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Abstract
We investigate the multiquantum vortex states in a type-II superconductor in both ‘clean’ and
‘dirty’ regimes defined by impurity scattering rate. Within a quasiclassical approach we
calculate self-consistently the order parameter distributions and electronic local density of
states (LDOS) profiles. In the clean case we find the low temperature vortex core anomaly
predicted analytically by Volovik (1993 JETP Lett. 58 455) and obtain the patterns of LDOS
distributions. In the dirty regime multiquantum vortices feature a peculiar plateau in the zero
energy LDOS profile, which can be considered as an experimental hallmark of multiquantum
vortex formation in mesoscopic superconductors.

(Some figures may appear in colour only in the online journal)

1. Introduction

Modern technology development provides a unique pos-
sibility to study superconducting states at the nanoscale.
Recently there has been much experimental effort focused
on the investigation of exotic vortex states in mesoscopic
superconducting samples of the size of several coherence
lengths [1, 2]. Magnetic field can penetrate the sample in
the form of a polygon-like vortex molecule, or individual
vortices can merge forming a multiquantum giant vortex
state with a winding number larger than unity [3]. The
latter possibility is of particular interest, and the search
for giant vortices in mesoscopic superconductors has been
performed by means of various experimental techniques
including transport measurements [4, 5], Bitter decoration [6],
magnetometry [7], and scanning Hall probe experiments [8].
Currently much effort is invested in studies of nanoscale
superconducting samples with the help of scanning tunneling
microscopy (STM) techniques [9, 10], which have been
achieved only recently and allow for a direct probe of
the structure of vortex cores through measurement of the
electronic local density of states (LDOS) distribution modified
by vortices.

Such STM measurements have been proven to be an
effective tool for experimental study of electronic structure
of vortices in bulk superconductors [11–15]. Indeed, for
temperatures much lower than the typical energy scale in
superconductors T � Tc the local differential conductance
of the contact between the STM tip and superconductor as
a function of voltage V is given by

dI

dV
(V) =

dI

dV N

N(r,E = eV)

N0
(1)

where (dI/dV)N is the conductance of the normal metal
junction and N0 is the electronic density of states at the Fermi
level. The observation of zero-bias anomalies of tunneling
conductance at the center of singly quantized vortices [11,
13, 12, 14, 15] clearly confirms the existence of bound vortex
core states predicted by Caroli, de Gennes and Matricon
(CdGM) [16]. In clean superconductors for each individual
vortex the energy ε(µ) of a subgap electronic state varies
from −10 to +10 = 1(r = ∞) as one changes the angular
momentum µ defined with respect to the vortex axis. At small
energies |ε| � 10 the spectrum is a linear function of µ:

ε(µ) = ωµ. (2)
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Here ω ∼ 10/(kFξ), where ξ = h̄VF/10 is coherence length,
kF is Fermi momentum and VF is Fermi velocity. The wave
functions of subgap states with spectrum (2) are localized
inside vortex cores because of the Andreev reflection of
quasiparticles from the core boundaries, and form the low
energy LDOS singularity at the vortex center.

In multiquantum vortices with the winding number M the
spectrum of electronic states contains M anomalous branches
degenerate by electronic spin [17–21]:

εj(µ) = ωj(µ− µj), (3)

where ωj ∼ 10/(kFξ) and index j enumerates different
spectral branches (1 < j < M), −kFξ . µj . kFξ . Each
anomalous branch intersects the Fermi level and contributes
to the low energy LDOS. The spectrum of localized
electronic states in mesoscopic superconductors with several
vortices has been shown to be very sensitive to the mutual
vortex position [22]. It has been suggested that, testing
the properties of the electronic spectrum by means of the
heat conductivity measurement, one can directly observe the
transition to the multiquantum vortex state in a mesoscopic
superconductor [23]. An alternative route is to use STM
measurement of local tunneling conductance, which is
proportional to the LDOS provided T � Tc. Thus to provide
evidence of multiquantum vortex formation revealed by STM
experiments one should find distinctive features of the order
parameter structures and LDOS profiles occurring especially
in the low temperature regime T � Tc.

Previously, the low temperature properties of multiquan-
tum vortices have not been investigated much. The results
of theoretical studies are known only for a particular case
of vortices in clean superconductors when the electronic
mean free path is much larger than the coherence length.
In this regime the contribution of anomalous branches
produces singularities of the order parameter distribution
near vortex cores in the limit T � Tc. In particular, singly
quantized vortices feature an anomalous increase of the order
parameter slope at the vortex centers, which is known as
the Kramer–Pesch effect [24, 25]. The generalization to a
multiquantum vortex case was suggested in [26], where it
was analytically predicted that a doubly quantized vortex
should have a square root singularity of the order parameter
distribution 1 = 1(r) in the limit T � Tc. Although the
structures of multiquantum vortices have been calculated
self-consistently in the framework of Bogolubov–de Gennes
theory the vortex core anomalies have not been discussed [20,
21]. Moreover, multiple anomalous branches of the electronic
spectrum have been shown to produce complicated patterns
in the LDOS distributions investigated in the framework
of Bogolubov–de Gennes theory [20, 21]. Here we employ
an alternative approach of the quasiclassical Eilenberger
theory [27] to check the predictions of vortex core anomalies
and the LDOS patterns in multiquantum vortices in clean
superconductors.

Notwithstanding the interesting physics taking place
in the clean regime, the experimental realization of
STM measurements of multiquantum vortex states was
implemented on a Pb superconductor [9, 10] with short

mean free path, much smaller than the coherence length.
This dirty superconductor is more adequately described
within the diffusive approximation of the electronic motion
resulting in the Usadel equations for electronic propagators
and superconducting order parameters [28]. Singly quantized
vortex states in dirty superconductors were investigated in
detail [29], and were shown to lack the low temperature
singularity of the 1(r) distribution, which was smoothed out
by the impurity scattering of quasiparticle states. Moreover,
the LDOS distribution inside a vortex core does not feature
a zero-bias anomaly, since the spectral weight of bound
electronic states is distributed smoothly between all energy
scales up to the bulk energy gap 10. On the other hand
the multiquantum vortex states have not been investigated
in the framework of the Usadel theory, nor have the
LDOS distributions around multiquantum vortices in dirty
superconductors ever been calculated.

It is the goal of the present paper to study both the
peculiarities of multiquantum vortex structures, especially at
low temperatures, and the distinctive features of electronic
LDOS, which would allow unambiguous identification of
giant vortices in both clean and dirty regimes. This paper
is organized as follows. In section 2 we give an overview
of the theoretical framework, namely the quasiclassical
Eilenberger theory in clean superconductors and the Usadel
equation in the dirty regime. We discuss the results of self-
consistent calculations of the order parameter distributions for
multiquantum vortex configurations in section 3 and address
the LDOS profiles in section 4. We give our conclusions in
section 5.

2. Theoretical framework

2.1. Clean limit: Eilenberger formalism

Within quasiclassical approximation [27, 31, 32] the
parameters characterizing the Fermi surface are the Fermi
velocity VF and the density of states N0. We normalize the
energies to the critical temperature Tc and length to ξC =

h̄VF/Tc. The magnetic field is measured in units φ0/2πξ2
C,

where φ0 = 2π h̄c/e is the magnetic flux quantum. The system
of Eilenberger equations for the quasiclassical propagators
f , f+, g reads

np (∇ + iA) f + 2ωf − 21g = 0,

np (∇ − iA) f+ − 2ωf+ + 21∗g = 0.
(4)

Here A is a magnetic field vector potential, the vector
np parameterizes the Fermi surface and ω is a real
quantity which should be taken at the discrete points of
Matsubara frequencies ωn = (2n + 1)πT determined by
the temperature T . The quasiclassical propagators obey
normalization condition g2

+ ff+ = 1. The self-consistency
equation for the order parameter is

1(r) = 2πT3
Nd∑

n=0

S−1
F

∮
FS

f (ωn, r,np) d2Sp (5)
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Figure 1. The distribution of the order parameter around vortex cores in a clean superconductor at different temperatures. Panels (a)–(d)
correspond to the winding numbers M = 1, 2, 3, 4. Blue solid, green dash–dotted and red dashed lines correspond to the temperature
T/Tc = 0.1; 0.5; 0.9.

where 3 is coupling constant, SF is a Fermi surface area and
the integration is performed over the Fermi surface. Hereafter,
to simplify the calculations we assume the Fermi surface
to be cylindrical and parameterized by the angle θp so that
np = (cos θp, sin θp). In equation (5), Nd(T) = ωd/(2πT) is
a cutoff at the Debye energy ωd, which is expressed through
physical parameter Tc and 3 as follows:

Nd(Tc)∑
n=0

3

n+ 1/2
= 1. (6)

The LDOS is expressed through the analytical continuation of
the quasiclassical Green’s function to the real frequencies

N(r) = N0S−1
F

∮
FS

Re[g(ω = −iE + 0, r,np)] d2Sp. (7)

Assuming the vortex line to be oriented along the z
axis, we choose the following ansatz of the superconducting
order parameter corresponding to an axially symmetric vortex
bearing M quanta of vorticity 1(x, y) = |1|(r) eiMϕ , where
r =

√
x2 + y2 is a distance from the vortex center and ϕ =

arctan(y/x) is a polar angle. Below we neglect the influence
of the magnetic field on a vortex structure, which is justified
for superconductors with large Ginzburg–Landau parameter.

For numerical treatment of the equations (4) we
follow [31, 32] and introduce a Riccati parametrization for
the propagators. The essence of this method is a mathematical
trick, which allows us to solve two first-order Riccati
equations instead of a second-order system of Eilenberger
equations. Starting with some reasonable ansatz for the order
parameter, the first-order Riccati equations are solved by the
standard procedure. Then the corrected order parameter is
calculated according to equation (5). The badly converging
sum in equation (5) is renormalized in the usual way with
the help of equation (6). Then one should take into account
only a few terms in the sum (5). For example, ωn < 10Tc is
enough for the temperature range T > 0.05Tc considered at
the present paper. The iteration of this procedure is repeated
until convergence of the order parameter is reached with an
accuracy 10−4Tc.

2.2. Dirty limit: Usadel equations

In the presence of impurity scattering the Eilenberger
equations (4) contain an additional diagonal self-energy
term [27]. When the scattering rate exceeds the corresponding
energy gap (dirty limit), Eilenberger’s theory allows for a
significant simplification. In this case quasiclassical Usadel

3
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Figure 2. The vortex core anomaly revealed at sharp peaks of the order parameter profile derivative d1(r)/dr around vortex cores in a
clean superconductor at different temperatures. (a)–(d) Winding numbers M = 1, 2, 3, 4 correspondingly. Blue solid, green dash–dotted and
red dashed lines correspond to the temperatures T/Tc = 0.1; 0.5; 0.9. The dotted black line in (c) is for T = 0.05Tc; together with the blue
solid curve in (a) it demonstrates the peaked order parameter slope at the vortex center d1(r = 0)/dr for odd winding numbers M.

equations [28] are applicable. The structure of singly
quantized vortices with M = ±1 in dirty superconductors
was studied extensively in the framework of the Usadel
equations [29]

ωF −
[
G(∇ − iA)2F − F∇2G

]
= 1G (8)

where G and F are normal and anomalous quasiclassical
Green’s functions averaged over the Fermi surface and
satisfying the normalization condition G2

+ F∗F = 1. To
facilitate the analysis, we introduce reduced variables: we
use Tc as a unit of energy and ξD =

√
D/2Tc, where D is a

diffusion constant as a unit of length. The Usadel equation (8)
is to be supplemented with a self-consistency equation for the
order parameter

1(r) = 2πT3
Nd∑

n=0

F(ωn, r). (9)

We again neglect the influence of the magnetic field on
a vortex structure. It is convenient to introduce the vector
potential in equation (8) corresponding to a pure gauge field
which removes the phase of the order parameter

A = M
z× r

r2 . (10)

Using θ -parametrization [30] (F = sin θ,G = cos θ ), the
Usadel equation can be rewritten in the form

1
r

d
dr

(
r

d
dr
θ

)
−

M2

2r2 sin(2θ)+ (1 cos θ − ω sin θ) = 0. (11)

Performing the renormalization of summation by ωn in
self-consistency equation (9), we need to solve equation (11)
for a limited range of frequencies. We take ωn ≤ 10Tc,
which allows to obtain very good accuracy. The nonlinear
equation (11) was solved iteratively. At first we choose a
reasonable initial guess and linearize the equation to find
the correction. The corresponding boundary problem for a
non-homogeneous second-order linear equation was solved
by the sweeping method and the procedure was repeated
until convergence was reached. With the help of the obtained
solutions of equation (11), we calculated the corrected order
parameter (9). We repeated the whole procedure to find the
order parameter profile with an accuracy 10−4Tc.

The LDOS N(E, r), which is accessible in tunneling
experiments, can be obtained from θ(ω, r) using analytic
continuation

N(E, r) = Re [cos θ(ω→−iE + δ, r)] . (12)

To calculate LDOS we solve equation (11) for ω = −iE. In
this case it is in fact a system of two coupled second-order

4
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Figure 3. The distribution of the order parameter around the vortex core in a dirty superconductor at different temperatures.
(a)–(d) Winding numbers M = 1, 2, 3, 4 correspondingly. Blue solid, green dash–dotted and red dashed lines correspond to the temperature
T/Tc = 0.1; 0.5; 0.9.

equations for the real and imaginary parts of θ . We use the
iteration method again by solving repeatedly the linearized
system for the corrections of θ . The corresponding boundary
problems for second-order linearized equations for Re θ and
Im θ were solved in turn by the sweeping method.

3. Order parameter structures of multiquantum
vortices

To determine the order parameter profiles 1 = 1(r) in
multiquantum vortices, we solved numerically the sets of
Eilenberger equations (4) and (5) and Usadel equations (9)
and (11), which describe the clean and dirty regimes
correspondingly. First let us consider the clean regime.
The order parameter profiles in vortices with winding
numbers M = 1–4 are shown in figures 1(a)–(d) for the
temperatures T/Tc = 0.1; 0.5; 0.9. One can see that at
elevated temperatures T = 0.9Tc (red dashed curves) and T =
0.5Tc (green dash–dotted curve) the order parameter follows
the Ginzburg–Landau asymptote 1(r) ∼ rM at small r.

At low temperature T = 0.1Tc the order parameter
distribution is drastically different from the Ginzburg–Landau
behavior, as shown by blue solid lines in figure 1. In
particular, the singly quantized vortex in figure 1(a) features
the Kramer–Pesch effect [24] when the order parameter

slope at r = 0 grows as d1/dr ∼ 1/T when T → 0. In
the case of multiquantum vortices with M > 1, the gapless
branches of the electronic spectrum (3) produce anomalies in
the vortex core structures [26]. To observe these anomalies
we plot in figure 2 the derivatives d1(r)/dr obtained
self-consistently for the vortex winding numbers M = 1–4. In
accordance with the analytical consideration [26], the vortex
core anomalies result in the singular behavior of d1(r)/dr at
low temperatures. We find that at T = 0.1Tc in multiquantum
vortices with M > 1 the calculated dependences d1(r)/dr
have sharp maxima at finite r 6= 0. According to the analytical
predictions these maxima originate from the square root
singularity of the order parameter which is produced by the
contribution of the gapless energy branches of the electronic
spectrum [26].

In general, for higher values of winding numbers M >

1 in the limit T → 0 one should have M/2 singularities
of d1(r)/dr for even M and (M + 1)/2 singularities for
odd M. For particular examples of M = 2, 4 there are one
and two peaks of d1/dr at T = 0.1Tc shown by the blue
solid line in figures 2(b) and (d). We found that the order
parameter of the M = 3 vortex has a linear asymptote 1(r) ∼
r at small r shown in figure 1(c). The slope of this linear
dependence grows at decreasing temperature, analogously to
the Kramer–Pesch effect in a single-quantum vortex [24]. This

5
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Figure 4. The distribution of the order parameter around the multiquantum vortex core at T/Tc = 0.1 in (a) a clean superconductor and
(c) a dirty superconductor. The panels (b, d) show the same in logarithmic scale. Black solid, green dotted, blue dash–dotted and red dashed
lines correspond to the winding numbers M = 1, 2, 3, 4.

behavior is demonstrated by the dotted black line in figure 1(c)
corresponding to T = 0.05Tc. This effect is featured by all
vortices with odd winding numbers originating from the
gapless energy branch crossing the Fermi level at µ = 0 in
the equation (3).

Next consider the case of a dirty superconductor and
calculate the core structures of multiquantum vortices. The
results of the calculation are shown in figure 3 for the winding
numbers M = 1–4 and temperatures T/Tc = 0.1; 0.5; 0.9.
As expected, vortices in the dirty regime do not feature
singularities in the order parameter distribution, in contrast to
the clean case considered above.

The comparison of vortex core structures in clean
and dirty superconductors at T/Tc = 0.1 is presented in
figure 4 for the winding numbers M = 1–4. To demonstrate
the difference between clean and dirty cases we plot the
dependences 1 = 1(r) in a logarithmic scale in figures 4(b)
and (d) correspondingly. In the dirty case the order parameter
has a Ginzburg–Landau power law asymptote 1(r) = αrM ,
which occurs at r → 0 even at very low temperatures T �
Tc. In figures 4(a) and (c) the low temperature behavior
1(r) in the clean case is drastically different from the
Ginzburg–Landau regime. In particular, the multiquantum
vortex with M = 3 shown by the blue dash–dotted line in
figure 4(a) has a linear asymptote at r = 0. The slope of
the linear asymptote for M = 3 should grow with decreasing

temperature, featuring an analog of the Kramer–Pesch effect
for multiquantum vortices. Furthermore, the order parameter
for the M = 4 vortex shown by the red dashed line
in figure 4(a) is almost zero in the finite region r <
Rc, where Rc ∼ ξC/2. This behavior is caused by the
dominating contribution of the electronic states (3) to the
superconducting order parameter at r < Rc. This contribution
is zero at r < min(µ01, µ02)/kF in the limit T → 0 [26].
Thus multiquantum vortices with high even winding numbers
M are well described by the step-wise vortex core model
used previously for the analytical analysis of the vortex core
spectrum [19].

4. LDOS profiles of multiquantum vortices

Having in hand the order parameter structures calculated
self-consistently in section 3, we calculate the LDOS
distributions formed by the electronic states localized at
the vortex core. We start with the case of the clean
superconductor, which is known to demonstrate peculiar
profiles of LDOS originating from multiple energy branches
of localized electrons [20, 21]. Here we calculate the LDOS
distributions for the winding numbers M = 1–4 shown in
figure 5. The LDOS plots are similar to that obtained in the
framework of Bogolubov–de Gennes theory [20, 21].

6
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Figure 5. The distribution of the LDOS around vortex cores at T/Tc = 0.1 in a clean superconductor as a function of energy and distance
from the vortex core N = N(r,E). (a)–(d) Values of vorticity M = 1, 2, 3, 4 correspondingly.

Introducing a polar coordinate system (r, ϕ) and defining
the z projection of quasiparticle angular momentum through
the impact parameter of the quasiclassical trajectory [23] µ =
−[r,kF] · z0, the LDOS inside the singly quantized vortex
core can be found with the help of equation (2) as follows:
N(E, r)= (kF/2πξC)

∫ 2π
0 δ[E−ωkFr sin(ϕ−θp)]dθp. Here we

evaluate the LDOS summing up over quasiparticle states at the
trajectories characterized by the direction of the quasiparticle
linear momentum kF = kF(cos θp, sin θp). This expression
yields a singular behavior of zero energy LDOS at r > r0 [33,

31, 34]: N(E, r) = 1/(2πω
√

r2 − r2
0ξC) ≈ N0ξC/

√
r2 − r2

0,

where N0 = (1/2π)m/h̄2 is a normal metal LDOS and r0 =

E/(ωkF). Thus the LDOS profile of a singly quantized vortex
has the ring form, with the radius r0 being a function of
energy. The dependence N = N(E, r) is shown in figure 5(a)
for a singly quantized vortex.

In multiquantum vortices the spectrum of low energy
states (3) contains several anomalous branches which intersect
the Fermi level and contribute to the low energy DOS. The
LDOS profile corresponding to the spectrum (3) consists of a
set of axially symmetric ring structures [19–21]. Note that for
an even winding number the energy branch crossing the Fermi
level at µ = 0 (i.e. at zero impact parameter) is absent and,
as a result, the LDOS peak at the vortex center disappears.
Using the same procedure as for the singly quantized vortices
and the spectrum (3), we obtain the LDOS in the form

N(E, r) =
∑M

i=1ϑ(r − r0i)/(2πωi

√
r2 − r2

0iξC), where r0i =

(µ0i + E/ωi)/kF and the step function ϑ(r) = 0(1) at r <
(>)r0i. At E = 0 the spectrum is symmetric, so the LDOS
profile has M/2 peaks for even M and (M + 1)/2 for odd M.
At E 6= 0 the degeneracy is removed and each peak splits in
two, as can be seen from the LDOS plots in figure 5.

Smearing of energy levels due to scattering effects leads
to a reduction of the LDOS peak at the vortex center. However,
the LDOS peak survives even in the ‘dirty’ limit, when the
mean free path is smaller than the coherence length l < ξ .
To find the form of the LDOS peak at the vortex core we
consider the dirty case described by Usadel equation (11). The
LDOS distributions around multiquantum vortices calculated
according to equations (11) and (12) are shown in figure 6.
The profiles of LDOS at zero energy level N = N(r) in
multiquantum vortices M > 1 feature a plateau near the
vortex center. This is in high contrast to the case of a singly
quantized vortex M = 1. The cross-sections N = N(E) at
different values of distance from the vortex center are shown
in figure 7 for T/Tc = 0.1 and the winding numbers M =
1–4. These plots clearly demonstrate that with tunneling
spectroscopy measurements it is hard to determine the center
of the multiquantum vortex core for M > 2. Indeed, for M = 3
the dependences N = N(E) for r = 0 and r = 2ξD are very
close to each other. For M = 4 the same is true up to r = 3ξD.

In fact, the discussed LDOS plateau occurs due to the
very slow spatial dependence of δN(r) = 1−N(r)/N0 at small
r, which can be deduced directly from equations (11) and (12).

7
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Figure 6. The distributions of LDOS around vortex cores at T/Tc = 0.1 in a dirty superconductor as functions of energy and distance from
the vortex core N = N(r,E). (a)–(d) Values of winding number M = 1, 2, 3, 4.

Indeed, linearizing equation (11) for ω = 0 we obtain[
1
r

d
dr

(
r

d
dr
θ

)
−

M2

r2 +1(r)

]
θ = 0 (13)

which defines the asymptote θ(r) = αrM . Next equation (12)
yields the LDOS deviation δN = θ2/2 = α2r2M/2. This
analytical asymptote perfectly agrees with the numerical
results, which can be seen from the logarithmic scale plot
of N(r) in figure 6(b). An interesting feature of such LDOS
plateaus is that they survive at distances comparable to the
size of the multiquantum vortex core, which is much larger
than the coherence length ξD. This is we find that the size
of the plateau shown in figure 8 is approximately given by
Rp = MξD/2 for M > 1.

5. Conclusion

To summarize, we have calculated self-consistently in the
framework of quasiclassical Eilenberger theory the order
parameter structures of multiquantum vortices together with
the local density of electronic states in both clean and dirty
superconductors. We have found that at temperatures near
Tc the order parameter profiles of vortices are qualitatively
similar in clean and dirty regimes (compare the dependences
1(r) for T = 0.9Tc shown by the red dashed curves in
figures 1 and 3 for clean and dirty cases correspondingly).
In this temperature regime the order parameter asymptote at

r→ 0 is determined by the power law 1(r) = αrM , which is
consistent with the result of Ginzburg–Landau theory valid at
|T/Tc − 1| � 1.

On the other hand, in the low temperature limit T = 0.1Tc
vortices in a clean superconductor demonstrate anomalies
in the order parameter distribution—the singularities of the
derivative d1/dr predicted in [26] and shown in figure 2.
Such singularities occur due to the contribution of gapless
electronic spectral branches to the order parameter. The
singular behavior of d1/dr in multiquantum vortices is
analogous to the Kramer–Pesch effect [24] occurring for
the singly quantized vortices M = 1 which have steep order
parameter slope d1/dr(r = 0) ∼ 1/T at T → 0. In dirty
superconductors the asymptote 1(r → 0) at the vortex core
obeys the Ginzburg–Landau power law behavior even at low
temperature T = 0.1Tc, which is clearly demonstrated in
logarithmic scale plots in figure 4(d).

In the framework of quasiclassical theory, we calculated
the LDOS distributions in multiquantum vortices with
winding numbers M = 1–4. The LDOS profiles in the clean
regime are similar to that obtained previously with the help
of Bogolubov–de Gennes theory [20, 21]. Most importantly,
we determined the LDOS profiles in the dirty regime
which directly correspond to the modern experiments on
scanning tunneling microscopy of multiquantum vortices in
mesoscopic superconductors. The zero energy LDOS profile
near the vortex center is shown to be N(r)/N0 = 1 − αr2M ,

8
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Figure 7. The cross-sections N = N(E) at different values of distance from the vortex center r in a dirty superconductor at T/Tc = 0.1.
(a)–(d) Values of winding number M = 1, 2, 3, 4. Blue dotted, dash–dotted, dashed and solid lines correspond to the distances
r/ξD = 2; 3; 5; 10. The thin solid red line indicates the flat LDOS at the vortex center r = 0.

Figure 8. (a) The LDOS profiles for zero energy E = 0 around vortices at T/Tc = 0.1 in a dirty superconductor as a function of the
distance from the vortex center N = N(r). (b) The logarithmic plot of δN(r) = 1− N(r)/N0, demonstrating the power law asymptote
δN(r) ∼ r2M at r→ 0. Black solid, green dotted, blue dash–dotted and red dashed lines correspond to the winding numbers M = 1, 2, 3, 4.

which holds with good accuracy at r < MξD/2. Thus for
the values of M > 2 the LDOS profile is almost flat in the
sizable region near the vortex center r <MξD/2 (see figure 8).
Such an LDOS plateau can be considered as a hallmark of
multiquantum vortex formation revealed by STM in dirty
mesoscopic superconductors [9, 10].

Acknowledgments

This work was supported, in part, by the Russian Foundation
for Basic Research grant No 13-02-01011 and the Russian
President Foundation (SP-6811.2013.5).

9



J. Phys.: Condens. Matter 25 (2013) 225702 M A Silaev and V A Silaeva

References

[1] Schweigert V A, Peeters F M and Deo P S 1998 Phys. Rev.
Lett. 81 2783

Chibotaru L F, Ceulemans A, Bruyndoncx V and
Moshchalkov V V 2000 Nature 408 833

[2] Geim A K, Dubonos S V, Palacios J J, Grigorieva I V,
Henini M and Schermer J J 2000 Phys. Rev. Lett. 85 1528

[3] Palacios J J 1998 Phys. Rev. B 58 R5948
[4] Chibotaru L F, Ceulemans A, Bruyndoncx V and

Moshchalkov V V 2001 Phys. Rev. Lett. 86 1323
[5] Kanda A, Baelus B J, Peeters F M, Kadowaki K and Ootuka Y

2004 Phys. Rev. Lett. 93 257002
[6] Grigorieva I V et al 2007 Phys. Rev. Lett. 99 147003
[7] Geim A K et al 1997 Nature 390 259
[8] Kramer R B G, Silhanek A V, Van de Vondel J, Raes B and

Moshchalkov V V 2009 Phys. Rev. Lett. 103 067007
[9] Cren T, Serrier-Garcia L, Debontridder F and Roditchev D

2011 Phys. Rev. Lett. 107 097202
[10] Cren T, Fokin D, Debontridder F, Dubost V and Roditchev D

2009 Phys. Rev. Lett. 102 127005
[11] Hess H F, Robinson R B, Dynes R C, Valles J M Jr and

Waszczak J V 1989 Phys. Rev. Lett. 62 214
Hess H F, Robinson R B and Waszczak J V 1990 Phys. Rev.

Lett. 64 2711
[12] Hoogenboom B W, Kugler M, Revaz B, Maggio-Aprile I,

Fischer O and Renner Ch 2000 Phys. Rev. B 62 9179
[13] Kohen A, Proslier Th, Cren T, Noat Y, Sacks W, Berger H and

Roditchev D 2006 Phys. Rev. Lett. 97 027001
[14] Guillamon I, Suderow H, Vieira S, Cario L, Diener P and

Rodiere P 2008 Phys. Rev. Lett. 101 166407
[15] Fischer O, Kugler M, Maggio-Aprile I, Berthod C and

Renner C 2007 Rev. Mod. Phys. 79 353
[16] Caroli C, de Gennes P G and Matricon J 1964 Phys. Lett.

9 307
[17] Volovik G E 1996 JETP Lett. 63 729

[18] Tanaka Y, Hasegawa A and Takayanagi H 1993 Solid State
Commun. 85 321

Tanaka Y, Kashiwaya S and Takayanagi H 1995 Japan. J.
Appl. Phys. 34 4566

Rainer D, Sauls J A and Waxman D 1996 Phys. Rev. B
54 10094

[19] Mel’nikov A S and Vinokur V M 2002 Nature 415 60
Mel’nikov A S and Vinokur V M 2002 Phys. Rev. B 65 224514

[20] Tanaka K, Robel I and Janko B 2002 Proc. Natl Acad. Sci.
99 5233

[21] Virtanen S M M and Salomaa M M 1999 Phys. Rev. B
60 14581

Virtanen S M M and Salomaa M M 2000 Physica B 284 741
[22] Mel’nikov A S, Ryzhov D A and Silaev M A 2009 Phys. Rev.

B 79 134521
[23] Mel’nikov A S, Ryzhov D A and Silaev M A 2008 Phys. Rev.

B 78 064513
[24] Pesch W and Kramer L 1973 J. Low Temp. Phys. 15 367
[25] Gygi F and Schluter M 1991 Phys. Rev. B 43 7609
[26] Volovik G E 1993 JETP Lett. 58 455
[27] Eilenberger G 1968 Z. Phys. 214 195
[28] Usadel K 1970 Phys. Rev. Lett. 25 507

Usadel K 1971 Phys. Rev. B 4 99
[29] Kramer L, Pesch W and Watts-Tobin R J 1974 J. Low Temp.

Phys. 17 71
[30] Kramer L, Pesch W and Watts-Tobin R J 1974 J. Low Temp.

Phys. 14 29
[31] Schopohl N and Maki K 1995 Phys. Rev. B 52 490
[32] Schopohl N 1998 arXiv:9804064
[33] Ullah S, Dorsey A T and Buchholtz L J 1990 Phys. Rev. B

42 9950
[34] Hayashi N, Ichioka M and Machida K 1996 Phys. Rev. Lett.

77 4074
Hayashi N, Ichioka M and Machida K 1997 Phys. Rev. B

56 9052

10

http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1038/35048521
http://dx.doi.org/10.1038/35048521
http://dx.doi.org/10.1103/PhysRevLett.85.1528
http://dx.doi.org/10.1103/PhysRevLett.85.1528
http://dx.doi.org/10.1103/PhysRevB.58.R5948
http://dx.doi.org/10.1103/PhysRevB.58.R5948
http://dx.doi.org/10.1103/PhysRevLett.86.1323
http://dx.doi.org/10.1103/PhysRevLett.86.1323
http://dx.doi.org/10.1103/PhysRevLett.93.257002
http://dx.doi.org/10.1103/PhysRevLett.93.257002
http://dx.doi.org/10.1103/PhysRevLett.99.147003
http://dx.doi.org/10.1103/PhysRevLett.99.147003
http://dx.doi.org/10.1038/36797
http://dx.doi.org/10.1038/36797
http://dx.doi.org/10.1103/PhysRevLett.103.067007
http://dx.doi.org/10.1103/PhysRevLett.103.067007
http://dx.doi.org/10.1103/PhysRevLett.107.097202
http://dx.doi.org/10.1103/PhysRevLett.107.097202
http://dx.doi.org/10.1103/PhysRevLett.102.127005
http://dx.doi.org/10.1103/PhysRevLett.102.127005
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.64.2711
http://dx.doi.org/10.1103/PhysRevLett.64.2711
http://dx.doi.org/10.1103/PhysRevB.62.9179
http://dx.doi.org/10.1103/PhysRevB.62.9179
http://dx.doi.org/10.1103/PhysRevLett.97.027001
http://dx.doi.org/10.1103/PhysRevLett.97.027001
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1134/1.566973
http://dx.doi.org/10.1134/1.566973
http://dx.doi.org/10.1016/0038-1098(93)90024-H
http://dx.doi.org/10.1016/0038-1098(93)90024-H
http://dx.doi.org/10.1143/JJAP.34.4566
http://dx.doi.org/10.1143/JJAP.34.4566
http://dx.doi.org/10.1103/PhysRevB.54.10094
http://dx.doi.org/10.1103/PhysRevB.54.10094
http://dx.doi.org/10.1038/415060a
http://dx.doi.org/10.1038/415060a
http://dx.doi.org/10.1103/PhysRevB.65.224514
http://dx.doi.org/10.1103/PhysRevB.65.224514
http://dx.doi.org/10.1073/pnas.082096799
http://dx.doi.org/10.1073/pnas.082096799
http://dx.doi.org/10.1103/PhysRevB.60.14581
http://dx.doi.org/10.1103/PhysRevB.60.14581
http://dx.doi.org/10.1016/S0921-4526(99)02445-X
http://dx.doi.org/10.1016/S0921-4526(99)02445-X
http://dx.doi.org/10.1103/PhysRevB.79.134521
http://dx.doi.org/10.1103/PhysRevB.79.134521
http://dx.doi.org/10.1103/PhysRevB.78.064513
http://dx.doi.org/10.1103/PhysRevB.78.064513
http://dx.doi.org/10.1007/BF00661192
http://dx.doi.org/10.1007/BF00661192
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1007/BF01379803
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevLett.25.507
http://dx.doi.org/10.1103/PhysRevB.4.99
http://dx.doi.org/10.1103/PhysRevB.4.99
http://dx.doi.org/10.1007/BF00654545
http://dx.doi.org/10.1007/BF00654545
http://dx.doi.org/10.1007/BF00654809
http://dx.doi.org/10.1007/BF00654809
http://dx.doi.org/10.1103/PhysRevB.52.490
http://dx.doi.org/10.1103/PhysRevB.52.490
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://arxiv.org/abs/9804064
http://dx.doi.org/10.1103/PhysRevB.42.9950
http://dx.doi.org/10.1103/PhysRevB.42.9950
http://dx.doi.org/10.1103/PhysRevLett.77.4074
http://dx.doi.org/10.1103/PhysRevLett.77.4074
http://dx.doi.org/10.1103/PhysRevB.56.9052
http://dx.doi.org/10.1103/PhysRevB.56.9052

	Self-consistent electronic structure of multiquantum vortices in superconductors at T<<Tc
	Introduction
	Theoretical framework
	Clean limit: Eilenberger formalism
	Dirty limit: Usadel equations

	Order parameter structures of multiquantum vortices
	LDOS profiles of multiquantum vortices
	Conclusion
	Acknowledgments
	References


