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Abstract

This paper presents a further investigation into computational proper-
ties of a novel fuzzy additive spectral clustering method, FADDIS, recently
introduced by authors (Mirkin and Nascimento 2012). Specifically, we ex-
tend our analysis to “difficult” data structures from the recent literature
and develop two synthetic data generators simulating affinity data of Gaus-
sian clusters and genuine additive similarity data, with a controlled level
of noise. The FADDIS is experimentally verified on these data in com-
parison with two state-of-the art fuzzy clustering methods. The claimed
ability of FADDIS to help in determining the right number of clusters is
experimentally tested and the role of the pseudo-inverse Laplacian data
transformation in this is highlighted. A potentially useful extension of the
method to biclustering is introduced.

1 Introduction

Unsupervised clustering provides exploratory techniques for finding hidden patterns in
data. With the huge volumes of data generated from different systems nowadays, a
crucial contribution to make a system intelligent is its ability to analyse the data for
efficient decision-making based on new cluster discovery. Fuzzy clustering has been suc-
cessfully applied in the construction of intelligent systems (Zimmermann, 2001; Drobics
et al., 2002; Casillas & Mart́ınez López, 2010; Meyer & Zimmermann, 2011). Recently,
relational data have become popular in several important application areas such as bioin-
formatics (Popescu et al., 2006; Pal et al., 2007; Xu et al., 2008; Masullia & Mitra, 2009),
recommender systems (Suryavanshi et al., 2005; Abbassi & Mirrokni, 2009; Nanopou-
los et al., 2009), Web mining and text analysis (Krishnapuram et al., 2001; Nasraoui et
al., 2002; Runkler & Bezdek, 2003; Castellano & Torsello, 2009).

1



Our motivation comes from our interest in knowledge analysis and engineering. Specifi-
cally, we use a hierarchical taxonomy, the core of an ontology of the domain, to map, gener-
alize and interpret there thematic clusters derived from empirical data about the activities
conducted on a organization under consideration. The prime objects here are activity top-
ics of the taxonomy rather than the individual members or teams in the organization, and
the information is organized as an index of similarity between the activity topics rather
than the members. In such a setting, it seems rather natural to assume an additive ac-
tion of the hidden research patterns as the underlying mechanism for the generation of
the similarity index. This has led us to develop a relational fuzzy clustering method, the
Fuzzy Additive Spectral Clustering (FADDIS), by combining a model-based approach of
additive clustering and the spectral clustering approach (Mirkin & Nascimento, 2012).

In spite of the fact that many relational fuzzy clustering algorithms have been de-
veloped already (Roubens, 1978; Windham, 1985; Hathaway et al., 1989; Hathaway &
Bezdek, 1994; Bezdek et al., 1999; Inoue & Urahama, 1999; Yang & Shih, 2001; Davé
& Sen, 2002; Brouwer, 2009), they all involve manually specified parameters such as the
number of clusters or threshold of similarity without providing any guidance for choos-
ing them, which is a weakness to develop decision-support or expert systems. Indeed,
the determination of the number of clusters in data is a fundamental problem in cluster
analysis (see (Mirkin, 2011a) for a state of the art perspective). Concerning the FADDIS
method, it does provide guidance for choosing the number of clusters according to its stop
conditions. Moreover, it appears to be quite competitive in comparison to the state of the
art relational fuzzy clustering algorithms.

The main goal of this paper is to experimentally compare the FADDIS
algorithm with two state-of-the-art fuzzy clustering algorithms differently ex-
tending Fuzzy c-Means to relational data. One of these fuzzy clustering algo-
rithms combines Fuzzy c-Means with a recently proposed fast-mapping tech-
nique proved superior to many other techniques, the Fast Map Fuzzy c-Means
(FMFCM) (Brouwer, 2009), and the other is an extension of the c-means to
dissimilarity data, the Non-Euclidean Relational Fuzzy c-Means (NERFCM)
(Hathaway & Bezdek, 1994). Another subject concerns the study of FAD-
DIS capability in deriving the number of clusters. We give special attention
to the experimental analysis on the usage of the Laplacian data transforma-
tion, which is in the core of the spectral clustering approach (Shi & Ma-
lik, 2000; Ng et al., 2002; Zelnik-Manor & Perona, 2004; Nadler et al., 2006; von
Luxburg, 2007; Huang et al., 2009), to sharpen the cluster structure in the
data, and its role on determining the number of clusters for FADDIS parti-
tions. Also, we study FADDIS ability in recovering the cluster structure of
genuine similarity data generated according to the FADDIS model. Finally,
we present its extension to biclustering.

To be comprehensive in the experimentation, beyond considering a number of bench-
mark datasets from the literature, we developed two different cluster structure generators,
each involving a controlled extent of noise. The first of them generates Gaussian entity-to-
feature clusters with a different extent of intermix. The second produces genuine similarity
data according to the additive fuzzy clustering model.

The rest of the paper is organized as follows. Section 2 describes the additive model
and the FADDIS method. Section 3 describes the experiment and its results over entity-
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to-feature datasets. These data represent three different lines of research: those from
real-world data repositories, artificial datasets with “difficult” geometric structures from
the literature, and synthetic datasets representing Gaussian-generated clusters. Section 4
describes the experimental results over genuine similarity datasets. Section 5 illustrates
application of FADDIS for finding thematic clusters of research activities and
representing them in a hierarchic taxonomy of the field. An extension of
FADDIS to biclustering is proposed to highlight the relation between research
teams and research topics. Section 6 concludes the paper.

2 Additive Fuzzy Clustering Model and Spectral FADDIS

Algorithm

The similarity, or relational, data is a matrix W = (wii′), i, i′ ∈ I, of similarity indexes
wii′ , between objects i, i′ from a set of objects I. Specifically, the elements of I can be
leaves of a taxonomy tree such as a related hierarchical taxonomy such as Classification
of Computer Subjects by ACM (ACM-CCS, 1998). Then individual projects or members
of a research organization can be represented with fuzzy membership profiles over the
subjects (leaves) of the taxonomy. Given a project/individual-to-subject profile matrix
F , the similarity matrix can be defined as W = F T F so that wii′ is the inner product
of subject columns i and i′. These subject-to-subject similarity values are assumed to be
manifested expressions of some hidden patterns represented by fuzzy clusters.

To develop an additive model, we formalize a relational fuzzy cluster as represented
by: (i) a membership vector u = (ui), i ∈ I, such that 0 ≤ ui ≤ 1 for all i ∈ I, and
(ii) an intensity μ > 0 that scales the membership values towards the impact
of the cluster to the similarity values. This way, it is the product μu that
expresses the hidden similarity pattern rather than its individual co-factors.
Given a value of the product μui, to separate μ and ui, a conventional scheme applies: the
scale of the membership vector u is constrained on a constant level by a condition such as∑

i ui = 1 or
∑

i u2
i = 1; then the remaining factor defines the value of μ. As will be seen

from formula (5), the latter normalization suits our fuzzy clustering model well and thus
is accepted further on. Also, to allow for a possible pre-processing transformation of the
given similarity matrix W , we denote the matrix involved in the process of clustering as
A = (aii′).

The additive fuzzy clustering model in (1) follows that of (Shepard & Arabie, 1979;
Mirkin, 1987; Sato et al., 1997) and involves K fuzzy clusters that reproduce the input
similarities aii′ up to additive errors:

aii′ =
K∑

k=1

μ2
kukiuki′ + eii′ , (1)

where uk = (uki) is the membership vector of cluster k, μk its intensity (k = 1, 2, ...,K),
and eii′ is the residual similarity not explained by the model.

Each fuzzy cluster k is the fuzzy subset grouping the entities that share
a common property. The item μ2

kukiuki′ in (1) is the product of μkuki and μkuki′

expressing k-th cluster’s impact to similarity between i and i′. This value adds up to the
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others to form the similarity aii′ between entities i and i′. The value μ2
k summarizes the

contribution of the intensity and will be referred to as the cluster’s weight.
To fit the model in (1), the least-squares approach is applied, thus minimizing the sum

of all e2
ii′ . Within that, the one-by-one principal component analysis strategy is attended

for finding one cluster at a time by minimizing the corresponding one-cluster criterion

E =
∑
i,i′∈I

(bii′ − ξuiui′)2 (2)

with respect to the unknown positive ξ weight and fuzzy membership vector u = (ui),
given similarity matrix B = (bii′).

Initially matrix B is taken to be equal to matrix A. Each found cluster (μ, u) is
subtracted from B, so that the residual similarity matrix applied for obtaining the next
cluster is defined as B − μ2uu′. In this way, A indeed is additively decomposed according
to formula (1) and the number of clusters K can be determined in the process.

The optimal value of ξ at a given u is proven to be

ξ =
u′Bu

(u′u)2
, (3)

which is obviously non-negative if B is positive semidefinite.
By putting this ξ in equation (2), one arrives at E = S(B)− ξ2 (u′u)2 , where S(B) =∑

i,i′∈I b2
ii′ is the similarity data scatter.

By denoting the last item as

G(u) = ξ2
(
u′u

)2 =
(

u′Bu
u′u

)2

, (4)

the similarity data scatter is decomposed as S(B) = G(u)+E where G(u) is the part of the
data scatter that is explained by cluster (μ,u), and E, the unexplained part. Therefore,
an optimal cluster is to maximize the explained part G(u) in (4) or its square root

g(u) = ξu′u =
u′Bu
u′u

, (5)

which is the Rayleigh quotient: its maximum value is the maximum eigenvalue of matrix
B, which is reached at its corresponding eigenvector, in the unconstrained problem.

This shows that the spectral clustering approach can be applied to find a suboptimal
maximizer of (5). According to this approach, one should find the maximum eigenvalue λ
and corresponding normed eigenvector z for B, [λ, z] = Λ(B), and take its projection to the
set of admissible fuzzy membership vectors. The normalization condition

∑
i u2

i = 1
leads to the spectral solution of criterion (5) and simplifies it.

A number of criteria for halting the process of sequential extraction of fuzzy clusters
follow from the above. The process stops if either of the conditions is true:

S1 The optimal value of ξ (3) for the spectral fuzzy cluster becomes negative (meaning
that the residual similarity matrix becomes negative definite).

S2 The contribution of a single extracted cluster to the data scatter, G(u), becomes
less than a pre-specified τ > 0 threshold.
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S3 The residual data scatter becomes smaller than a pre-specified ε > 0 proportion of
the original similarity data scatter.

S4 A pre-specified number Kmax of clusters is reached - in some real world problems
that information can be set.

The described one-by-one Fuzzy ADDItive-Spectral cluster extraction method is re-
ferred to as FADDIS. It combines additive clustering (Shepard & Arabie, 1979; Mirkin,
1987; Sato et al., 1997), spectral clustering (Shi & Malik, 2000; Ng et al., 2002; von
Luxburg, 2007; Zhang et al., 2007), and relational fuzzy clustering (Hathaway et al., 1989;
Bezdek et al., 1999; Davé & Sen, 2002; Brouwer, 2009). Since FADDIS extracts clusters
one-by-one, in the order of their contribution to the data scatter, the algorithm is sup-
posed to be oriented at cluster structures at which the clusters contribute differently: the
bigger the differences, the better. In fact, the higher the differences of the
clusters contributions, the more contrastful are the fuzzy memberships of the
entities, which manifests a more clear-cut cluster structure. We refer to this
supposed property of the data as the property of ‘different contributions’.

To make the cluster structure in the similarity matrix sharper, one may apply the
spectral clustering approach to pre-process a raw similarity matrix W into A by using the
so-called normalized Laplacian transformation which is related to the popular clustering
criterion of normalized cut (Shi & Malik, 2000; von Luxburg, 2007). The normalized cut
criterion can be expressed as the minimum non-zero eigenvalue of the Laplacian matrix.
To change this to the criterion of maximum eigenvalue in (5), we further transform this
matrix by using the LAplacian PseudoINverse transformation (Mirkin & Nascimento,
2012), Lapin for short, defined by :

L+
n (W ) = Z̃Λ̃−1Z̃ ′

where Λ̃ and Z̃ are defined by the spectral decomposition Ln = ZΛZ ′ of the normalized
Laplacian matrix Ln = D−1/2(D − W )D−1/2, with D the diagonal degree matrix of
the similarity adjacency matrix W . To specify these matrices, first, set T ′ of indices of
elements corresponding to non-zero elements of Λ is determined, after which the matrices
are taken as Λ̃ = Λ(T ′, T ′) and Z̃ = Z(:, T ′). The choice of the Lapin transformation
is explained by the fact that it leaves the eigenvectors of Ln unchanged while inverting
the non-zero eigenvalues λ �= 0 to those 1/λ of L+

n . The maximum eigenvalue of L+
n

is the inverse of the minimum non-zero eigenvalue λ1 of Ln, corresponding to the same
eigenvector.

The effect of the Lapin transformation is to increase the gaps between eigenvalues.
Such an increase is experimentally verified further on in Section 3 as useful for deriving
an appropriate stop-condition for the cluster-extracting process.

3 Testing FADDIS on Relational Data Derived from the
Entity-to-Feature Data

3.1 General remarks

In this section, FADDIS is compared to two most effective methods for fuzzy clustering
that are extensions of the popular c-means fuzzy clustering method to relational data:
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NERFCM (Hathaway & Bezdek, 1994) and FMFCM (Brouwer, 2009). The NERFCM
has been derived as an analogue to the classical c-means at the situation in which the
Euclidean distance dissimilarity data is derived from the original entity-to-feature data.
The FMFCM also starts from the distance data to produce a number of approximating
features after which the fuzzy c-means itself applies to the extracted entity-to-feature
data. FADDIS applies to the affinity similarity data derived from entity-to-feature data by
using the Gaussian kernel defined as wij = exp(−d2(yi, yj)/2σ2), where d is the Euclidean
distance. The scaling parameter σ controls the rapidity of decay of the similarity
between data points and has to guarantee that the affinity similarity data is
between (0, 1]. For the artificial and real-world data sets, we set 2σ2 as the local
scaling approach proposed in (Zelnik-Manor & Perona, 2004): the product of
the distances of points yi, yj to the corresponding K nearest neighbours (in
the experiments we used K = 7). For the Gaussian cluster generated data we
set 2σ2 = 0.5. The diagonal elements of W are set to be equal to 0: wii′ = 0 (Shi &
Malik, 2000; Ng et al., 2002). Then the Laplace Pseudo-Inverse applies to transform the
affinity similarity matrix W into the matrix A to which FADDIS algorithm can be applied.
The original entity-to-feature data is first normalized by shifting the origin of each feature
to its mean and rescaling by the feature range.

In the following experiments the FADDIS algorithm (with or without Lapin)
always stopped at condition S2. The threshold parameter τ was empirically
fixed in the interval [0.1, 0.3].

3.2 Several geometrically difficult datasets

Fig. 1 presents seven artificial bivariate datasets of “complex” cluster structure. The
former three contain a number of rectangular-shaped objects whereas the next four contain
a number of round-shaped objects. These types of data sets are considered in the literature
as difficult data sets to find their cluster structures (see, for example, (Zelnik-Manor &
Perona, 2004)). Each data set is sequentially labelled as D1/..., D2/..., etc, with the
number after the slash representing the number of indicative clusters.

Fig. 2 and Fig. 3 present the results of application of FADDIS in two options, to
the original affinity data (no-Lapin) and to the Lapin-transformed results, as well as the
results for FMFCM and NERFCM algorithms. The bottom of each subfigure shows: the
number of clusters found in the case of FADDIS versions, or setting as input in the case
of FMFCM and NERFCM algorithms, and the Adjusted Rand Index (ARI) (Hubert &
Arabie, 1985), to score the similarity between ground truth and computed partitions.

The number of clusters found by FADDIS is to be analysed based on the relative cluster
contribution to the data scatter (stop condition S2).

Table 1 presents the differences of cluster contributions of the first seven FADDIS clus-
ters for the original affinity data (on top) and the Lapin transformed similarities (on bot-
tom). As one can see, for the Lapin-based contributions, the number of clusters (marked
with (*)) is fixed according to the rule “select the best number of clusters K∗ for which at
least the next two consecutive differences of cluster contributions are less than 0.01”. The
correct number of clusters is found for data sets D3/4 to D7/2. Data sets D1/3 and D2/5
are the exceptions for which the number of found clusters is 2 and 4, respectively. These
results are not that surprising since the background data points should not be counted as
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a cluster but instead as noise. Indeed, the Lapin based differences on cluster contributions
supply a correct information on the number of clusters even if the clustering results on
them are disastrous (as is the case of the result in Fig. 2-(j)– data D3/4).

In the case of no-Lapin FADDIS the differences of cluster contribution values provide
no rule for stopping the computations, as is seen in Table 1. This way, we had fine-
tuned the threshold parameter τ individually in order to stop at condition S2
having the number of extracted clusters equal to the original ones. In this case,
the no-Lapin based FADDIS finds the correct cluster structure for all data sets except
D4/3 and D6/3.

Overall, the clustering results presented in Fig. 2 and Fig. 3 show that at least one
of the FADDIS options succeeds in finding the correct cluster structure for each data set.
However, the structures populated with more than two rectangular objects on Fig. 1 are
difficult for Lapin transformation: they are basically destroyed by it, as is seen from the
second column of Fig. 2 in positions (b), (f), (j).

The FMFCM and NERFCM algorithms fail on finding the cluster structures for every
data sets, given as input the correct number of clusters. This is not surprising since
FCM-based algorithms experience difficulties when the clusters are not hyper-spherical.

3.3 Three datasets from UCI Machine Learning data repository

Fig. 4 presents two-dimensional projections to the plane of the first two singular vectors for
three popular datasets from UCI Machine Learning data repository (Frank & Asuncion,
2010): Iris, Leukemia, and Wisconsin Breast Cancer. These datasets are pre-assigned
with 3, 3, and 2 class labels, respectively. Yet the data structure suggests the numbers of
clusters (rather than classes) in them are in fact, 2, 3, and 2, respectively.

The results of applying the FADDIS algorithm (no-Lapin/Lapin options) as well as the
FMFCM and NERFCM are summarized in Table 2. The FADDIS differences of cluster
contributions are also shown in Table 1. Applying the same rule as for the previous data
collection, the Lapin-based FADDIS establishes the number of clusters for Iris (D9/2) as
2, 3 for Leukemia (D10/3), and 3 for Wisconsin Breast Cancer (D11/2).

For the Iris data set the two options of FADDIS algorithm find two clusters with
a perfect partition (ARI=1), while FMFCM and NERFCM found worst partitions. In
the case of Leukemia and Breast Cancer, FMFCM and NERFCM provide slightly better
results than any of the FADDIS versions. However, the Lapin FADDIS has the advantage
that it automatically determines the number of clusters, which is correct for Leukemia
indeed. Despite the fact that Lapin FADDIS finds a three partition for Breast Cancer, if
we force K = 2, it finds a similar partition as in the case of NERFCM and FMFCM.

3.4 Gaussian cluster generated datasets

This study has been conducted with generated data by extending the data generator used
in (Brouwer, 2009). Specifically, 4 clusters of data points are generated from a bivariate
spherical Gaussian distribution with standard deviation σ = 950. The centers of the
clusters are defined as c1 = (1500, 1500), c2 = (−1500, 1500), c3 = (−1500,−1500), c4 =
(1500,−1500), so that they are located on bisectors of the quadrants of the Cartesian plane
at the same distance from the origin. The clusters have cardinalities of 50, 100, 200, 150
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data points, respectively, 500 entities altogether. In our extension, a scale parameter sn is
introduced as a factor to the center of the cluster to be added to all data points, to model
stretching the data points to or out of the origin. At sn < 0, the clusters stretch in to
the origin, whereas they move out from the origin at sn > 0. Fig. 5 illustrates the type
of generated data for different values of the scale parameter sn. A data set generated at
sn = 0 on the left, and a stretched out dataset generated at sn = 1 on the right. The
Lapin normalization does sharpen the cluster structure in this type of data, and so has
been used in this experiment.

Ten data sets have been generated for each of the values of the scale parameter sn. The
three algorithms have been run and the results have been evaluated according to the ARI
index to score the similarity between generated and computed clusterings. Also, we tested
the ability of Lapin-based FADDIS to recover the number of clusters. Since in FMFCM
and NERFCM the number of clusters K must be prespecified, these algorithms have been
run with K = 3, 4, 5, after which the results have been evaluated by the extended Xie-Beni
validation index (Sledge et al., 2010).

Table 3 shows the means and standard deviations of the ARI index for the 10 data
sets generated at each level of the scale parameter. In each row the highest ARI value
is marked in boldface and (*). For the FADDIS algorithm the mode of the number of
clusters retrieved by the algorithm is also presented.

The results show that Lapin-based FADDIS algorithm always recovers the correct
number of clusters with stop condition S2. Also, FADDIS finds the best ARI values for
the data sets generated with the higher levels of cluster intermix (sn ≤ 0). In these cases
the NERFCM and FMFCM found their best partitions for a wrong number of clusters
(K = 3). The NERFCM and FMFCM slightly outperform FADDIS for lower levels of
cluster intermix (sn > 0), and show no differences for very clear-cut cluster structures
(e.g. sn ≥= 30)1. Yet, one should notice that the number of clusters is an input to the
former algorithms.

4 Testing FADDIS with Genuine Similarity Data

The main goal of this experiment is to study the ability of the FADDIS algo-
rithm on recovering a cluster structure from genuine similarity data generated
following the additive model (1) perturbed with different levels of Gaussian
noise. In particular, we want to test the supposed property of FADDIS of
‘different cluster contributions’. Therefore, we developed a similarity data
generator following the additive model. We apply the same three algorithms
to a pool of generated data.

4.1 The Fuzzy Core Cluster Data Generator

As usual in fuzzy clustering, we assume that each entity has one “core” cluster to which
it belongs most. Therefore, the data generation process starts with the generation of the
“core” clusters.

1The values of the extended Xie-Beni index are concordant with the ARI values for both NERFCM
and FMFCM.
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Given the size N of an entity set I, and the number of clusters K, the proposed Fuzzy
Core Cluster Data Generator (FCC DG), generates an N × N similarity data matrix G
according to the underlying (FADDIS) model W = UΛUT , as follows:

G = UΛUT + αE, (6)

where:

- N × K fuzzy membership matrix U is randomly generated using a fuzzy “core”
clusters generating procedure.

- Positive real valued K×K diagonal weight matrix Λ with diagonal positive values λk

of the cluster weights equal to λk = μ2
k is defined according to model (1). Since the

vectors uk in (1) are assumed normed, the weights take in the norms of the generated
vectors uk. To test the supposed property of different cluster contributions of the
FADDIS, the weights are also made proportional to (K−k+1)β , for k = 1, 2, . . . ,K,
so that the greater the β > 0, the greater the difference. Therefore, the weights are
defined by λk = (K − k + 1)β ∗ ‖uk‖.

- Elements of the N ×N error matrix E are independently generated from a Gaussian
distribution N(0, 1), and then symmetrized so that eii′ = (eii′ + ei′i)/2.

- The value α ∈ [0, 1] is the parameter that controls the level of error introduced into
the model W = UΛUT .

This generator builds a fuzzy cluster structure by conventionally relaxing
a crisp partition. Given a crisp partition R of the entity set I with non-
overlapping clusters Rk (k = 1, . . . ,K), a fuzzy relaxation builds each k-th fuzzy
cluster uk having the corresponding crisp cluster Rk as its core in such a way
that the maximum membership values uik will be at entities i ∈ Rk(k = 1, . . . ,K)
while the other components of uk are close to 0. The cores are generated of
different random sizes. The first core is taken to be N/2 or less, the size Nk of
the next K − 2 cores are at most half-size of the remaining part of the entity
set, and the last core’s size is taken to complement the cumulative core size
to N .

Fixed the number K of core clusters covering the entire data set, I, the data
generator builds each core cluster by filling in with fuzzy membership values,
such that: (a) the membership values of k-th fuzzy cluster uk are very high at
k-th core (e.g. uik > 2/3 for i ∈ Rk); and (b) the fuzzy clusters form a fuzzy
partition so that

∑
k uik = 1 at each entity i ∈ I. Each Nk ×K core membership

matrix Uk is defined independently of each other and then arranged into the
final N×K membership matrix U , as follows: We start filling in the k-th column
of Uk, as a Nk-dimensional vector a = (a1, · · · , aNk

) of uniformly random values
ai such that ai ∈ [2/3, 1]. Then, to satisfy the probability constraint, we fill in
each entity i (i = 1, · · · , Nk) in Uk with random numbers uik′(k′ �= k), summing
up to 1 − ai. For K ≥ 3 we generate K − 2 uniformly random values, each one
less than 1 − ai. Then we sort them in the ascending order r1 < · · · < rK−2 and
set p1 = r1, pK−1 = 1− ai − rK−2, and pk′+1 = rk′+1 − r′k (2 ≤ k′ ≤ K − 3). For K = 2
the calculation is trivial.
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After all the membership vectors uk are generated, the norms of uk’s are computed
and assigned as factors in the clusters’ weights, in order to “adjust” them to the additive
fuzzy clustering model. Then the final membership matrix has its membership vectors uk

normalized.
The FCC generated data sets typically present clear-cut cluster structures.

4.2 Assessment of Cluster Structure Recovery

The FADDIS clustering recovery ability is evaluated according to the following parameters:

(i) Number of clusters retrieved by FADDIS and achieved stop condition;

(ii) Per generated cluster k and corresponding computed cluster k̂, measure:

(a) Recovery membership error (RME) of generated cluster k with membership
vector uk = [uik], and computed membership, ûk = [ûik]:

RME (uk) =
N∑

i=1

u2
ik

|uik − ûik|
uik

such that,
∑N

i=1 u2
ik = 1.

The RME error is an average relative difference weighted by normalization
factor u2

ik; its maximum value is one.

(b) Recovery intensity error (RIE) of generated and computed intensities, μk, and
μ̂k,

RIE(μk) =
|μk − μ̂k|

μk
.

(c) Percentage of the matching between the K generated Rk cores and the crisp
cores retrieved from the computed partitions;

(iii) Similarity between generated and found partitions measured with ARI index.

The datasets have been generated in three groups for three different numbers of clus-
ters: K = 3, 4, 5. The experiments were cross-combined according to the following set-
tings: (i) Total number of entities of the data set N = 50, 200, 400, 700; (ii) α values of
the standard deviation of noise, α = {0, 0.05, 0.1, 0.15, 0.25, 0.5}. (iii) For each value of
K, 10 distinct datasets had been generated for each tuple (N,α, β), resulting in a total
of 720 datasets per K value, and so a total of 2160 datasets. In the case of NERFCM,
the similarity data matrix G (6) is transformed into a dissimilarity matrix D, such that,
D = max(G) − G.

The statistics are presented for α ∈ {0, 0.05, 0.1}, since in preliminary experiments we
observed that FADDIS clustering recovery significantly decreases for values of α > 0.1. In
Tables 4 and 5, the best value in each row is marked with (*). We only present the
no-Lapin FADDIS results since the Lapin FADDIS shown worse results.

Table 4 shows the means/std and mode values of the recovered number of clusters by
the FADDIS algorithm. For K = 3, 4, 5 the percentage of data sets for which the correct
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number of clusters is recovered increases with the increase of β values from β = 0.0 to
β = 1.0. The only exception occurs for K = 5, N = 200, where the best values are
achieved for β = 0.5. In all cases, the FADDIS algorithm stops at condition S2.

The analyses of the Recovery Membership Error (RME) and the Recovery Intensity
Error (RIE) (Table 5), show that the minimum values are achieved for β = 1.0 for the
collections of data sets with K = 3 and K = 4 clusters. For the data sets with K = 5, the
minimum values are obtained for parameter β = 0.5. In any case, for β = 1.0 the RME
and RIE errors are always inferior to 0.1 which is a very good value (the only exception is
at K = 3 and N = 700). Also, the errors almost always decrease with the increase of β,
which is in accordance with the expected property of different contributions of FADDIS.

On comparing FADDIS, FMFCM and NERFCM partitions, the highest ARI index
values correspond to FADDIS partitions2. The best ARI values, with mean/std in the
range [0.8/0.2, 0.94/0.11], are achieved for data sets generated with β = 1.0 in the case
of K = 3 and K = 4 clusters. For K = 5, the best values (ARI ≥ 0.93) are achieved at
β = 0.5, in contrast to the expected property of ‘different contributions’. The analysis of
the best values for the percentages of the crisp core matching is concordant with the ARI
ones.

Comparing between the FMFCM and NERFCM, in almost all the cases the NERFCM
outperforms FMFCM for the data sets generated with β = 0.0, which is in contrast to
the case of the entity-to-feature data at which FMFCM outperforms NERFCM (Brouwer,
2009). This is concordant to the idea that the NERFCM is a genuine relational clustering
algorithm whereas the FMFCM is not.

5 Analysis of Activities and Biclustering

5.1 Deriving thematic clusters for the analysis of activities

The FADDIS method is part of a novel hybrid methodology called cluster-lift (Mirkin et
al., 2010) for the representation and interpretation of the activities conducted in a research
organization, such as a University department, by mapping them to a related hierarchical
taxonomy such as the Classification of Computer Subjects by ACM (ACM-CCS, 1998).
This methodology combines: (i) the FADDIS method that allows to cluster research topics
according to their thematic similarities without taking into account the topology of the
taxonomy; (ii) a recursive method that lifts the clusters mapped onto the taxonomy to
higher ranked nodes of the tree, leading to a parsimonious representation of the clusters
in terms of topology derived concepts of “head subjects”, “gaps” and “offshoots”.

The cluster-lift method was applied on survey data about the research activities con-
ducted in three University Computer Science units: one research centre and two university
departments. The raw data have the format of a topic-by-respondent matrix with each
entry being the proportion of a topic chosen by a respondent to express its contribution
on the respondents’ research activity. From this we constructed a topic-to-topic similarity
matrix. A description of the raw data sets highlighting their cluster tendency, the found
thematic clusters by FADDIS as well as their representation using the lifting method can
be consulted in (Nascimento, 2011).

2The table with the ARI mean/std values is not shown due to lack of space.
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Let us consider the survey data of a research centre3 covering 46 topics of the 3rd
layer of the ACM-CCS tree. The Lapin based FADDIS found two thematic clusters when
applied to the topic-to-topic similarity matrix. To evaluate the consistency of those clusters
with the topic-by-respondent raw matrix, we divided it into distinct submatrices . Each
submatrix contains a subset of topics for which at least three respondents have the total of
their research efforts covered by those topics. We obtained three submatrices. Comparing
the FADDIS found thematic clusters with these submatrices we observed a rather good
matching. Indeed, the two found clusters have all their topics coinciding with the topics
covered by the two first submatrices of the original raw data. The remaining topics,
covered by the third submatrix, are those not covered by FADDIS, thus being residual
data.

The same kind of consistent results were obtained from the surveys con-
ducted in two other University departments covering, respectively, 54 and 65
topics of the 3rd layer of ACM-CCS. For each department FADDIS found four
thematic clusters characterizing their research activities.

This brings forth the idea of applying a biclustering method for automati-
cally obtaining submatrices of high research efforts by simultaneously finding
both thematic clusters and research teams engaged in them (for reviews of
biclustering see (Prelić et al., 2006; Yang et al., 2007)).

5.2 Extending FADDIS to spectral fuzzy bi-clustering

Given a rectangular data matrix F = (fiv) with a row-set I and column-set V , a bicluster
is a pair (X,Y ) where X ⊂ I is a set of rows and Y ⊂ V is a set of columns such
that submatrix F (X,Y ) shows a remarkable relation between X and Y , as was stated in
the pioneer paper by Hartigan (Hartigan, 1972). Currently this relation in most cases is
assumed to be consistently higher values within the submatrix F (X,Y ) than in the rest
of matrix F . In our case, set V corresponds to members of a research organization and
set I to the research topics. Then fiv would be the score given by member v to the topic
i to express the proportion of their total research effort corresponding to topic i.

An extension of the spectral clustering approach to biclustering has been proposed
by (Dhillon, 2001), due to reformatting the rectangular data matrix F into a format of
a square symmetric matrix. Specifically, the (|I| + |V |) × (|I| + |V |) square matrix B is
defined by the |I| × |V | matrix F as

B =
[

0 F
F ′ 0

]

where F ′ is the transpose of F . Consider a singular triplet (μ, c, z) of F so that Fc = μz and
F ′z = μc. It is quite easy to see then that μ is an eigenvalue of B corresponding to a (|I|+
|V |)-dimensional eigenvector y consisting of c and z, y = (c, z) in such a way that norms of
z and c are equal to each other (Mirkin, 2011b). That means that the first eigenvector of
B corresponds to the first singular vectors of F , that form the best fitting solution to the

3Survey conducted in Centre for Artificial Intelligence (CENTRIA) of Universidade Nova de Lis-
boa in 2009. There was used the Electronic Survey tool of Scientific Activities (ESSA) available at
https://copsro.di.fct.unl.pt/ .
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model fiv = μcizv + eiv at which fiv is observed and μ, ci, zv are sought values according
to the principle of least-squares (see, for example, (Mirkin, 2011b)). Accordingly, the
corresponding projection of the pair y = (c, z) to the set of fuzzy membership values
would be the fuzzy bicluster found according to the same model.

That means that FADDIS can be applied as is to our raw data matrix F reformatted
into B rather then the topic-to-topic similarity matrix discussed previously. Of course, B
then should be Lapin-transformed into a matrix A.

When applied to the research center raw data, the FADDIS bi-clustering found fuzzy
biclusters almost coincide with the FADDIS thematic clusters. Additionally, they provide
the information of member teams behind the thematic clusters. Each of the biclusters is
tight in the sense that almost all of the individuals taken have 100% of their contribution
efforts covered by the topics of corresponding bicluster. Specifically, in the case of cluster
1 four of five individuals have 100% of their contributions on this cluster whereas one
individual has 40% of its contribution in the cluster, and the remaining 60% not covered
by any cluster. For bicluster 2, seven individuals have 100% of their contributions covered
by the topics of this bicluster, while one individual has 10% covered by the topics of
bicluster 1 and the remaining 40% is covered by no cluster.

However, the biclustering results on the other research organizations do not have such
a high matching score with the FADDIS ones.

6 Conclusion

The paper presents and experimentally studies an unconventional model of fuzzy clustering
in which the observed similarity between entities is approximated by the weighted product
of their fuzzy membership values that contribute towards the similarity. This is motivated
by the idea that the similarity between research topics is obtained by adding up the
working of different groups on them so that the clusters according to this model can be
considered thematic clusters indeed. The spectral fuzzy clustering method FADDIS is
accompanied with a set of model-based cluster extracting stop-conditions.

The presented work demonstrates that FADDIS is competitive on both the conven-
tional data formats, two types of generated cluster structures, and in real world data.
In most of our experiments the Lapin based FADDIS has been able to determine the
correct number of clusters in data indeed. The Lapin works quite well on affinity
data of Gaussian clusters with different levels of intermix, on various difficult
geometric data, as well as on genuine similarity data having a no clear-cut
cluster structure, as is the case of the research activities data. Oppositely,
for clusterdness data the Lapin transformation tends to destroy that structure
(a situation also reported in (von Luxburg et al., 2010)), while the no-Lapin
FADDIS gets better results.

Yet, there are some irregularities in FADDIS working that deserve to be investigated
further. One of the irregularities is the experimentally observed deviations from the prop-
erty of different cluster contributions. According to the definition of FADDIS, the more
different the cluster weights in the data, that is, the greater the β at the genuine similarity
data generator, the better should be the correspondence between the generated clusters
and those FADDIS computed. This is true in most cases, but sometimes it is not. We
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are going to address this in our future work. Another direction for future work is
further exploring the Lapin transformation and its role in the recovery of a
correct number of clusters. One more line of the future research is in the
analysis of competitiveness of FADDIS biclustering and its adequacy to the
tasks of the analysis of research activities.

FADDIS is potentially useful in applications where there exists interest to
model pairwise similarities by additive properties. This is the case of finding
thematic clusters of the activities conducted in an organization or, for exam-
ple, in collaborative filtering by clustering of items based on user preferences.
FADDIS sequential extraction of clusters maximizing their contribution to the
similarity data scatter allows to obtain the most K relevant thematic clusters
towards their strength to similarity, typically having contrastful memberships
indeed. These are good characteristics for decision-making processes.
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Tables

Table 1: FADDIS differences of clusters’ contributions to the data scatter for the seven
first clusters in two options of the algorithm: no-Lapin and Lapin.

Diff. Contribus 1-2 2-3 3-4 4-5 5-6 6-7

D1/3 0.0008 0.0062 0.0135 0.0013 0.0020 0.0019
D2/5 0.0002 0.0001 0.0003 0.0039 0.0028 0.0016
D3/4 0.0008 0.0034 0.0001 0.0044 0.0044 0.0021
D4/3 0.0045 0.0043 0.0001 0.0100 0.0008 0.0020
D5/3 0.0045 0.0093 0.0055 0.0000 0.0073 0.0026

no Lapin D6/3 0.0057 0.0023 0.0027 0.0037 0.0010 0.0013
D7/2 0.0022 0.0011 0.0021 0.0005 0.0029 0.0038
D9/2 0.0337 0.0565 0.0051 0.0253 0.0044 0.0033
D10/3 0.3458 0.1146 0.0571 0.0096 0.0008 0.0003
D11/2 0.7778 0.0122 0.0274 0.0005 0.0007 0.0005

D1/3 0.2975 0.1234* 0 0 0 0
D2/5 0.2575 0.0665 0.0901 0.0114* 0.0003 0.0003
D3/4 0.0043 0.0807 0.0076 0.0349* 0.0044 0.0046
D4/3 0.3005 0.1013 0.0109* 0.0005 0.0004 0.0002
D5/3 0.0967 0.20836 0.0334* 0.0002 0 0.0001

Lapin D6/3 0.0172 0.2288 0.0132* 0.0001 0.0001 0
D7/2 0.0134 0.2432* 0 0 0 0
D9/2 0.3782 0.0966* 0 0 0 0
D10/3 0.0354 0.0104 0.039* 0.0009 0.0008 0.0002
D11/2 0.5373 0.0606 0.0269* 0.0039 0.0018 0.0014
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Table 2: The four algorithms clustering results for artificial datasets D9/2 - D11/2.

FADDIS- no Lapin FADDIS- Lapin FastMap FCM NERFCM

D Output K ARI Output K ARI Input K ARI Input K ARI

D9/2 2 1 2 1 2 0.69 2 0.920

D10/3 3 0.880 3 0.867 3 0.922 3 0.922

D11/2 2 0.227 3 0.812 2 0.841 2 0.830
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Table 3: Bivariate Normal DG with different scale values of cluster intermix – Adjusted Rand
Index (ARI) avg/std for FADDIS, NERFCM and FMFCM

FADDIS NERFCM FastMap FCM
sn Lapin K K = 3 K = 4 K = 5 K = 3 K = 4 K = 5
-5 0.47/0.048* 4 0.47/0.05 0.44/0.05 0.37/0.035 0.47/0.05 0.44/0.045 0.37/0.03
0 0.68/0.029* 4 0.66/0.034 0.64/0.058 0.53/0.032 0.66/0.035 0.61/0.096 0.54/0.013
5 0.83/0.022 4 0.76/0.018 0.84/0.016* 0.67/0.036 0.76/0.018 0.84/0.016* 0.67/0.031

10 0.91/0.029 4 0.82/0.015 0.93/0.021* 0.74/0.025 0.82/0.015 0.93/0.021* 0.75/0.029
20 0.98/0.022 4 0.86/0.008 0.99/0.009* 0.85/0.07 0.86/0.008 0.99/0.009* 0.82/0.067
50 1/0* 4 0.87/0.007 1/0* 0.87/0.075 0.87/0.007 1/0* 0.87/0.07
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Table 4: FCC DG - Summary data of the percentage avg/std of correct extracted clusters and
mode of the number of extracted clusters for std of added Gaussian noise=[0, 0.1] for FADDIS in
best conditions for K = {3, 4, 5}

FADDIS
β = 0.0 β = 0.5 β = 1.0

N (%) Mode (%) Mode (%) Mode

K = 3

50 50.0/0.0 3 62.5/9.6 3 85.0/5.8* 3
200 60.0/0.0* 3 32.5/20.6 2 60.0/0.0* 3
400 30.0/21.6 3 62.5/15.0 3 80.0/0.0* 3
700 17.5/17.1 2 40.0/35.6 2 65.0/19.1* 3

K = 4

50 47.5/9.6 4 60.0/8.2 4 70.0/18.3* 4
200 50.0/35.6 4 50.0/0.0 4 65.0/5.8* 4
400 27.5/18.9 5 55.0/10.0 4 72.5/5.0* 4
700 17.5/20.6 1 67.5/5.0 4 77.5/5.0* 4

K = 5

50 40.0/21.6 5 60.0/8.2 5 67.5/5.0* 5
200 37.5/26.3 5 52.5/5.0* 5 40.0/8.2 5
400 45.0/46.5 5 50.0/0.0 5 65.0/10.0* 5
700 25.0/23.8 1 35.0/5.8 6 42.5/5.0* 5
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Table 5: Summary Table of the RME and RIE errors’ avg/std for std of added Gaussian noise=[0,
0.1] for FADDIS in best conditions for K = {3, 4, 5}

RME RIE
N β = 0.0 β = 0.5 β = 1.0 β = 0.0 β = 0.5 β = 1.0

K = 3

50 0.25/0.08 0.24/0.02 0.14/0.02* 0.14/0.03 0.15/0.01 0.08/0.01*
200 0.28/0.08 0.54/0.12 0.15/0.01* 0.13/0.02 0.29/0.08 0.07/0.00*
400 0.45/0.34 0.18/0.11 0.14/0.01* 0.30/0.27 0.09/0.05 0.09/0.00*
700 0.56/0.33 0.39/0.18 0.21/0.05* 0.35/0.24 0.25/0.14 0.13/0.05*

K = 4

50 0.22/0.07 0.13/0.05 0.13/0.02* 0.11/0.01 0.07/0.01* 0.08/0.04
200 0.44/0.35 0.12/0.01 0.12/0.01* 0.29/0.30 0.06/0.00 0.06/0.00*
400 0.41/0.33 0.20/0.01 0.10/0.03* 0.28/0.29 0.10/0.00 0.05/0.01*
700 0.59/0.36 0.13/0.05* 0.17/0.01 0.43/0.30 0.07/0.02 0.07/0.00*

K = 5

50 0.28/0.12 0.14/0.02* 0.17/0.01 0.15/0.04 0.07/0.01 0.07/0.00*
200 0.36/0.26 0.14/0.04 0.13/0.02* 0.21/0.18 0.07/0.01 0.06/0.01*
400 0.40/0.34 0.07/0.01* 0.12/0.01 0.28/0.29 0.04/0.00* 0.05/0.01
700 0.49/0.37 0.17/0.03* 0.18/0.01 0.35/0.33 0.10/0.01 0.06/0.00*
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Figure 1: Seven artificial bivariate datasets.
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Figure 2: The four algorithms clustering results for the artificial datasets D1/3 - D4/3.
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Figure 3: The four algorithms clustering results for artificial datasets D5/3 - D7/2.
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Figure 4: Three datasets from UCI Machine Learning Repository: Iris(D9/2),
Leukemia(D10/3), and Wisconsin Breast Cancer(D11/2).
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(a) Dataset generated at sn = 0
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(b) Dataset generated at sn = 1

Figure 5: Dataset with two different levels of intermix.
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Figure Captions

• Figure 1: Seven artificial bivariate datasets.

• Figure 2: The four algorithms clustering results for the artificial datasets D1/3 -
D4/3.

• Figure 3: The four algorithms clustering results for artificial datasets D5/3 - D7/2.

• Figure 4: Three datasets from UCI Machine Learning Repository: Iris(D9/2), Leukemia(D10/3),
and Wisconsin Breast Cancer(D11/2).

• Figure 5: Dataset with two different levels of intermix.
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