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Ensemble summary statistics represent multiple objects
on the high level of abstraction—that is, without
representing individual features and ignoring spatial
organization. This makes them especially useful for the
rapid visual categorization of multiple objects of
different types that are intermixed in space. Rapid
categorization implies our ability to judge at one brief
glance whether all visible objects represent different
types or just variants of one type. A framework
presented here states that processes resembling
statistical tests can underlie that categorization. At an
early stage (primary categorization), when independent
ensemble properties are distributed along a single
sensory dimension, the shape of that distribution is
tested in order to establish whether all features can be
represented by a single or multiple peaks. When primary
categories are separated, the visual system either
reiterates the shape test to recognize subcategories (in-
depth processing) or implements mean comparison tests
to match several primary categories along a new
dimension. Rapid categorization is not free from
processing limitations; the role of selective attention in
categorization is discussed in light of these limitations.

Introduction

The power of ensemble summary statistics

Almost every article on ensemble summary statistics
starts with establishing their potential to surmount the
severe limitations imposed by attention or working
memory in visual cognition of individual objects (e.g.,
Cowan, 2001; Luck & Vogel, 1997; Pylyshyn & Storm,
1988; Treisman & Gelade, 1980). Indeed, at every
moment when our eyes are open, we see much more
than just a few (probably three to four) objects.
Ensemble summary statistics allow us to compress
hundreds and thousands of visible properties of objects
into compact descriptions, such as approximate num-
ber (Chong & Evans, 2011; Feigenson, Dehaene, &

Spelke, 2004; Halberda, Sires, & Feigenson, 2006),
average across multiple dimensions (Alvarez & Oliva,
2008; Ariely, 2001; Bauer, 2009; Chong & Treisman,
2003; Dakin & Watt, 1997; Haberman & Whitney,
2007, 2009), or variance (Morgan, Chubb, & Solomon,
2008; Solomon, 2010). The rapid ascribing of those
statistics to all visible objects provides a surprisingly
precise global representation (or gist) of a visible scene
(Alvarez, 2011) with little or no conscious access to
individuals (Alvarez & Oliva, 2008; Ariely, 2001;
Corbett & Oriet, 2011; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001), even when attention is
occupied by other objects (Alvarez & Oliva, 2009; Burr,
Turi, & Anobile, 2010). Another important property of
ensemble summary statistics (that is critical in the
context of the present article) is their high level of
abstraction. That is, statistical descriptions can be built
as ‘‘pure’’ global features regardless of the spatial
arrangement of individual items in the visual field
(Cant & Xu, 2012; Chong, Joo, Emmanouil, & Treis-
man, 2008; Utochkin, 2013).

The rapid categorization of multiple objects

Imagine that you are picking berries. Once you look
at a new bush, you need to understand how many ripe
red berries there are on that bush. This problem can be
interpreted in terms of ensemble summary statistics:
You should estimate the average redness of multiple
berries whose shade can vary in a wide range from
completely green to saturated red. However, this
standard averaging task is complicated by the fact that
berries are interspersed with leaves on the same bush.
Note that the leaves are more numerous than the
berries and are green. If we estimated the average
redness of the entire ensemble, then our judgments
about the berries would have been wrong because the
leaves would have shifted the estimate toward green.
Somehow we can easily recognize berries among leaves
and judge their average color independently.
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This example illustrates a striking ability that I term
rapid visual categorization. In complex visual scenes
where different types of objects are present in numerous
copies and often intermixed in space, observers are able
to recognize those objects as representing the same or
different types (categories) without paying attention to
individuals. When we look at a huge, dense crowd of
birds on a square, just a brief glance is enough to see that
there are pigeons and sparrows among those birds.
Although pigeons have quite variable features (different
sizes, feather color, turned differently to the observer)
they still look quite similar within the category compared
with sparrows, which represent a different category.

The notion that the visual system can split multiple
objects into clearly distinguishable global subsets is not
novel. Much work on this notion has been conducted
within the studies of texture segmentation and visual
search. In those studies, the roles of various spatial
factors are widely discussed as principal determinants
of subset formation: local proximity and local contrasts
(Bacon & Egeth, 1991; Bravo & Nakayama, 1992; Itti
& Koch, 2001; Treisman, 1988; Wolfe, 1994) as well as
more global factors, such as abrupt violation of spatial
statistics over a region (Nothdurft, 1992, 1993). Indeed,
these spatial principles work well for perceiving
textures because they are spatially linked to surfaces.
However, multiple objects, unlike textures, are orga-
nized and processed a bit differently (Cant & Xu, 2012).
In the physical world, objects have more independence
than textural elements, so their spatial organization is
not always that regular: Objects of the same type can be
widely disseminated, and objects of different types can
be adjacent. In his analysis, Wolfe (1992) showed that
processing textures can sometimes be different from
processing individual objects to be searched for in those
textures, even if both the texture and the objects are
defined by the same sensory features.

We can conclude from the previous paragraph that
rapid visual categorization of multiple objects cannot
rely solely on the spatial organization of elements. It
appears that some more abstract, nonspatial represen-
tations should drive that process. As mentioned above,
ensemble summary statistics have the proper level of
abstraction, so they can be considered to be a candidate
representation for understanding the mechanisms of
rapid categorization.

From the standard idea of representing the features
of multiple objects in the form of average, variance,
and number, there is just a short step to the central
statement of the view of rapid visual categorization
presented in this article: If the visual system is good at
computing those descriptive statistics, then it probably
can use them for testing statistical hypotheses. In
regular statistics, primary statistical parameters can be
used to check out differences between distributions. At
the end, both statistical tests and categorization aim to

establish whether compared items have same or
different properties. The main goal of this article is to
show how the visual system performs statistical tests
and what tests it can use for rapid visual categorization.

Primary categorization

To begin to understand how the visual system
categorizes multiple objects, we must turn to the simplest
case of primary statistical processing. This requires a
statistical decision along a single perceptual dimension,
while other dimensions are invariable or neglected.

A ‘‘reverse statistical inference’’ problem of
visual perception

Although it seems very simple, the primary catego-
rization of ensembles is not a trivial problem for the
visual system. The main difficulty is that the only
informative input is the distribution of pooled activity
along a certain dimension and that there is no prior
information about an item’s category. Based solely on
this continuous distribution, the visual system must
derive discrete (categorical) entities. To illustrate how
problematic this type of decision can be, I turn to an
example that can be termed reverse statistical inference.
In normal research practice, when conducting an
experiment, the experimenter manipulates conditions
between trials. Each trial has a prior mark by its
condition. This prior marking allows further unam-
biguous grouping of experimental data and statistical
comparisons between those groups (samples). If sample
characteristics are significantly different, then the
experimenter can decide that the manipulated factor
had an effect on the dependent variable. This is the
logic behind direct statistical inference. However, now
imagine that the prior conditional marks are lost for
some reason, only dependent variable data are left, and
all trials are pooled together. Can one judge the
experimental effect knowing how various these data
are? Of course, this logic is unacceptable in normal
statistical reasoning. However, it looks as if reverse
statistical inference is the only way to estimate the
differences between ensemble members because the
prior marks exist only in physical reality and are thus
unavailable for internal processing.

The shape test as a solution to the reverse
inference problem

Whereas a correct reverse inference is hardly possible
in regular statistics, it appears that the visual system
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can use a heuristic that helps in the categorization of
ensembles. This heuristic is statistical by nature, as is
ensemble representation itself, and is based on the
shape of distribution.

Testing a pooled distribution for shape can be an
efficient way to estimate the categorical unity or
separability of an ensemble. The usefulness of such a
test is justified by the statistical structure of the natural
world, as our visual system has evolved for its

perception. The physical properties of most natural
objects (both animate and inanimate) are distributed in
accordance with the single-peak law (e.g., Gaussian
distribution), with the majority of values grouped
around the average and deviants showing some natural
variability of that property within the type. In contrast,
when objects of different types are placed together,
their properties are not likely to form a single peak.
Rather, they should form a multiple-peak distribution,
with each peak corresponding to a local average
property of each presented type. This is illustrated by
an example in Figure 1. In the left panel of Figure 1a,
an ensemble of fall leaves is presented. Here, the leaves
are substantially variable in both color and size, but
both those dimensions have a quite gradual variation
between colors or sizes, with maximum at some
intermediate points (orange shades or medium size). In
the right panel of Figure 1a, two types of objects—
leaves and lemons—are intermixed in space. Although
their colors cover approximately the same range as in
the left panel, it is obvious that there is no single peak
describing overall color distribution. There is no shared
peak at intermediate shades, but there are two local
peaks at the extremes instead—one for each type of
object. Figure 1b shows hypothetical internal color
representations of those two images in terms of
individual items end ensembles. Figure 1c shows the
physical hue distributions of those images. It is easy to
see that the shape of the physical distribution for the
fall leaves tends to have a single peak, while the
distribution for lemons and leaves is more like a two-
peak one. Finally, in Figure 1d, two versions of the
original images are presented; each version was
processed using a half-split threshold on the hue axis.
This threshold was approximately established at the
middle point of each distribution (see Figure 1c). When
filtering away a left-most or right-most half of a hue
distribution, the remaining part represents a subsample
of items showing how the physical distribution of the
shape is related to categories. Indeed, for the leaves
image, this filtering removes a subsample of more
reddish or more yellowish leaves, which do not look
categorically different in the original image. In the
lemons and leaves image, the threshold provides almost
perfect separation between the lemons and the leaves.
(Note that this separation is made based on hue only,
but we can visually verify the quality of separation
using an independent dimension, such as the shape.)

An idea that the visual system is testing ensemble
distributions for their shapes is also supported by the
principles of feature representation across multiple
levels of neural processing. Since Hubel and Wiesel’s
(1959) pioneering work, growing evidence is accumu-
lating from numerous sensory domains that each
individual feature is encoded as a single-peak Gaussian
distribution of firing activity among feature-selective

Figure 1. The example representation of natural ensembles

along the color dimension for categorically identical (left panel)

and categorically different objects. (a) Original images; (b)

hypothetical internal representations of individual items and

ensembles; (c) physical hue distributions in the HSB (hue-

saturation-brightness) color space, with the vertical line

depicting the half-split threshold; and (d) the images after

filtering the upper half or the lower half of the hue distribution.

Hue histograms (c) and processed images (d) were obtained via

ImageJ image analysis software (Schneider, Rasband, & Eliceiri,

2012).
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cells (Yantis, 2014). Relatively small receptive fields of
those feature-selective cells in early cortical visual fields
(e.g., V1 and V2) are then pooled into larger receptive
fields (e.g., V3, V4, MT), which are appropriate for the
processing of more substantial portions of visual
information. This poses a plausible substrate for the
integration of feature information from individual
locations into a global ensemble percept. Alvarez
(2011) and Haberman and Whitney (2012) proposed a
simple model predicting that pooled local neural
responses are then represented by an averaged Gauss-
ian at higher levels of analysis. The peak of that
Gaussian represents the mean (Alvarez, 2011), and its
standard deviation affects the precision of averaging
(Corbett, Wurnitsch, Schwartz, & Whitney, 2012; Im &
Halberda, 2013; Utochkin & Tiurina, 2014).

It is easy to see that the mechanism proposed by
Alvarez (2011) and Haberman and Whitney (2012) is
effective mainly for those objects whose features are
quite similar en masse (as are the physical properties of
same-type objects). Those features statistically benefit
from the single-peak pooling because they gain greater
representation in the pooled response due to the
following rules: (a) The higher between-elements
similarity, the narrower the standard deviation of the
pooled response, and (b) the more numerous those
elements, the higher the global peak. However, the flip
side is that averaging should wash out elements whose
features are rare and highly deviant from the mean.
Elsewhere, Haberman and Whitney (2010) showed that
those highly deviant elements are devaluated during
ensemble perception and do not contribute to the
resulting average estimation. Of course, devaluation
does not mean that the deviant gets unseen (pop-out
effects in visual search show us the opposite). Rather, it
means that those deviants are not represented under the
same peak of a single Gaussian.

So how does the visual system use the shape of the
distribution to decide whether ensemble members
belong to same or different categories? Perhaps the
most plausible mechanism relies on peak separation in
a pooled ensemble representation. In other words, the
system verifies whether the overall pattern of local
neural activities can be summarized as a single-peak
distribution. If the distribution satisfies this condition,
then all ensemble members are recognized as belonging
to the same category; otherwise, they are recognized as
belonging to different categories.

How does the visual system distinguish between the
single-peak and multiple-peak distributions? It most
likely depends on a critical distance between neigh-
boring features in the feature space. To understand
how it works, we must consider again the process of
pooling that transforms local spatial feature represen-
tations into the ensemble percept. As was mentioned
above, each particular feature is encoded by the single-

peak distribution of activity in feature-selective cells,
and that makes each individual representation noisy
(Alvarez, 2011). When local neural responses are
pooled together, their distinctiveness is the matter of
overlap. Overlap is large for highly similar features, and
this makes those features hardly discriminable, so all
such features will contribute to the same global peak
corresponding to one category. In contrast, the
representations of dissimilar features have a negligible
overlap that produces some discontinuity in pooled
activity. Indeed, when such discontinuity takes place
between two clusters of pooled activities, it is impos-
sible to build a peak between them. Consequently, no
single peak can be built, but each cluster generates its
own peak. The number of peaks defines the number of
categories that one can perceive in the ensemble.

A good quantitative measure of critical feature
distance to produce categorical separation can be
obtained in the visual search task. This measure was
termed the preattentive just noticeable difference
(PJND; Wolfe, 1994). A paradigm for measuring
PJND involves searching for a feature singleton among
homogeneous nontargets. The target–nontarget differ-
ence is systematically manipulated (Foster & Ward,
1991). The PJND is a critical difference where a switch
takes place between two search patterns—efficient (the
search time does not change with set size) and
inefficient (the search time increases with set size).
Elsewhere, Wolfe, Friedman-Hill, Stewart, and
O’Connell (1992) suggested considering such a shift as
a result of categorical separation. In terms of the peak
separation mechanism introduced in the previous
paragraph, if a target and nontargets differ more than a
PJND, then they are likely to produce a two-peak
pooled distribution. This explains the efficient search
pattern for the above-PJND targets as an act of rapid
categorization: Here, one peak is ascribed to the target
and another is ascribed to the rest of the items that
allows their momentary rejection as a single unit. In
contrast, if a target–nontarget difference is below the
PJND, their local responses fall under the same pooled
peak and, therefore, are recognized as being categor-
ically the same. To complete the search among these
categorically identical items, the visual system will
require the deployment of focused attention that
serially moves from item to item and provides better
discrimination. This is what predicts the inefficient
search pattern for categorically identical stimuli.

Treue, Hol, and Rauber (2000) gave a prominent
example of ensemble categorical separation based on
testing the shape of pooled neural activity. They
registered single-cell responses from neurons selective
for the direction of motion in the macaque MT area
when presenting moving-dot patterns. The dots were
split into two spatially overlapping subsets, each
moving in its own direction. The angle of separation
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varied from 08 to 1208. Treue et al. arrived at two
important findings, both highly consistent with the
model of shape-based categorization. First, they found
that in small angular separations (up to 608), the
maximum activity was shown by neurons preferring an
average direction between two physically presented
directions, so overall neural activity can be represented
by a single peak. However, in large angular separations
(908–1208, which probably exceeded the PJND), the
single central peak tended to be divided into two peaks,
each moving to one physical direction, while neural
responses to the average direction decreased. Treue et
al. interpreted this pattern as two peaks instead of one.
Presumably, this neural separation facilitates the
phenomenal perception of bidirectionally moving
ensembles (or textures), although Treue et al. noted
that original directions can be recovered from the
bandwidth of the single-peak distribution as well.

The idea of a single-peak versus multiple-peak
distribution of pooled activity has another important
implication. It turns out that two equally distinct objects
(or sets of objects) can be recognized as belonging to the
same or different categories depending on other
ensemble members. When two features are present, their
difference exceeds the PJND, and no other features are
present, then they should be represented as two peaks
and perceived as categorically different. However, if
more features are present and their values lie between
the initial ones—I term those new values transition
features—all pairwise differences may happen to be
below the PJND. In that case, the visual system would
probably collect all features under the same peak, as
there is no gap within the entire cluster of features. In
line with this notion, Chong and Treisman (2003) found
a slight decrease in the accuracy of mean size judgments
when only extremely large and small items were
presented (the two-peak distribution) compared with
other displays containing both extreme and intermediate
sizes (distributed either normally or uniformly). Al-
though this effect was present only in naı̈ve observers,
Chong and Treisman made a claim about its nature that
the two-peak distribution was not represented by a
single peak, whereas others were. A quite similar effect
and interpretation were obtained by Utochkin and
Tiurina (2014). They compared the accuracy of averag-
ing in ensembles consisting of only extreme-size circles
(very small and very large) and ensembles including the
variety of more intermediate sizes within the same range.
Like in Chong and Treisman (2003), averaging perfor-
mance was poorer under the former condition in
Utochkin and Tiurina’s (2014) study.

Simultaneously, the results of Chong and Treisman
(2003) and Utochkin and Tiurina (2014) can be
explained without reference to peak separation. Better
averaging performance with transition features could
also arise from variance reduction: It is easy to see that

the two-peak distribution provides maximum variance
as containing only extremes, and transition features
add some moderate values, reducing the overall
variance within the same range. According to this view,
the effect can be explained by transformations within
the unitary peak rather than its split. A critical
experiment that distinguished between those two
explanations was conducted by Yurevich and Utochkin
(2014). Their participants performed a visual search for
a singleton orientation among homogeneous or het-
erogeneous nontargets of different orientations. Het-
erogeneous nontarget orientations always varied within
the same range of 458, so the distance between extremes
was always the same. A critical factor manipulated in
those displays was the number of intermediate orien-
tations, which defined the smoothness of transition
from one extreme to another. In the distinct condition
there were only the extremes and no transition, in the
sharp transition condition there was one transition
orientation halfway between the extremes (transition
step was approximately 22.58 on average), and in the
smooth transition conditions eight transition orienta-
tions (step 58) were added. Yurevich and Utochkin
found a nonmonotonous effect of transition on the
speed of the visual search: The sharp transition
condition yielded the slowest search performance, while
the smooth transition condition yielded the fastest
search performance among all heterogeneous displays.
This cannot be explained by variance reduction because
any intermediate nontarget feature decreases overall
variance and thus should predict a faster visual search
(Rosenholtz, 1999). Therefore, the sharp transition
condition should facilitate rather than inhibit perfor-
mance. The only plausible explanation of such a
divergence is based on peak separation. In large steps
of transition, any additional feature is represented as a
separate Gaussian that complicates performance. In
contrast, small steps of transition cause the visual
system to represent the entire range as a single-peak
though high-variance distribution, which is easy to
treat as a single set. The aforementioned example with
leaves and lemons (Figure 1) directly demonstrates how
such duality of categorizing extreme features applies to
real-world perception. With a smooth transition
between colors or sizes and relatively stable shapes,
items in Figure 1a are perceived as categorically the
same. With a sharp transition between colors, sizes, or
shapes, items in Figure 1b are perceived as representing
two categorically different ensembles.

Within-category similarity and between-
categories contrast

An important aspect of categorical perception is
diminishing differences between objects belonging to
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the same category and exaggerating differences between
objects belonging to different categories (Goldstone &
Hendrickson, 2010). The principles of ensemble sum-
mary statistics can help us understand how these
categorical effects arise when we are categorizing
multiple objects.

This explanation is based on the previously men-
tioned ideas of Alvarez (2011) about precision-weighted
averaging and those of Haberman and Whitney (2012)
about ensemble representation as the average of local
responses. Both those ideas imply that the visual system
favors more numerous and similar features and
devaluates deviants when building an ensemble percept.
This inevitably leads to strengthening perceived ho-
mogeneity among ensemble members under the same
peak. Consequently, all same-category items should be
seen more similarly than they would be seen in
isolation. Recent studies showed that ensemble sum-
mary statistics systematically affect the perception of
individual members and retention in working memory:
They cause a strong bias toward the mean (e.g., Brady
& Alvarez, 2011; Olkkonen, McCarthy, & Allred,
2014). In other words, individual items tend to be seen
in the ensemble as being more averaged than they
actually are. Furthermore, as Brady and Alvarez (2011)
showed, this effect is category specific, as they
dissociated independent biases in color-segmented
ensemble subsets from the general bias toward the total
ensemble mean. Elsewhere, Solomon (2009; Morgan et
al., 2008) noted that presenting items in multielement
textures (or ensembles) allows the visual system to
discount the individual noisiness of each such item.
Morgan et al. (2008) suggested that the visual system
computes the summary variance of those elements, and
this makes the texture seem relatively uniform and
stable.

Obviously, forces responsible for increasing within-
category similarity should also increase between-
categories contrast. If individual features tend to be
seen and memorized as more averaged under their
common peak, then they probably should move away
from other features represented by another peak. This
predicts an effect for differently categorized items
opposite to that found for same-categorized items. The
Ebbinghaus illusion gives support for this prediction
for one who looks at that illusion in terms of ensemble
summary statistics (Ariely, 2001; Im & Chong, 2009).
When surrounded by homogeneous small circles, a
medium central circle is seen as larger than when it is
surrounded by large circles. It is important here that
the central circle and surroundings are sufficiently
different to produce a gap between their distributions;
therefore, they are likely to be categorically different as
well. The experiments of Im and Chong (2009)
convincingly show that the Ebbinghaus illusion acts
upon ensembles as well as individual objects. When

they presented sets of differently sized central circles,
each with either small or large surrounds, they found
systematic biases in judging the mean size depending on
the surround size. Observers tended to underestimate
the mean size of circles with a large surround and vice
versa. In terms of categorical effects in perception, this
can be interpreted as an increasing between-categories
contrast in spatial groups. Certainly, because of its
strong dependence on spatial layout, the Ebbinghaus
illusion is not a pure example of rapid categorization
based on abstract ensemble statistics. It is likely that
modified versions of Im and Chong’s (2009) experi-
ments with random layouts can give more convincing
evidence for between-categories effects in ensemble
perception.

Secondary categorization

When primary categorization is performed and an
ensemble is divided into several subsets along one
dimension, the visual system can further elaborate the
processing of those subsets along other dimensions. I
term this process secondary categorization. Again, this
process can be described as testing statistical hypoth-
eses. However, at this stage, the variety of testable
hypotheses is wider because the reverse statistical
inference problem is already solved—at least for one
dimension. Categories divided in course of primary
processing (if any) now serve as labels marking each
individual item at an input, much like fixed conditions
of an independent variable mark each individual trial at
an input to analysis of variance. Following this
analogy, a target dimension for secondary processing
can be considered to be a dependent variable.

Secondary categorization can progress in two modes
depending on an ongoing task. The first mode can be
termed in-depth categorization. It implies that the
observer selects one of the primary categories and
applies the same algorithm to a new dimension to figure
out whether some subcategories can be recognized
within the initial one. The second mode is in-breadth
categorization, when the observer compares whether
several primary categories are same or different in
terms of the other dimension. Figure 2 illustrates both
of these strategies of secondary categorization, and a
detailed explanation is given below.

In-depth categorization

There is no need to describe the probable mechanism
of in-depth categorization in detail because it seems to
be very similar to that of primary categorization. In
summary, it can be based on the shape test described
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above. One important addition is that performing in-
depth categorization requires the prior selection of a
relevant subset that involves attentional processes to
some degree. This process is shown in Figure 2a. Once
we have access to a set of primary categories along one
dimension, we can selectively attend to only one such
category (e.g., when picking berries from a bush, we
can attend to round items that look like berries while
ignoring oblong items that look like leaves). Within
that attended category, we switch to a new dimension
trying to apply the peak separation algorithm and see
whether the items are categorically the same or
different along that dimension. For example, keeping
attention on the berries, we can estimate their ripeness
using color. Some statistical information can be still
available for unattended primary categories (shown by
a dotted line in Figure 2a), but the attended category
would prevail (De Fockert & Marchant, 2008; Pav-
lovskaya, Soroker, Bonneh, & Hochstein, 2015).

In-depth categorization has an important implica-
tion for understanding rather efficient visual searches
for some feature conjunctions, which is commonly
predicted to be inefficient (Treisman & Gelade, 1980)—
that is, producing the increased search time with the
number of items in the display. Indeed, in a number of
classical experiments, it was found that some conjunc-
tion searches, such as for color 3 depth, motion 3
depth (Nakayama & Silverman, 1986), and color 3
orientation (Friedman-Hill & Wolfe, 1995), appear to
be rather efficient. This is hard to explain with the item-
by-item mode of focused attention. In Friedman-Hill
and Wolfe’s (1995) experiments, participants searched
for a certain color 3 orientation target among
distractors sharing either color or orientation with that
target. A rather effective strategy for such a search, as
described by Friedman-Hill and Wolfe, includes two

steps. In the first step, the observer attends to one color
at a time. In the second step, an efficient search for an
odd orientation is carried out within this selected
subset. Later on, Nakayama and Martini (2011)
reported that Nakayama and Silverman’s (1986)
observers seemed to attend to different depth planes in
order to rapidly detect a second feature. In terms of in-
depth categorization, those findings indicate observers’
ability to split the set into categories along one
dimension (primary categorization) and then reiterate
the same along another dimension within a selected
category (secondary categorization). As the target had
a unique secondary feature within the primary catego-
ry, it could be found almost as efficiently as a standard
feature-defined target. This sort of reiterative catego-
rization is useful. Being able to attend to one feature-
defined category and filter out other such categories,
the observer does not need to focus attention on every
individual item to bind two features. Instead, the visual
system operates with more substantial portions of the
input, making the deployment of attention more
efficient (Wolfe, Cave, & Franzel, 1989).

In-breadth categorization

In many studies of ensemble summary statistics,
researchers measure the thresholds of mean or variance
discrimination of two subsets presented simultaneously
or serially. These two subsets are either spatially
separated (e.g., Attarha, Moore, & Vecera, 2014;
Chong et al., 2008; Chong & Treisman, 2003; Corbett
et al., 2012; Im & Chong, 2009; Morgan et al., 2008) or
intermixed but marked by well-discriminable colors
(Chong & Treisman, 2005; Im & Chong, 2014). Both
methods of presentation represent the in-breadth

Figure 2. Two modes (strategies) of secondary categorization along a new dimension given a good peak separation of primary

categories. (a) In-depth categorization. (b) In-breadth categorization.
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categorization task, where primary categories are well
defined by spatial statistics (centroids) or color statistics
and other dimensions are statistically compared be-
tween those categories.

It appears that in-breadth processing requires
statistical procedures other than those used for primary
or in-depth categorization. As the primary categories
are well defined and represented as clearly distinguished
peaks along their dimension, further statistical pro-
cessing can be performed as testing mean or variance
equality. Figure 2b illustrates this idea. Once the visual
system has access to primary peaks it can mark each
secondary-dimension value by a certain primary value.
Thus, even if the secondary dimension originally has no
clear peak separation (as in Figure 2b), it is still
possible to compare summary statistics along this
dimension due to primary marking. Experimental data
show that visual comparisons of this sort do behave
like regular statistical tests intended for similar
purposes.

Figure 3 demonstrates two displays for a typical size-
averaging task. The displays are divided into two
halves, each containing an ensemble with its own mean
size. An observer is asked to determine which side has
larger average size. Although both examples have
exactly the same mean difference (right circles are 30%
larger on average than left ones), the task gets
progressively more difficult from panel a to panel b.
When a naı̈ve observer is asked why the task in panel b
is harder than that in panel a, he or she says that it is
because panel a contains very similar sizes on each size,
whereas in panel b the sizes are much more variable.

Thus, this naı̈ve explanation (sometimes from people
not very familiar with ensemble summary statistics and
even regular statistical tests) reproduces the basic logic
of mean comparison tests, such as the t test or the F test
underlying analysis of variance. In brief, those tests
estimate how much between-groups variability defined
by mean difference exceeds within-group variability. In
both panels of Figure 2, between-groups variability is
the same but within-group variance increases from
panel a to panel b, thus reducing the overall between-
groups:within-group ratio and making the right and
left ensembles less discriminable in terms of mean size.

Apart from Figure 2, there is established experi-
mental evidence that the visual comparison of means
between ensembles behaves like the t test or the F test.
Im and Halberda (2013) manipulated the size variance
of two successively presented ensembles and measured
the thresholds of mean size discrimination. They found
that the threshold rose with variance. Corbett et al.
(2012) exhibited a similar finding using a different
paradigm. They adapted their observers to ensembles
with large and small mean sizes and then measured an
adaptation aftereffect on ensembles with slightly
different mean sizes. In one of the experiments, they
varied the size variance of adapting ensembles. They
found that the aftereffect was attenuated by high
variance. The findings of both Im and Halberda (2013)
and Corbett et al. (2012) are consistent with the logic of
the t test and the F test. In Im and Halberda’s
experiment, as variance increased, the mean difference
between ensembles increased as well to achieve a
critical between-groups:within-group ratio to reject the

Figure 3. Illustration of the mean discrimination between (a) low-variance sets and (b) high-variance sets. Top panels depict example

stimulus displays requiring one to determine which of two sides (left or right) has a larger mean size. Bottom panels represent the

corresponding hypothetical individual and ensemble representations (blue Gaussians depict left side; red Gaussians depict right side).

As variances in panel b are larger, the mean discrimination is more difficult than that in panel a.
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null hypothesis. In Corbett et al.’s experiment,
increasing variance reduced the between-groups:within-
group ratio and, as a consequence, the visible contrast
between adapting ensembles and the magnitude of the
aftereffect.

In line with those findings, Fouriezos, Rubenfeld,
and Capstick (2008) asked observers to rate their
confidence while comparing the mean height of two
clusters of vertical bars. Height variance and the
number of bars were manipulated. Fouriezos et al.
found that accuracy and confidence are positive
functions of numerosity and negative functions of
variance. They directly related their results to statistical
decisions, which are akin to regular mean comparison
tests. Variance had the same effect as described by Im
and Halberda (2013). As for the effect of numerosity, it
can be explained by the statistical power of a test—its
ability to confirm the H1 hypothesis if the hypothesis is
correct—which is known to increase with sample size.

The limitations of rapid
categorization

Ensemble perception is often considered to oppose
the limited-capacity processing of individual objects
(e.g., Alvarez, 2011; Ariely, 2001; Chong & Evans,
2011; Robitaille & Harris, 2011; Treisman, 2006). Other
researchers, in contrast, argue that this ability is
provided by the same limited-capacity processes (Allik,
Toom, Raidvee, Averin, & Kreegipuu, 2013; Marchant,
Simons, & De Fockert, 2013; Myczek & Simons, 2008;
Simons & Myczek, 2008). Establishing the locus and
the nature of the processing bottleneck is a funda-
mental challenge for vision theory. Viewing the
problem from the perspective of rapid visual categori-
zation can contribute to this debate.

How many ensembles can be recognized and
stored?

Numerous studies show that our ability to atten-
tionally track and store objects is severely limited by
three to five items on average, depending on task,
stimulus type, and so on (Alvarez & Cavanagh, 2004;
Cowan, 2001; Luck & Vogel, 1997; Pylyshyn & Storm,
1988). When the visual system expands its analysis to
ensembles, it meets even more stringent limitations.
There is growing evidence that different ensemble tasks
can be performed without substantial loss when no
more than two subsets are presented at one time
(Attarha et al., 2014; Halberda et al., 2006; Im &
Chong, 2014; Poltoratski & Xu, 2013; Zosh, Halberda,
& Feigenson, 2011; but see Treisman, 2006, who did

not find any decrease in judging the proportion among
three concurrently presented feature-based ensembles).
An important question in light of the present frame-
work of rapid categorization concerns the locus of this
limitation. Does it arise at primary processing when the
number of peaks is being roughly determined? Or does
categorization encounter the bottleneck at the stage of
secondary categorization? A partial answer can be
found in the experiments by Poltoratski and Xu (2013)
and Watson, Maylor, and Bruce (2005), who estimated
the critical number of concurrently presented and
spatially intermixed colors that can be reported without
a loss in accuracy or speed. As they did not require the
reporting of any specific properties of colored subsets,
their tests can be admitted measuring primary pro-
cessing. Both studies came to the conclusion that no
more than two ensembles can be seen and stored at
once. Given those results, it is likely that ensemble
categorization has very early limitations. Moreover,
Poltoratski and Xu (2013) suggest that the working
memory limit for ensembles (primary categories) is a
critical determinant of the limitations of further
processing (secondary).

The binding problem and attentional control for
rapid categorization

Another source of limitations typically associated
with the processing bottleneck is the binding problem.
The statement of the problem is based on a critical
finding that basic features of multiple objects are likely
to be processed in parallel and separately, so that at any
given moment we have full information about feature
distribution but no knowledge of how individual basic
features are bound in objects (Wolfe & Cave, 1999).
Perhaps the most influential attempt to describe a
possible solution to this problem is feature integration
theory (Treisman, 2006; Treisman & Gelade, 1980),
where a limited-capacity attentional mechanism is
supposed to move from one location to another and
bind corresponding features to an object percept. For
correct perception, attention should select one object at
one time.

As ensemble perception requires the simultaneous
processing of many objects, the binding problem
predicts that the visual system should face insuperable
difficulties when seeing ensembles filled with varieties of
feature conjunctions. It is easy to see that the problem
is associated with secondary ensemble categorization,
which implies the processing of one dimension given
another. However, the aforementioned severe limit of
primary categorization heightens the problem.

In a series of studies, Treisman and her colleagues
tried to discover how the visual system works with
conjunctive ensembles. In one such study, Treisman
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(2006) briefly presented observers with sets of colored
letters and asked them to report the percentage of a
particular color (e.g., all green letters), letter (e.g., all
Ts), or conjunction (e.g., green Ts). She found that the
observers were good at judging proportions of features
but were much worse at judging proportions of
conjunctions. In another study, Emmanouil and
Treisman (2008) tested observers’ accuracy in estimat-
ing ensemble summary statistics along two dimensions
at one time. Their participants were presented with sets
of differently sized and moving (or differently oriented
in one of experiments) objects and had to estimate
average size and average speed. The relevant dimension
was either precued or postcued, making observers
either focus on one dimension or divide attention
between two. In almost all cases, Emmanouil and
Treisman found a significant (though not dramatic)
cost of dividing attention between two dimensions.
They also separated relevant dimensions between
shape-defined subsets (differently sized Os and moving
Xs) and found that the cost tended to increase under
that condition. In summary, both studies showed that
the visual system indeed is imperfect when it is trying to
combine different ensemble properties at one time.

However, the previous analysis in this article shows
us that the visual system is quite good at performing
both primary and secondary categorization. How is it
possible if ensemble perception suffers from the binding
problem? First, we must keep in mind that ensemble
processing does not require binding features of all
objects. As ensemble properties are represented in the
form of summary statistics, then the only thing needed
is binding those summary statistics. This manner of
binding is definitely more economic and can probably
explain why Emmanouil and Treisman (2008) found
the cost of dividing attention to be poor.

Second and more important, if secondary categori-
zation is exposed to binding limitations, then it appears
that its effectiveness may be provided by the strategies
of attentional selection. One promising candidate for
such a strategy is that used for guided search. Although
it was originally described to explain attentional
phenomena in visual searches (Wolfe, 1994; Wolfe et
al., 1989), this strategy is also supposed to be
appropriate for secondary ensemble processing (Chong
& Treisman, 2005). A core similarity between visual
search and ensemble categorization is that both can be
guided, on one hand, by bottom-up processes consid-
ered to be parallel and, on the other hand, by top-down
processes controlling the selection of task-relevant
information.

It appears that processes underlying primary cate-
gorization resemble the bottom-up and preattentive
mechanisms of attentional guidance (Wolfe, 1994;
Wolfe et al., 1989). These processes permit one to split
the visual field into several categorically different

subsets along a number of independent dimensions, as
preattentive processes build separate feature maps
within each basic dimension. It appears that, like the
preattentive processes, primary categorization is auto-
matic (Alvarez & Oliva, 2009), at least within its
limitations. Under top-down attentional control, the
primary categories can be used for secondary catego-
rization. This means that the observer can selectively
attend to one or two (and probably no more at one
time given the aforementioned limitations) primary
categories and launch secondary processing (either in
depth or in breadth) within them.

The top-down character of attentional selection also
implies that we can flexibly attend to those primary
categories, which have ensemble features similar with a
certain template of the relevant object type. Returning
to the example at the beginning of this article, when
estimating whether berries on a bush are sufficiently
ripe, one can selectively attend to a subset of only
relatively round items and judge the average redness of
those items. Indeed, experimental data show that when
relevant primary categories are precued, observers have
no problem with reporting secondary summary statis-
tics (Chong & Treisman, 2005; Halberda et al., 2006).

Relation to scene categorization

As stated at the beginning of this article, ensemble
perception is an important part of the rapid perception
and comprehension of scenes. Previous work has
shown that our striking ability to categorize the gist of
natural scenes does not require the full recognition of
objects in those scenes (this process is time consuming
and limited by the relatively narrow foveal area of the
visual field). Instead, rough image statistics (e.g., spatial
frequencies, line, luminance, or color distributions) can
be used to distinguish between the variety of landscapes
(Oliva & Torralba, 2001, 2006; Torralba & Oliva, 2002)
or between animals and vehicles (Rosenholtz, Huang,
& Ehinger, 2012). The approach presented in this
article continues the previous work, as it implies that
rapid ensemble categorization requires access to overall
summary statistics (e.g., the mean, the variance, and the
shape of distribution) instead of individual object
properties. At the same time, it seems to require more
elaborate and fine processing than just rough image
statistics—this is supported by a finding that extracting
ensemble summary statistics requires substantial time
(Whiting & Oriet, 2011). First, ensemble summary
statistics are built on entities representing objects (or
maybe proto-objects; see Rensink, 2000) rather than
raw elements of images. Second, ensemble categoriza-
tion implies that more than one category can be
recognized within the same image, while scene catego-
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rization requires only one category per image (but that
can be just a lack of the corresponding paradigm).
Certainly, more detailed theoretical and empirical
analyses are needed in the future to establish an overlap
between the mechanisms of rapid categorization based
on ensemble and image summary statistics.

Summary and conclusions

The approach presented in this article is based on a
simple statement that the visual system can use
primary ensemble summary statistics (the mean, the
variance, and the numerosity) to test hypotheses that
the features of multiple visible objects are statistically
identical or different. This type of statistical testing is
supposed to be a possible mechanism of rapid visual
categorization. Additionally, two levels (stages) of
categorization were identified. Primary categorization
is presumed to run as a shape test of pooled activity
across a dimension. Using this test, the visual system
recognizes whether this pooled activity can be
approximated by a single-peak distribution or splits
into multiple peaks, each corresponding to a separate
category. In secondary categorization, the visual
system operates primary categories as separate units.
This stage can be performed in depth when subcate-
gories are identified within one primary category via
the shape test or can be performed in breadth when
several (probably no more than two at one time)
primary categories are compared along other dimen-
sions by tests resembling the t test or the F test.
Finally, it turns out that rapid categorization is more
or less susceptible to fundamental limitations that
work in the perception of individual objects—atten-
tion and working memory capacities and the binding
problem. However, the flexible allocation of attention
to relevant categories supports the effectiveness of that
process despite the limitations. The efficiency of
ensemble categorization is higher than that of object
identification (which is required for visual search)
because the former exploit summary statistics.

Certainly, statistical tests in visual perception are a
metaphor. This metaphor is based somewhere on
neurally grounded models of ensemble summary
statistics (Haberman & Whitney, 2012) and incorpo-
rates strong evidence from the neuroscience of vision
(Treue et al., 2000). However, in many cases, we do not
know which computations actually underlie ensemble
summary statistics and statistical tests. What is
important is that both ensemble summary statistics and
statistical tests capture the real observer’s performance
and give new insights into the nature of the underlying
internal processes.

Keywords: ensemble summary statistics, categoriza-
tion, statistical tests, attention
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