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ABSTRACT

Using linear internal wave theory for an ocean stratified by both density and current, several background

profiles are identified for which internal wave beams can propagate without any internal reflection. These

special profiles are favorably compared with available oceanic data.

1. Introduction

It is well known that the stable background density

stratification of the ocean interior allows for the vertical

propagation of internal waves (e.g., Gill 1982). Further-

more, this process has been studied experimentally in the

laboratory (e.g., Stevens and Imberger 1994). Moreover,

it is also well known that a monochromatic internal wave

is an exact solution of the fully nonlinear Euler equations

for an unbounded stratified fluid (in the Boussinesq ap-

proximation) with a constant buoyancy (Brunt–Väisälä)

frequency and such a wave propagates without change

in amplitude and direction (e.g., Miropolsky 2001). In

the general case when the buoyancy frequency varies

with depth, an internal wave will transform and gen-

erate internal reflections. However, several observa-

tions (De Witt et al. 1986; Pingree and New 1989, 1991)

and numerical simulations (Morozov and Pisarev 2002;

Gerkema 2002, 2006; Gerkema et al. 2004; Johnston and

Merrifield 2003; Holloway and Merrifield 2003; Vlasenko

et al. 2003; Tabaei et al. 2005) of a nonlinear internal wave

field in the ocean show that internal waves of tidal period

propagate as beams with very weak internal reflection;

indeed, no reflection is visible. Figure 1 demonstrates such

behavior of internal wave beams (reflecting only between

the sea surface and the bottom) in the Bay of Biscay

(Gerkema et al. 2004). The existence of certain special

buoyancy frequency profiles, in addition to the well-known

case of a constant frequency, which allows for one-way

propagation, has been previously noted in the literature

[see, e.g., Magaard 1962; Krauss 1966; Vlasenko 1987; the

recent book by Vlasenko et al. (2005)]. In this paper, we

revisit this issue and analyze theoretically the penetra-

tion of internal waves in the ocean interior when there

is a continuous stratification in background density and

shear current. As well as recovering those already-known

vertical profiles of the deep ocean stratification for which

internal waves can propagate without any internal re-

flection, we find all such profiles, including some new

ones. Further, we will show that these profiles can rep-

resent certain observed oceanic data rather well. Our

theoretical results confirm that the internal reflection of

internal waves in the deep ocean is generally quite weak

when compared with the reflection from the ocean bot-

tom and a near-surface pycnocline.

In section 2 we consider the case when the background

stratification is solely due to the density field. Then in

section 3 we extend this to the case when there is also

a background shear current, although, for technical rea-

sons, we consider only the nonrotating situation. In section

4, we examine the effect of wave reflection from a model

of a near-surface pycnocline, which separates two different

buoyancy frequency profiles. We conclude in section 5.

2. Internal waves in a density stratified ocean

The two-dimensional Euler equations for a density-

stratified fluid in the Boussinesq approximation, when
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considered for a linear monochromatic wave of frequency

v, can be reduced to the wave equation (see, e.g., Le

Blond and Mysak 1978):

›2W

›x2
� a2(z)

›2W

›z2
5 0 (1)

in which

a2(z) 5
v2 � f 2

N2(z)� v2
.

Here W(x, z) is the vertical velocity of a water particle,

N(z) is the buoyancy frequency, f is the Coriolis pa-

rameter, z is the vertical coordinate (positive is down-

ward), and x is the horizontal coordinate. Since (1) is

a hyperbolic equation, we can introduce the character-

istics (rays) for wave propagation:

dz

dx
5 6a(z) 5 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � f 2

N2(z)� v2

s

, (2)

where a(z) . 0 and calculate the ray trajectories

x� x
0

5

ðz

z0

dz

a(z)
, (3)

where x0 and z0 are the initial coordinates of the ray.

The propagation of internal wave beams has been ex-

tensively discussed in the literature, as cited in the in-

troduction. These rays (or beams) are very visible in all

computations of the internal wave field (including non-

linear computations). Indeed, these cited papers dem-

onstrate the beam character of internal waves in the

deep ocean, with a strong reflection from the sea sur-

face and the sea bottom. However, it is well known that

in general waves should exhibit internal reflection in an

inhomogeneous medium (see, e.g., Brekhovskikh 1980;

Rabinovich and Trubetskov 1989; Ostrovsky and Potapov

1999), and this seems to be rather weak for typical deep

ocean conditions. This problem is considered in detail in

the following analysis.

First, the existence of nonreflecting waves in the case

of a constant buoyancy frequency is well known. The

same situation is expected to hold approximately for the

case of a slowly varying buoyancy frequency, presented

as N(«z) with a small parameter « representing the ratio

of the wavelength to a characteristic vertical scale of vari-

ation of the buoyancy frequency. In this case, according to

the WKB method (see, e.g., Bender and Orszag 1978;

Brekhovskikh 1980; Rabinovich and Trubetskov 1989;

Ostrovsky and Potapov 1999 for the general case; Baines

1995; Miropolsky 2001 for the internal wave context), the

solution of (1) can be presented as

W(z, x) 5 A(«z) Re exp[i(k
x
x�C(z))]

� �

;

k
z
(«z) 5

dC

dz
(4)

with two unknown real-valued functions: A(«z) and

kz(«z) for each fixed horizontal wavenumber kx (.0).

The equations for them are obtained by substituting (4)

in (1) and separating the real and imaginary parts:

[k2
x � a2k2

z]A 5�«2a2A0, (5)

2k
z
A9 1 k9

z
A 5 0, (6)

where a prime means a derivative with respect to the

argument. Neglecting the term O(«2) on the rhs of (5)

but retaining (6) in full, the solution of these equations is

found explicitly:

k
z
(«z) 5 6

k
x

a(«z)
; k

z
(«z)A2(«z) 5 const. (7)

The two signs in (7) correspond to a wave propagating in

the downward or upward direction, respectively, where

we have assumed that the z axis is vertically down. For

definiteness, we consider an internal wave propagating

downward so that its amplitude and vertical wavelength

increase (decrease) as N(z) decreases (increases) with

depth. This asymptotic solution is valid for a slowly

varying buoyancy frequency, and its derivation is well

known. The expressions (7) are the leading-order terms

in an asymptotic expansion, and in principle the expan-

sion can be continued to an arbitrarily high order, with

error O(«2n), while for an analytically smooth profile

N(«z) the (internally) reflected wave is exponentially

small o[exp(2C/«2)], where the constant C is found from

the singularities of N(«z) in the complex plane (see, e.g.,

FIG. 1. Internal wave beams in the Bay of Biscay (Gerkema

et al. 2004).
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Bender and Orszag 1978; Boyd 1998). Although the re-

flected wave is vanishing small as « goes to zero, it can

have a significant amplitude in practice for finite nonzero

values of «.

Our goal here is to determine a large class of buoyancy

frequency profiles for which an internal wave can prop-

agate in the deep ocean with no internal reflection. That

is, in essence, we seek to find those profiles for which

the WKB solution can be made into an exact solution.

Hereafter, the ordering parameter « is omitted, as we are

concerned with situations when it may not be small. It is

convenient to use the construction of the WKB solution

as a change of variables in (1):

W(z, x) 5 a1/2(z)V(Z, x); Z 5

ð

dz

a(z)
. (8)

After substitution of (8), Eq. (1) transforms to

›2V

›Z2
� ›2V

›x2
5 Q(Z)V;

Q 5�a3/2 d2a1/2

dz2
5 a1/2 d2

dZ2
(a�1/2). (9)

This equation coincides with Eq. (1.53) in the mono-

graph by Vlasenko et al. (2005). In general, Eq. (9) is

a variable-coefficient Klein–Gordon equation. The ex-

istence of waves without any internal reflection can now

be achieved in the framework of a constant coefficient

Eq. (9), which is possible if Q 5 const. In this case, the

general solution of (9) is a superposition of Fourier

components, A(kx, K) exp(ikxx 1 iKZ), where the dis-

persion relation, kx
2 5 K2 1 Q, has two distinct branches

corresponding to upward and downward propagation,

respectively. Further implications are discussed below.

Other choices for Q(Z) are possible, which also provide

explicit closed-form expressions for V; however, in gen-

eral, they will lead to internal reflections. For instance,

the choice Q ; Z leads to a solution in terms of Airy

functions, but these contain internally reflected waves

with nonzero amplitudes (Bender and Orszag 1978).

There are three different cases when Q(Z) can be

constant, and each case describes a buoyancy frequency

profile allowing an internal wave beam without internal

reflection. We will discuss here only the buoyancy fre-

quency profiles that decrease for large depths (i.e., the

function a(z) tends to zero as z tends to infinity).

The first case is Q 5 0, which leads to

a(z) 5 p(1 1 z/L)2 (10)

or

N(z) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 1
v2 � f 2

p2(1 1 z/L)4

s

, (11)

where p and L are arbitrary constants; we note that L

can be positive or negative in general. Mostly we will

analyze the case z . 0 (in the deep ocean interior) and

assume L . 0, but formally the obtained solution is also

valid for negative z in the range (2L , z , 0). The same

solution can be used for a subsurface layer (above the

pycnocline) considering z , 0 and L , 0.

The general solution of (9) for Q 5 0 consists of two

independent waves propagating in opposite directions:

V(Z, x) 5 F
1
(x� Z) 1 F

2
(x 1 Z). (12)

Formally, the buoyancy frequency profile (11) was ob-

tained already in the literature (Vlasenko 1987; Vlasenko

et al. 2005), but its explicit interpretation as a ‘‘nonre-

flecting’’ beam was not made. Here we will use this non-

reflecting wave beam to describe the deep penetration

of internal waves in the ocean. Moreover, owing to (8),

the wave amplitude increases at large depths where the

buoyancy frequency decreases.

The rays in the ocean with this nonreflecting buoyancy

frequency (11) can be calculated explicitly:

p(x� x
0
) 5

z

1 1 z/L
, (13)

and they have a vertical asymptote for large depths. In

the limiting case of low-frequency internal waves in a

nonrotating ocean, the nonreflecting profile is the same

for waves of different frequencies:

N
e
(z) 5

N
0

(1 1 z/L)2
. (14)

Here N0 5 Ne(0) is arbitrary constant, and the wave

parameters vary as

A
e
(z) 5 A

0
(1 1 z/L); k

z
(z) 5

N(z)

c
5

N
0

c(1 1 z/L)2
,

(15)

where c 5 v/kx is the wave speed in the horizontal di-

rection and A0 is initial wave amplitude.

The second class of profiles can be obtained from the

condition Q 5 m2 . 0. In this case, the equation for a in

(9) is integrated once,

d
ffiffiffi

a
p

dz

� �2

� m2

a
5 E, (16)
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where E is a constant, and then the solution for a can be

found by quadature. In particular, if E 5 0, its solution is

a(z) 5 2mz 1 C
1
, (17)

where C1 is an arbitrary constant. This rather simple so-

lution appears to be new. If E 6¼ 0, the general solution is

a(z) 5
(Ez 1 C

2
)2 �m2

E
. (18)

This solution generalizes (10) for m 5 0, and it was

found by Vlasenko (1987); see also the recent mono-

graph by Vlasenko et al. (2005).

Alternatively, the special solution (17) for a(z) can be

easily directly obtained from (9) and is

a(Z) 5 a
0

exp(2mZ); z(Z) 5

ð

a(Z) dZ

so that

a(z) 5 p(1 1 z/L), (19)

where p 5 C1 5 2mL. Then

N(z) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 1
v2 � f 2

p2(1 1 z/L)2

s

. (20)

The rays in this model of a nonreflecting buoyancy fre-

quency are described by

p(x� x
0
) 5 L ln(1 1 z/L). (21)

Now the rays have no vertical asymptote for large depths

but slowly turn to the vertical. In the limiting case of low

frequency waves in a nonrotating ocean, the nonre-

flecting profile of the buoyancy frequency is

N
e
(z) 5

N
0

1 1 z/L
. (22)

It differs from (14) in that it provides a slower change of

the buoyancy frequency with depth.

The elementary downward-traveling wave solution of

the Klein–Gordon Eq. (9) with a positive Q has a sinu-

soidal shape,

V(x, Z) 5 V
0

sin[k
x
x�K

z
Z]; K

z
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x �m2

q

(23)

if kx . m. In the opposite case, the wave exponentially

attenuates with depth. The general solution for a trav-

eling wave is obtained by Fourier superposition of the

elementary solutions (23),

V(x, Z) 5

ð

V
0
(k

x
) expfi[k

x
x�K

z
(k

x
)Z]gdk

x
, (24)

where Kz and kx satisfy the dispersion relation (23). As

a result, the wave field is now dispersive and the beam-

width increases with depth.

Next, the general solution (18) can also be obtained

directly from (9) as follows:

a(Z) 5 a
0

sech2(mZ)

or

a(Z) 5 a
0

cosech2(mZ) (25)

so that

a(z) 5 p[1� q2(1 1 z/L)2] or

a(z) 5 p(q2(1 1 z/L)2� 1), (26)

where pq 5 mL. These equations agree with (18) after

putting pq2 5 7EL2, respectively. We see that the first

solution has E , 0, and, since we require that a . 0, it is

only valid for a finite range of z, and consequently not

very useful. The second solution has E . 0 and a . 0 for

all z if q . 1; but comparison with the observations dis-

cussed below show that there is not a significant differ-

ence from the profile (11), which has the same asymptotic

behavior for large jzj. Hence, we will not consider either

of these profiles any further here.

The third class of profiles can be obtained from the

condition Q 5 2m2 , 0. In this case, the solution for

a(z) is also found explicitly (E . 0):

a(z) 5
(Ez 1 C

2
)2

1 m2

E
(27)

or

a(Z) 5 a
0

sec2(mZ 1 u)2; a(z) 5 p(1 1 z2/L2), (28)

where pq 5 mL and pq2 5 EL2. The nonreflecting

buoyancy frequency profile in this case is described by

N(z) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 1
v2 � f 2

p2[1 1 z2/L2]2

s

. (29)

For z . 0 the solution (29) is a monotonically decreas-

ing function of depth. Equation (29) was obtained by

Vlasenko 1987 (see also Vlasenko et al. 2005) in the

context of finding the modal structure of the internal

tide. At large depths the asymptotic a(z) ; z22 is valid,

as in the case (11). It is important to mention that this
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obtained solution can describe the buoyancy frequency

profile in the vicinity of a pycnocline (if its center is lo-

cated at z 5 0), and this is the first example of a non-

monotonic nonreflecting profile. The wave field again

has the shape (24), but the dispersion relation is now

K
z

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x 1 m2

q

(30)

with no formal limitations on the value of kx. In this case

the beamwidth again increases with depth. The rays in

this model of a nonreflecting buoyancy frequency are

p(x� x
0
) 5

q

L
tan�1[q(1 1 z/L)], (31)

and the rays again have a vertical asymptote for large

depths. In the limiting case of low frequency waves in

a nonrotating ocean, the nonreflecting profile of the

buoyancy frequency in this third case is

N
e
(z) 5

N
0

1 1 z2/L2
, (32)

which has the same asymptotic behavior as (14).

Thus, we have found four cases of a nonreflecting in-

ternal wave beam propagation in the deep ocean. The

classical example N 5 const can be obtained from (14) as

L / ‘ (as formally from all other profiles): here it will

be not analyzed separately. In the case of (14) (which

will be called case I below), the wave shape does not vary

with depth (but the wave amplitude and wavelength do

change with depth) and the beamwidth remains constant.

In the cases (22) and (32) (called case II and case III,

respectively), the beamwidth again increases with depth.

All nontrivial nonreflecting profiles in the low fre-

quency limit (in variables N/N0 and z/L) are presented in

Fig. 2. In case I, the profile (14) corresponds to a faster

decrease of the buoyancy frequency with depth; in case II,

the profile (22) varies slowly with depth; and in case III,

the profile (32) tends to (14) for large depths but is only

slowly varying for small depths. The rays for the same

nonreflecting buoyancy frequency profiles are displayed

in Fig. 3. All curves are qualitatively the same, but their

asymptotic behaviors for large depths are different.

A comparison of observed profiles of the buoyancy

frequency with the nonreflecting profiles (14), (22), and

(32) is given in Fig. 4 for the Pacific, Atlantic, Indian, and

Arctic Oceans. Figure 4a shows results of measurements

on the North West Shelf (NWS) of Australia in the Indian

Ocean at 208S (Holloway et al. 1997; Holloway 2001); the

Malin shelf edge stratification in the Northern Atlantic

(56.58N) is illustrated in Fig. 4b (Pelinovsky et al. 1999;

Grimshaw et al. 2004); the third example (Fig. 4c) is the

buoyancy profile on the Hawaiian Ridge in the Pacific

Ocean at 228N (Johnston and Merrifield 2003); the last

example (Fig. 4d) is for the Laptev Sea in the Arctic

Ocean at 738N (Polukhin et al. 2003a,b; Grimshaw et al.

2004). In all figures the vertical coordinate z is measured

from the center of the pycnocline. The theoretical non-

reflecting profiles of the buoyancy frequency (14), (22),

and (32), computed for the semidiurnal (M2) tide (12.4 h),

are also presented in Fig. 4. The fitting parameters are

given in Table 1 for all three cases (for the Laptev Sea, L is

given above/below the pycnocline).

From Fig. 4a for the NWS of Australia, the second fit

(22) (green dashed–dotted line) seems to be the best, but

the first fit (14) (red dashed line) may also be used for

a description of this buoyancy frequency profile. Again,

from Fig. 4b for the Malin shelf edge stratification, the

best fit seems to be the second approximation (22) (green

FIG. 2. Nonreflected profiles of the buoyancy frequency.

FIG. 3. Rays for various nonreflected profiles of the buoyancy

frequency.
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dashed–dotted line); however, both other approxima-

tions (14) (red dashed line) and (32) (purple dotted line)

may be used. For the Hawaiian Ridge (Fig. 4c) we see

that both fits, the first (14) (red dashed line) and the

second (22) (green dashed–dotted line) describe the

buoyancy frequency profile quite well, but the third fit

(32) (purple dotted line) is not so good. The third fit (32)

(purple dotted line) describes the buoyancy frequency

profile in the Laptev Sea (both above and below the

pycnocline). Also, the density stratification for the Laptev

Sea is fitted by the profiles of cases I and II with different

values of L above and below the pycnocline; see Table 1

where in the Laptev Sea case the slash denotes the values

of L above/below the pycnocline. So, all theoretical non-

reflected profiles can be used to fit the measured data.

It is important to mention that all of the theoretical

profiles—(11), (20), and (29)—formally include a de-

pendence on the wave frequency; therefore, for a fixed

FIG. 4. Buoyancy frequency profile and its approximation by a nonreflecting profile: (a) North West Shelf of

Australia, (b) Malin shelf edge, (c) Hawaiian Ridge, and (d) Laptev Sea. Dashed lines is fit (14), dashed–dotted lines

is fit (22), and dotted lines is fit (32); lines with points are the measured data.
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stratification, only one wave with the appropriate fre-

quency will be have no internal reflections. However,

this dependence is negligible for the Malin shelf edge

(Fig. 5) where the buoyancy frequency profile is fitted by

formula (20) for three different wave periods T: semi-

diurnal tide (T 5 12.4 h), T 5 6.2 h, and T 5 4.1 h. All

profiles almost coincide; therefore, various spectral com-

ponents of the low-frequency internal wave field propa-

gate at depth with no internal reflection.

Thus, our theoretical analysis shows the existence of

several density stratifications in the ocean that can pro-

vide nonreflecting propagation of internal waves in the

deep ocean. Further, we have shown that the observed

density stratification in various areas of the world’s

oceans can be fitted by these profiles. This means that

the vertical propagation of internal waves with minimal

internal reflection is typical for real oceans, thus

explaining the results of various numerical simulations

cited in the introduction.

3. Traveling waves in an ocean stratified in density
and current

The same approach can be applied for the propaga-

tion of internal waves in an ocean with both density and

current stratification. For simplicity we consider here

monochromatic low-frequency waves in a nonrotating

ocean for which the basic equation for the vertical velocity

(or streamfunction) reduces to the Taylor–Goldstein

equation (see, e.g., Baines 1995; Miropolsky 2001),

d2w

dz2
1 k2(z)w 5 0, (33)

where

k2(z) 5
N2(z)

(c�U(z))2
1

1

c�U(z)

d2U

dz2
. (34)

Here U(z) is the background shear flow (assumed sta-

ble) and c is the wave speed in the horizontal direction.

Using again the WKB construction,

V 5 k1/2(z)w; Z 5

ð

k(z) dz, (35)

Eq. (33) reduces to

d2V

dZ2
1 V 5 Q(Z)V; Q(Z) 5

1

k1/2(Z)

d2

dZ2
[k1/2(Z)].

(36)

Nonreflecting wave solutions are obtained from (36) if Q

does not depend on Z and

�‘ , Q , 1. (37)

Again three classes of background profiles are possible.

The first case is Q 5 0, leading to

N2(z)

[c�U(z)]2
1

1

c�U(z)

d2U

dz2
5

k2
0

(1 1 z/L)4
, (38)

which determines a relationship between N(z) and U(z).

So, the main difference with the previous cases is that

TABLE 1. Fitting parameters of nonreflecting buoyancy frequency profiles.

Case I Case II Case III

N0 (s21) Depth (m) L (m) 1/p L (m) 1/p L (m) 1/p

NWS of Australia 0.024 1380 230 180 82 180 100 180

Malin shelf edge 0.0144 606 105 195 35 195 45 195

Hawaii Ridge 0.0113 4000 950 88 320 88 390 88

Laptev Sea 0.1378 30 7.15/4 7000 2.5/1.5 7000 2.5 7000

FIG. 5. Buoyancy frequency profile and its approximation by the

nonreflecting profile (20) for the Malin shelf edge: T 5 12.4 h (solid

line), T 5 6.2 h (dashed line), and T 5 4.1 h (dashed line with dots);

the black line is the experimental data.
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now there is an infinite number of background density

and shear flow stratifications providing nonreflecting

propagation of internal waves in the deep ocean. For

each density profile N(z) from (38) we can find the

corresponding shear flow U(z), in principle. However,

Eq. (38) with respect to U(z) is a second-order linear

ordinary differential equation with variable coefficients,

and to find its analytical solutions is very difficult. It is

simpler is to find N(z) from (38) for a given U(z).

If the shear flow has the Gaussian shape, shown in Fig. 6,

U(z) 5 u exp �
(z� z

0
)2

l2

" #

: (39)

the computed buoyancy profile satisfied to (34) is dis-

played in Fig. 6 for l/L 5 0.2, z0 /L 5 0.5, c2/l2N0
2 5 0.3. It

is clearly seen that the nonreflecting buoyancy profile is

deformed in the zone of the shear flow with some fine

structure. Such structure is visible on many observed

profiles (see Fig. 4) and they, together with the shear

flow (which is very often not measured together with the

density profile), can provide nonreflecting downward

propagation of an internal wave in the ocean interior.

Another example is the flow with a constant shear in

the subsurface layer:

U(z) 5
u(1� z/l), 0 , z , l

0, l , z , L

�

. (40)

The nonreflecting buoyancy profile is modified in the

subsurface layer also (Fig. 7 for l/L 5 0.2 and u/c 5 0.15).

In fact, the point z 5 l is singular (Uzz is infinite), and the

stratification should be smoothed in the vicinity of this

point.

If the background is weak, all nonreflecting density

profiles are described approximately by

N(z)�N
0
(z)

N
0
(z)

’�U(z)

c
� c

2N2
0(z)

d2U

dz2
, (41)

obtained from (38) at the first order of a perturbation

theory. Here N0(z) is the nonreflecting profile (14) with

no background shear flow. In zones of weak density

stratificationeven a smooth shear flow leads to strong

variability of the buoyancy frequency profile.

Especially we would like to note the solution of (38)

for L / ‘ (that is k is a constant). If there is no shear

flow, this case corresponds to the classical case of con-

stant buoyancy frequency, providing propagation of a

wave with constant amplitude. If the shear is constant

(dU/dz 5 const), the same result holds when N(z)/

(c 2 U(z)) is a constant; namely, an internal wave prop-

agates with no reflection.

The second case is 0 , Q , 1 when k(z) is described

by an expression analogous to (38) and the relation be-

tween N(z) and U(z) is

N2(z)

(c�U(z))2
1

1

c�U(z)

d2U

dz2
5

k2
0

(1 1 z/L)2
. (42)

Formally, k0L . ½ is needed to ensure that Q , 1. This

limitation occurred also for the case with density strat-

ification only; see (17). It is important to note that in the

case of a weak current, the expression (41) is again valid;

however, now N0(z) satisfies (22).

In the third case (Q , 0), Eq. (42) is replaced on

N2(z)

[c�U(z)]2
1

1

c�U(z)

d2U

dz2
5

k2
0

1 1 (z/L)2
. (43)

FIG. 6. Nonreflecting buoyancy profile in a basin with a shear flow:

numbers are values of U/c.

FIG. 7. Nonreflecting buoyancy profile in a flow with a constant

shear: numbers are values of U/c.

APRIL 2010 G R I M S H A W E T A L . 809



Again, for a weak current the expression (41) is valid,

with N0(z) now satisfying (32).

Figure 8 demonstrates the influence of a current with

the Gaussian shape (39) on the nonreflecting buoyancy

profile for all three cases described by (38), (42), and

(43) for l/L 5 0.1, z0/L 5 0.5, c2/l2N0
2 5 0.3, u/c 5 0.2. It

can be seen that the perturbations of the buoyancy

profile are different, and such perturbations are sensitive

to the shape of the unperturbed buoyancy profile.

There is also an alternative approach to that described

above in which we assume at the outset that the current

shear is weak, so we replace (34) with

k(z) 5
N(z)

c�U(z)
. (44)

Then the same change of variables (35) leads to

d2V

dZ2
1 V 5 Q(Z)V,

where now

Q(Z) 5
1

k1/2(Z)

d2

dZ2
[k1/2(Z)]�

(kU
Z

)
Z

k(c�U)
. (45)

Essentially the former procedure placed the term in-

volving the curvature Uzz into the phase of the wave,

whereas now we place it in the amplitude of the wave.

The simple choice Q 5 0 leads to the solution

B 5 k1/2(c�U),

where

d2B

dz2
5 0. (46)

The choice B 5 const leads to N(c 2 U) 5 const, which

generalizes the classical case when N(z) 5 const. Other-

wise, the choice B 5 B0Z leads to the solution

k(c�U)2
5 N(c�U) 5

B2
0

j2
; j 5� 1

Z
5

ðz

z0

dz

(c�U)2
.

(47)

This generalizes the case when Q 5 0 leads to (10) in

section 2. Overall, this alternative class of nonreflecting

buoyancy profiles will exhibit qualitatively the same

sensitivity to the presence of even a rather small shear

flow, as for the cases we have discussed above.

4. Reflection properties of a pycnocline

If the background stratification differs from any of the

nonreflecting profiles given above, the internal wave will

reflect in the ocean interior. This effect is important for

the passage of an internal wave through a pycnocline

where there is typically a fast variation of the buoyancy

frequency. We consider here a simplified example of

internal wave reflection from a pycnocline in the ocean

interior, for the nonrotating case, where the pycnocline

is modeled as a superposition of two nonreflecting

profiles (14),

N(z) 5 N
0

1

(1 1 jzj/L
1
)2

, z , 0

1

(1 1 z/L
2
)2

, z . 0

8

>

>

>

<

>

>

>

:

(48)

with different characteristic scales. As shown in Fig. 4,

this distribution of the buoyancy frequency may be used

for the approximation of many observed profiles. The

fitted parameters are given in Table 2 and are used here

for the quantitative estimation of wave reflection from

the pycnocline. For simplicity, we will ignore in this

section any effects of a shear flow and use the low fre-

quency approximation.

FIG. 8. Nonreflecting buoyancy profiles with a Gaussian-shaped

current.

TABLE 2. The coefficient of internal wave reflection on the

pycnocline.

N0 (s21) H (m) Lp (m) C (m s21) jRj2

NWS of Australia 0.0236 1380 18.5 2.1 0.81

Malin shelf edge 0.0144 606 28 0.43 0.22

Hawaiian Ridge 0.0113 4000 111.1 2.0 0.53

Laptev Sea 0.1378 30 2.5 0.75 0.55
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Let an internal wave be incident on the pycnocline

from z , 0. Writing the solution of the wave equation (1)

as the sum of incident and reflected waves above the

pycnocline and a transmitted wave below it and using

continuity conditions for the vertical velocity and its

derivative at the point z 5 0, we find the reflection co-

efficient in the form

R 5� 1

1 1 2iN
0
L

p
/c

, (49)

where Lp 5 L1L2/(L1 1 L2). The complex value of R is

the ratio of the amplitude of reflected wave to the am-

plitude of the incident wave at z 5 0 (away from this

point, the amplitudes grow linearly with distance). The

modulus of R is

jRj5 1

(1 1 4N2
0L2

p/c2)1/2
. (50)

When the pycnocline depth is much less than the ocean

depth, the modulus of the reflection coefficient tends to

1 (strong reflection). In a ‘‘shallow’’ ocean when the

pycnocline depth is comparable with the ocean depth,

the modulus of the reflection coefficient may be quite

weak. In general, jRj2 characterizes the energy of the

reflected wave. This coefficient is computed for all of

the buoyancy frequency profiles presented in Fig. 4. The

speed c in each case is found as the maximum value of

the wave speed in the horizontal direction computed

from the eigenvalue problem,

d2w

dz2
1

N2(z)

c2
w 5 0, (51)

with zero values on the sea surface and sea bottom. The

results of these calculations are presented in Table 2.

The value of jRj2 is quite large for the North West Shelf

off Australia and is about 0.5 for the Hawaiian Ridge

and the Laptev Sea. It equals 0.22 for the Malin shelf

edge. So, overall, internal waves are reflected from the

pycnocline (and, of course, from sea surface and sea

bottom). An example of strong reflection from a pyc-

nocline computed for the Faroe–Shetland Channel is

shown in Fig. 9 (taken from Gerkema 2002).

In fact, the reflection properties of a pycnocline are

sensitive to the shape of the pycnocline. For instance, if

the pycnocline in the Laptev Sea is approximated by

(32) (case III), there is no reflection. In this case, use of

the buoyancy profile (14) (case I) can give an upper limit

of the reflection coefficient due to the large value of the

jump in dN/dz at the center of the pycnocline.

5. Conclusions

Observed data and numerical simulations typically

demonstrate the deep penetration of internal wave

beams in the interior of the ocean with no visible in-

ternal reflection (except rather strong reflections from

the sea surface, pycnocline, and the sea bottom). Al-

though this effect may be related to the rather slow

spatial variation of the buoyancy frequency with depth

FIG. 9. Faroe–Shetland Channel: (a) buoyancy frequency profile and (b) beam structure

demonstrating the strong reflection of internal waves from the pycnocline (Gerkema 2002).
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relative to the wavelength of the wave beam, in this

paper we have argued that another possible explanation

is related to the existence of several families of ‘‘non-

reflecting’’ background profiles in density and current.

We have described a full set of such profiles, found within

the framework of the linearized theory for internal waves

in a stratified fluid. In the absence of a background shear

flow, three possible profiles of the buoyancy frequency

are found. In case I the buoyancy frequency below the

pycnocline is described by (1 1 z/L)22 and the wave

shape remains constant with depth, but its amplitude

and wavelength vary with depth; the wave field is con-

centrated in beams. The well-known example of non-

reflecting wave propagation in an ocean with a constant

buoyancy frequency is a particular case for L / ‘. In

case II the buoyancy frequency profile is described by

(1 1 z/L)21, and the internal wave beam increases its

width with depth. In case III the buoyancy frequency

profile is nonmonotonic [1 1 (z/L)22]21 and can de-

scribe the structure of an internal pycnocline. The beam-

width in this case is also increased.

Observed buoyancy frequency profiles in many areas

of the world’s oceans can, in many cases, be well ap-

proximated by the nonreflecting profiles obtained. We

have demonstrated this here for the North West Shelf of

Australia, the Malin shelf edge, the Hawaiian Ridge,

and the Laptev Sea. This good fitting of observed data by

the theoretical profiles allows us to conclude that non-

reflecting beam propagation of the internal waves in the

ocean is a frequent phenomenon and not necessarily

dependent on the slow variation of the buoyancy fre-

quency with depth.

If the ocean is stratified in both density and current,

we have found that there is an infinite number of non-

reflecting background profiles allowed. In fact, for each

density profile one can find an associated nonreflecting

shear flow: some examples of such profiles are given in

this paper. In practice, the background density and

current profiles are arbitrary, constrained only by the

thermal wind relation. Although the nonreflecting den-

sity and current profiles are linked in the present theory,

the fact that there is an infinite set of such profiles allows

us to conclude that observed profiles can be well ap-

proximated by a nonreflecting profile.

At a pycnocline, where the buoyancy frequency varies

significantly, a downward-propagating internal wave

reflects. The reflection coefficient is calculated for the

North West Shelf of Australia, Malin shelf edge, Ha-

waiian Ridge, and Laptev Sea. We find that it varies over

a wide range and is sensitive to the details of stratifica-

tion in the vicinity of the pycnocline. It is also demon-

strated that, if the buoyancy profile in the vicinity of the

pycnocline is symmetrical and described by the profile

(28) (case III), the internal wave can pass through a

pycnocline with no reflection.

The nonreflecting buoyancy frequency profiles have

been obtained here in the framework of the linearized

theory of internal waves. It is well known that in the

case of N(z) 5 const, the nonlinear wave also propagates

without reflection. The analysis of nonlinear downward

propagation of internal waves will be given in a future

study. But it is pertinent to note in this context that

nonlinear theories for slowly varying internal gravity

waves have demonstrated that the main nonlinear effect

is the generation of a wave-induced mean flow (e.g.,

Grimshaw 1974, 1975; Sutherland. 2006). Since we have

shown that the class of nonreflecting profiles can, in prin-

ciple, allow for arbitrary background shear flow, we ex-

pect that the results obtained here may indeed extend to

the nonlinear case. Further, as we have shown above, the

results of observations and numerical simulations made

for real parameters of the internal wave field demonstrate

the beam character of the wave propagation, irrespective

of the nonlinearity of the wave amplitude.

The solutions described above can also be used to

compute the modal structure of an internal wave field in

an ocean of finite depth H, as described in Vlasenko

et al. (2005) for the case Q 5 0 [see (11)]. In this case, the

vertical structure of the internal wave satisfying zero

boundary conditions at the sea surface (z 5 0) and bot-

tom (z 5 H) can be presented explicitly, when Q 5 0,

6m2, for cases I, II, and III as

W
n
(z) 5 Ba1/2

n (z) sin[C
n
(z)], C

n
(Z) 5 (k2

x �Q)1/2Z,

C
n
(H) 5 2pn, Z 5

ðz

0

dz

a
n
(z)

,

and

a
n
(z) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
n � f 2

N2(z)� v2
n

s

, (52)

respectively, where n 5 1, 2, 3, . . . is the modal number

and B is a normalizing constant [see (8) and (9)]. This

leads to the dispersion relation for an internal wave

mode

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
x �Q

q

ðH

0

dz

a
n
(z)

5 2pn. (53)
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