 and J = 30, 60, . . . , 300
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Fig. 9. Example 2. The relative errors max063m6M ‖ψ3m − Ψ3m
3R ‖/‖ψ

3m‖, for M = 9216,
in dependence with n = 1, 2, . . . , 6 and J = 30, 60, . . . , 300

3.3. In Example 3, we treat the Cauchy problem (1), (2) for the piecewise
constant potential V = 12.5Vs with

Vs(x) =


1 for x ∈ I1 := (6, 6.5) ∪ I3 := (7.5, 8)
0.2 for x ∈ I2 := (6.5, 7)
0 otherwise

(18)

and the initial function ψ0 of form (16), with x(0) = 0, k =
√

7 and α = 1
now, thus the tunneling through the double barrier stepped quantum well is
studied. Recall that B(x) ≡ 2. |ψ0| and Reψ0 and the scaled potential V are
given on Fig. 10(a). Also X = 9 and T = 16 are taken. This is the most
complicated example from the review [1].

By scaling of the coordinates this example could be transformed to more
close to Examples 1 and 2. Namely, equivalently we could consider the same
Schrödinger equation with B(x) ≡ 1 but V (x) = 2025Vs(x9 ) as well as ψ0 of
form (16) divided by 3, with x(0) = 0, k = 9

√
7 and α = 1

81 , for X = 1 and
T = 8

81 .
Now |ψ0(x)| < 1.01E−9 outside Ω. Once again we pose the discrete TBCs

at the both artificial boundaries x = ±X. For J = 36, each segment Ī1,
Ī2 and Ī3 in (18) consists of exactly one element so that we take our J as
multiples of 36. Notice that it is important to treat the discontinuity points
of V carefully, and even this allows to diminish significantly errors in finite-
difference computations among all in [1] (more details are given in [13]).

We consider as the pseudo-exact solution Ψ4m
4R computed for the high

n = 9, J = 144 and rather large M = 8064 (this choice is justified on Fig. 14
below).

First the wave moves toward the barrier; after the interaction with it,
the main piece of the wave is reflected and moves in the opposite direction
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whereas the small piece remains trapped and oscillating inside the well, and
another very small piece passes through the barrier and moves to the right. The
solution is represented by Ψ3R computed for n = 9 and only (J,M) = (36, 504)
(that is enough according to Table 4 below).
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Fig. 10. Example 3. |Ψm3R| and Re Ψm3R, for n = 9 and (J,M) = (36, 504), and the scaled
V

On Fig. 11, the errors EMr = max06rm6M ‖ψrm − Ψrm
rR ‖ are given, for

n = 9 and J = 36, in dependence with r and M = Mq = 252 ·2q, q = 0, 1, 2, 3.
There are some differences in the behavior of the corresponding relative errors
max06rm6M ‖ψrm −Ψrm

rR ‖/‖ψrm‖, see Fig. 12, but they are not crucial.
In Table 4, the same data as on Fig. 11 together with their ratios

E
Mq
r /E

Mq−1
r are presented. Now the ratios are close to 22r only for r = 1

as well as r = 2 and q > 2. For r = 3 and 4, they are less than 22r but still
grow rapidly as r = 1, 2, 3, 4 increases (for fixed q) excepting the case r = 4
and the last q = 3.

Comparing the results to those in [1], we obtain much more accurate
results using much less amount of both elements and time steps. In particular,
we achieve the relative error e = max063m6M ‖ψ3m − Ψ3m

3R ‖L2
h
/‖ψ3m‖L2

h
≈

3.77E−6 for n = 9 using only (J,M) = (36, 2016) versus the best presented
there e > 4E−4 using (J,M) = (6000, 16000).
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Fig. 11. Example 3. The errors max06rm6M ‖ψrm − ΨrmrR ‖, for n = 9 and J = 36, in
dependence with r = 1, 2, 3, 4 and M = 252 · 2q , q = 0, 1, 2, 3
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Fig. 12. Example 3. The relative errors max06rm6M ‖ψrm −ΨrmrR ‖/‖ψ
rm‖, for n = 9 and

J = 36, in dependence with r = 1, 2, 3, 4 and M = 252 · 2q , q = 0, 1, 2, 3
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M r = 1 r = 2 r = 3 r = 4

252 0.18 – 0.14 – 0.1 – 7.85E−2 –
504 4.43E−2 3.97 1.12E−2 12.72 4.33E−3 24.02 2.04E−3 38.46

1 008 1.11E−2 4 7.25E−4 15.49 8.97E−5 48.32 2.04E−5 100.05
2 016 2.77E−3 4 4.56E−5 15.92 2.09E−6 42.83 3.38E−6 6.03

(a) in L2 space norm

M r = 1 r = 2 r = 3 r = 4

252 8.93E−2 – 8.41E−2 – 6.04E−2 – 4.49E−2 –
504 2.24E−2 3.98 6.84E−3 12.3 2.40E−3 25.2 9.67E−4 46.42

1 008 5.60E−3 4.01 4.47E−4 15.31 4.81E−5 49.82 8.42E−6 114.8
2 016 1.40E−3 4 2.81E−5 15.91 1.74E−6 27.62 2.81E−6 3

(b) in C space norm

Table 4. Example 3. The errors EMr = max06rm6M ‖ψrm − ΨrmrR ‖ and their ratios
E
Mq
r /E

Mq−1
r , for n = 9 and J = 36, in dependence with r and Mq = 252 ·2q , q = 0, 1, 2, 3

On the other hand, on Fig. 11 and in Table 4 we see the degradation of
the error behavior at the level about 1E−6 for r = 4. Fig. 13 contributes
to that, for r = 3 and r = 4, showing the absolute and relative errors: (a)
‖ψ3m −Ψ3m

3R ‖ and ‖ψ3m −Ψ3m
3R ‖/‖ψ3m‖ for M = 2016, and (b) ‖ψ4m −Ψ4m

4R ‖
and ‖ψ4m − Ψ4m

4R ‖/‖ψ4m‖ for M = 4032, both for n = 9 and J = 72, in
dependence with tm. We see that the maximal absolute and relative errors
(except for the L2 relative one in the case (a)) occur near t = 0 before the
active interaction of the wave with the potential.

On Fig. 14, we present the changes in the above pseudo-exact solution due
to 4 times increasing M up to 32256 or J up to 576 are less than respectively
1E−6 and 4E−8 in the uniform in time and both L2 and C space norms (the
former one is also less than 1E−8 on the right time half-segment

[
T
2 , T

]
). So

the data in Table 4 are correct but even the significant increasing M does
not improve the error essentially, and the maximal error is located near t =
0. This also confirms the degradation. (Notice that the similar degradation
could be seen in Example 2 too for values of M larger than on Fig. 6 and
in Table 3; moreover, this appears at a higher error level if the potential is
situated closer to x(0)). It seems that this is due to non-smoothness of the
potential and invalidity of the error expansion (10) for very small τ (for larger
τ , the smallness of the initial function under the potential support prevents
the effect).
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The error behavior is not the same during the whole time segment [0, T ].
On Fig. 15 the behavior of the similar errors as on Fig. 11 and in Table 4 but
on the right half-segment

[
T
2 , T

]
only (after the interaction of the wave with

the potential) is shown and is clearly better and without the degradation.
In addition, on Fig. 16 the corresponding errors ‖ψrM − ΨrM

rR ‖ at the final
time tM = T are demonstrated. For r = 2, 3, 4, the former and latter graphs
differ more for smaller M but become closer for larger M . Note that only the
similar relative L2 errors at the final time are contained in [1]. But there, for
the FEM with n = 1 and 2, the semi-discrete TBCs had been used (since the
corresponding discrete TBCs had been unknown and were designed later in
[5, 11]) which are unable to ensure so nice behavior for the relative errors as
for the absolute ones in general, see also [12].

On Fig. 17 we give the errors max063m6M ‖ψ3m −Ψ3m
3R ‖, for rather large

M = 2016, in dependence with n and J . Once again they decay rapidly as n
grows and stabilize for J > J1(n) for n = 4 and 5, where J1(4) = 108 and
J1(5) = 72. The great advantage of the cases n = 3, 4 and 5 over n = 1 and 2
(considered in [1]) is clear. The behavior of the corresponding relative errors
max063m6M ‖ψ3m −Ψ3m

3R ‖/‖ψ3m‖ is quite similar, see Fig. 18.
Finally, we can conclude that the Richardson extrapolations ΨrR can be

applied effectively to improve significantly the accuracy with respect to time
step τ = T

M and obtain the high precision results, especially for suitable values
M0(r) 6 M 6 M1(r) (for fixed J); here M0(r) and M1(r) depend also on n
and J .

Note that the successful application of the Richardson extrapolation in the
2D case has been accomplished in parallel for a higher order finite-difference
scheme also with the discrete TBCs in [10].
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(b) r = 4 and M = 4032

Fig. 13. Example 3. The absolute ‖ψrm − ΨrmrR ‖ (left) and relative ‖ψrm − ΨrmrR ‖/‖ψ
rm‖

(right) errors, for n = 9 and J = 72, in L2 and C norms: (a) for r = 3 and M = 2016, and
(b) for r = 3 and M = 4032, both in dependence with tm
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(a) the absolute (left) and relative (right)
changes due to 4 times increasing M
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(b) the absolute (left) and relative (right)
changes due 4 times increasing J

Fig. 14. Example 3. The absolute and relative changes in Ψm4R, for n = 9 and (J,M) =
(144, 8064), in L2 and C norms, due 4 times increasing: (a) M up to 32256, and (b) J up
to 576, both in dependence with tm
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Fig. 15. Example 3. The errors maxM/26rm6M ‖ψrm − ΨrmrR ‖, for n = 9 and J = 36, in
dependence with r = 1, 2, 3, 4 and M = 252 · 2q , q = 0, 1, 2, 3
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