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A description of Chern classes of semistable
sheaves on a quadric surface

By Alexei N. Rudakov at Moskow

Many conditions on rank r and Chern classes ¢,, ¢, of a stable sheaf on an algebraic
surface are known. One of them is Bogomolov’s inequality

r—1
2r

c, — c}>0

that is valid for any surface. Another wonderful result is one of Drezet and LePotier. They
gave a complete description of triples (r, ¢,, ¢,) that are possible for stable sheaves on P2, It
is interesting that this set is not defined by a finite number of inequalities but has a fractal
boundary ([D-L]).

The complete description of triples (r, ¢, c,) for stable sheaves was known only for
P2, In this paper we give such a description for semistable sheaves on a smooth quadric
surface Q. It appears that there is quite a lot of similarities between the P2-case and the
Q-case. In both cases the description depends on the Chern classes of exceptional sheaves.
For Q these classes were studied in a separate paper ([R]). Our description is somewhat less
constructive than in [D-L] and it is not clear at the moment how to convert it into an
algorithm because the structure of the set of exceptional bundles is more complicated in our
case. A formulation of the main theorem is in Section 3. Here I use the notion of Mukai
lattice which is not really important for the paper but is — as I think — a natural frame to
generalise the result.

The general lines of proving the theorem are the same ones as in [D-L]. The impor-
tant new ingredients are y-stability (Section 2) and the way to prove the key lemma (Section
9) and maybe the way to formulate the theorem. The result of Drezet-LePotier about P2
can also be reformulated in a very similar style.

The preliminary version of the theorem was proposed at a symposium at the University
of Chicago and a version of the manuscript was made during my stay at the University of

Erlangen-Niirnberg. I deeply appreciate the support and hospitality I received at both
universities.
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1. Chern classes and the Mukai lattice

Let us begin with some notations and preliminaries.
Let X be a complete algebraic variety. For coherent sheaves E, F on X we define

1(E,F) =Y (—1)'dim Ext!(E, F) .

It is easy to see that x(E, F) is a linear form for every argument and so is a bilinear func-
tion on a Z-module K, (X). It is Z-valued.

We will work most of the time with a smooth quadric surface Q. It is well known that
Q is isomorphic to P! x P! and we fix an isomorphism.

We choose the isomorphism Pic Q ~ Z @ Z in such a manner that (m, n) corresponds
to the line bundle @(m,n) equal to the tensor product of the preimage of @ (m) from the
first multiple and the preimage of ¢ (n) from the second one. The line bundles ¢(1,0) and
0(0,1) have as fibers of their linear systems | (1,0)| and | ©(0,1)| the vertical and horizon-
tal lines in the decomposition Q ~ P! x P!, Then the intersection number in Pic Q is
written as

((a,b); (c,d)) = ad + b .

We will write down explicitely the theorem of Riemann-Roch that will be used in Section 4
and especially throughout the computations in Section 9 and the Serre duality theorem.

The Riemann-Roch theorem. Let r; and r; denote the rank of E and F, then
1
@ xEF)=rr+t (rEcl(F) —rre (E); (1, 1)) + e ('2‘ i — Cz) (E)
1 2
+1g Ecl — ¢ |(F) = ¢ (E) ¢ (F).
We fix the following notations for a sheaf E with ry % 0:

1
ve= (g V) =~ ¢ (E)ePicQ® Q=00 Q,

E

1 -1
5=~ (cz B - = (E)2> .

E
Then:
(b) Y(EF)=rgre((vg—vg + 1) (v —vg+1) — dg — 45) .
We will use the notation

E(m,n)= E® O(m,n).
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The Serre duality theorem.
(@) Ext!(E,F) ~ Ext? " {(F, E(—2, —2))*,
X(E,F)=y(F,E(-2,-2).
Another standard notation that we will use throughout the paper is u; or u(E):

(E) = (vg, (1,1)) = vi + v}

One can easily check that
u(E(m,n)) = p(E)+m+n,
vE(m,n) = (vl"J + m, vg + n) ’
AE(m,n) =dg.
In order to define a Mukai lattice let us begin with some general considerations.
Let X be smooth, then from Serre duality we can see that
X(E,F)=(=1)""*y(F,E® Ky) .
So the left kernel of y and the right one coincide and we can state the following

Definition. A Z-module #«(X) = K,(X)/ker, with a bilinear form induced by y is
called the Mukai lattice of X. We will call this form scalar product on .#«(x) and use the
notation y(u,v) or just (u,v) for the value of this scalar product for u, v € M« (X).

For X = P? and for our case X = Q there is even the equality #« (X) = K,(X). But,
for example, this is not so for a K 3-surface.

For X = Q we have also

Ma(Q)=Ky(Q)~ZDPicQDZ~ 7%,

where [F] s (r(F), ¢, (F), ! ¢, (F)? — ¢,(F)) and the scalar product for the right hand side
is defined by the formula:

((rla aia a;’dl) ] (r29 aév a;’ dZ))

=nrr,+r(ay+a;)—ry(ay+a))+rd,+r,d —aja; —azay.

One should mention that it is not symmetric. And, you see, this is a slightly different formu-
lation of the Riemann-Roch theorem.

In the sequel we will use this isomorphism to identify left and right sides and will use
the notation [F] for the image in .#« (X) of the class of the coherent sheaf F on X. If there
is a stable (semistable) sheaf F for u € #«(X) such that
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[F]=u
then we call the element u stable (semistable).

Our main goal is to find the possible Chern classes for the stable sheaves, which we
now can restate as follows to find stable elements in M« (X). A kind of answer for the case
X = Q will be given in Section 3. But we need to be more precise about stability first because
there are different possibilities to choose a polarization on Q.

2. The stabilities

Let us recall the basic results about the Mumford-Takemoto stability (u-stability) and
the Gieseker stability (y-stability).

Definition. One calls a sheaf E u-stable if E has no torsion and for any subsheaf F
such that both F and E/F have positive rank, one has

H(F) < p(E).

One calls a sheaf E y-stable if E has no torsion and has positive rank and for any subsheaf
F with positive rank one has

10, F(n,m) _ 2(0, E(n,m))

Iy e

for sufficiently large n.
If we define semistability then we change < to <.

Using the Riemann-Roch theorem one can write

2(0,E(n,n))
) -

n2+(ug+2)n+ e+ Dvyp+1)— 4,
so if E is u-stable then E is y-stable.
Proposition 2.1. Let E and F be p-stable and F locally free and E % F; then
MF)—4<pE)=spu(F)=(F,E)<0.

Proof. First we derive that Hom (F, E) = 0. Let ¢ € Hom (F, E). Then we can put
¢ = oo f, where B is surjective and « is injective

0:F L0 L E.

Let H #+ 0. As E is without torsion, the same holds with H. Then either u(F) < u(H) or B
is an isomorphism. Also either cokernel a has positive rank and u(H) < u(E) or the
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cokernel is a torsion sheaf and u(H) = u(E). But u(F) = u(E) so the only possibility is
pu(F) = u(N) = p(E) and then ¢ has finite cokernel. Then ¢ is an isomorphism because F
is locally free and this is a contradiction.

Next we see that

Ext?(F,E) ~ Hom(E, F(—2, —2))*
by Serre duality and this is equal to zero for the same reason. Then
x(F,E)=0—dimExt'(F,E)+0<0.

Remark. If F is stable then F(m, n) is also one. As a result of the proposition we can
obtain from any stable F a condition of the type x(F(m,n),e) < 0 for a stable sheaf E,
[E] = e to exist. But what we need is a refined version of the proposition with a new and
more sophisticated notion of stability.

Definition. Given linear functions a;,...,0, on K,(X) let for a sheaf F with
tk(F)=r#0

and form §(F) = (y, (F);...; . (F)). We call 7(F) a vector slope of F. We call a torsion
free sheaf E stable relative to 7 iff for any subsheaf F such that 0 <rk F) < rk(E), F+ E,
there is 7(F) < y(E) (for the lexicographic order). If there is y(F) < 7(£) under the same
conditions then E is called y-semistable.

Remark. Gieseker stability is a special case of the definition because the condition

1(O.F () _ 1(0,.E)
rk F rk E

for large n is equivalent to lexicographic ordering of the coefficients of the polynomials.

Remark. As usual it follows from the linearity of functions o; that if there is an
epimorphism F — H and rk H > 0 then 7(F) < 7(H) for a y-stable sheaf Fand 7(F) < 7(H)
for a j-semistable F.

Proposition 2.2. If a-stability is defined by the functions o, ..., o, and b-stability is
defined by o,, ..., d,, m 2 k, then

E is a-stable = E is b-stable,

E is a-semistable < E is b-semistable.

This follows just from the definitions.
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Definition. Consider the functions

72(F) = x (O, F)/1k F,
13(F) = A(F) = (¢, (F);(1,2))/1kF

and let 7 be a slope relative to these functions.
In this way we define a new stability for sheaves on Q.

Remark. If we take the two functions y,, y, then the stability defined by this system
is Gieseker stability for the polarisation (1, 1). If we take y,, , then also Gieseker stabi-
lity arises for 0(1,2). So our y-stability is “mixed” from two Gieseker stabilities.

Proposition 2.3. Let F and E be 7 semistable, then
p(F)—4<pu(E),7(E)<j(F) = x(F,E)=0.

Proof. We will argue the same way as in the proof of Proposition 2.1. Let
¢ € Hom (F, E). Then ¢ = a o § where f is surjective and « is injective

0:F—LtH L E,

Let H & 0. As E is without torsion, the same with H. Then rtk H> 0 and y(F) < 7(H).
Also y(H) £ (E). So 7(F) £ 7(E) and this is impossible.

Consider now ¢ € Hom (E, F(—2, —2)). Since we have u(E) < u (F(—2, —2)), there
is (E) < 7(F(—2, —2)). Then we have to check that F(—2, —2) is j-semisimple and we
leave this to the reader and by the previous part of the proof ¢ = 0. So we have the result.

Remark. Really F j-semistable = F(n, n) j-semistable.

3. Exceptional sheaves. The main theorem

In the sequel we will use the short notation
{E|F)=Ext'(E,F).
Definition. We will call a coherent sheaf E over Q an exceptional sheaf iff
%E|Ey=C, (E|E)=0, *E|E)=0.

Proposition 3.1. (1) An exceptional sheaf is locally free and both y-stable and
y-stable.
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(2) If E is a j- or y-stable sheaf and y(E, E) > 0 then E is exceptional.

(3) For an exceptional sheaf E one has
1 1

(4) E is exceptional <> E(m,n) is exceptional.
(5) All sheaves O(m,n) are exceptional.

All statements except (2) are proven by Gorodentsev ([G]). For (2) he proved only a
version with y-stability. So let E be j-stable and ¢ € Hom (E, E). Then we can put ¢ = a o f8
where f is surjective and « is injective,

qo:E——ﬂ—aH-—a—+E.

E has no torsion, so H also is without torsion. Let H # 0. As usual with stability there is
7(E) S 7(H) S 7(E) so 7(H) = y(E), then « and f are isomorphisms. Then ¢ is an iso-
morphism. If we choose /e C such that ¢ —/-id is not an isomorphism then it will be
¢ =1-id. So °(E|E) = C. And a similar condition gives us that

%CE|E(=2,-2)) =*E|E)*=0.
Then from x(E; E) > 0 we derive that '{E|E) = 0 and that ends the proof.

Remark. By the same way we can prove that if [E] = [F] for an exceptional E and
j-semistable F then E = F.

Remark. So we see that Mukai classes of an exceptional bundle necessary lie on a
“surface” x(e,e) =1 and Mukai classes of other y-stable sheaves lie in the domain of
x(e,e) < 0. It is easy to prove that the condition y (e,e) < 1 is equivalent to the Bogomolov
inequality. So we have stronger inequalities for unexceptional stable sheaves. The main
theorem gives us a more concrete description of the set of Mukai classes of j-stable sheaves

on Q.

Theorem. Let us denote by zc the set of Mukai classes of exceptional sheaves on Q
and let e € Me(Q) — Bzc. For a j-semistable sheaf E with |E| = e to exist it is necessary
and sufficient that for any fe Ezc with tk (f) <tk (e) the following condition is satisfied:

(D-L) If u(f)—2<up(e), 7(€) <7(f) then x(f,e) = 0
and if 7(f) <7¥(e), u(e) <u(f)+2 then x(e,f) =0.

If 4(e) #% and e¢ Z - &xc then the condition (D-L) is necessary and sufficient for the

existence of a y-stable sheaf E with [E] = e.
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1
Remarks. We know that (D-L) does not imply 4(e) ok An example is ee A« Q
such that rk(e) = 2, ¢,(e) = (1,0), c,(e) = —1. But a description of the elements e in #« Q
for which 4(e) = —;— is an open question.

The notation (D-L) is chosen for Drezet-LePotier and their theorem for sheaves on
P? can be reformulated in a very similar manner.

To prove that (D-L) is necessary we need only compare Propositions 2.3 and 3.1. All
the rest will be proved throughout the paper.

The plan of the proof is that in the beginning we make a family of sheaves E(s) such
that [E (s)] = e forall s € S. Then we prove that the subset of s, such that E(s) is y-semistable,
is not empty. Really a j-semistability of E is equivalent to the triviality of a canonical
Harder-Narasimhan filtration. And we will go down on the length of the filtration in E(s)
in proving that a set of corresponding points is nonempty.

4. Making a family

Let e € A« Q be under the conditions of the theorem.

Proposition 4.1. There are a smooth variety S and a sheaf E on Q = Q x S flat above
S such that for any s€ S the following conditions are satisfied.:

(1) E(s) has no torsion, [E(s)] = e.
(2) 2CE(s)|E(s)) = 0 and the Kodaira-Spencer morphism

w: T,S = KE(s)|E(s))

is surjective.

(3) A restriction E(s)|, on a general line | in a linear system |0(1,0)| or |0(0,1)] is
rigid.

Proof. Let us look at the polynomial 4(x, y) such that
h(m,n) = x(O(m,n);e).

Then from the Riemann-Roch theorem one can see that 4 may be written in a form
h(x,y) =rxy+ ax + by + ¢ and r > 0. As the conditions of the theorem hold, so

h(m,n) 20 for ule)<m+n<ule)+4
and we see that there exists a point 71, = (my, n,) such that

my+ny < p(e) and
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h(mg,ng) 20, h(my—1,ny+1) <0, h(my,ng+1)<0, h(my+1,n)) 0.
Let i, = (mg —1,ny), i, = (Mg —1,ny — 1), fiy; = (my — 2,n, — 1) and

A = h(mg, no),
B = —h(mo + 1’ no)’
C=—h(my—1,n,+1),
D= —h(my,ny+1).
You see that A, B, C, D are nonnegative integers. Let
H = Hom (0(%,)%; 0(7,)° ® 0(7,)° ® 0(7ip)*) .
Lemma 4.2. The set 3 of monomorphisms is open in H and not empty.
Proof. After elaborate but not difficult calculations one sees that
A+B+C—D=r=rk(e).
So the condition that a € H is not a monomorphism on the fiber of 0(7,)” at g€ Q cuts
in H a subvariety of codimension 4 + B+ C— D +1=r+1. So non-monomorphisms

form a subvariety H’ of a codimension not less than (r+1) — 2 =r —1 and if > 1 then

H' is a proper closed set and its complement S is open and not empty. But r 1 by
e ¢ Szc, hence the lemma is proven.

Let us make a sheaf E on Q x & taking E(h) = kerh for he 5, so that there is an
exact sequence on Q X h:

) 0 > O;)° - O(,)° ® O, ® O(i)* » E(h) - 0.

One can easily see that E is flat over # Let us prove that (1) and (2) are valid for E and
for any restriction on a set Q X S where S is an open set in # and that (3) is valid for
some open set S.

From () one can calculate a Mukai vector for E (k) and see that
[E(]=e.

To calculate cohomologies of a sheaf E (k) you can use the fact that its image in the derived
category of coherent sheaves on Q is equal to the image of the complex

K: 0 > 0(i;)° - 0(i,)° ® 0(7,)® @ O(fig)* - 0.

The sheaves 0(#1,), 0 (71,), O(#,), O(f,) are the base of a helix ([G], [R]) and that means
here *¢O(%,)| 0 (7;)> = O for either i<j and k20 or i 2 j and k> 0. So
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iCE(h)| E(h)) = Ext'(K, K) = H' (Hom' (K, K)) .
Hence we derive that 2{E(h)|E(h)) = Ext*(K, K) = 0 and that the natural morphism

Hom!(K, K) - Ext!(K, K) = '{E(h)| E(h)) is an epimorphism. One sees that this epi-
morphism can be embedded in a commutative diagram

Hom (0(715)°; 0(i,)¢ ® 0(7,)® ® 0(iip)*)
KE)|Eh))

Hom (0(71;)”; E ()

and thus it is equal to the Kodaira-Spencer morphism
T,# — CE(h)|E(h))

by Lemma 1.6 from [D-L]. So (1) and (2) are proven. By the same reasoning one can prove
that

EMIER @ 0(=1,0) = EMRIEM)® 00, -1)>=0.
Then the Kodaira-Spencer morphism for a restriction E(h)|, can be put in a diagram

T,# — 'KEMhI|EMR))
l
KEMIEMD),> -

Here the vertical morphism is a morphism from one of the next exact sequences
KEMIEMR)) - KEMLIEM)|> — EM)|Eh) @ 0(-1,0)),
KEMRNEHh)) - KEMNIEMR)|,> - *CEM)|Eh) @ 00, —1))

which arise from the exact sequences of a restriction

0 - EM®0(-1,0) > E(h) » E(h)|, - 0,
0> EMh®00,—1) > E(h) > EMh)|, - 0.
Hence we see that the Kodaira-Spencer morphism is an epimorphism, so the set of 4 € #
such that E(h)|, is rigid is open. Denoting this by S proves the proposition.
5. Finiteness theorems and Harder-Narasimhan filtration

Having a good stability you can define in a torsion free sheaf a canonical filtration
which becomes trivial for a semistable one. We want to do that for sheaves on Q.
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Proposition 5.1. Let E be a torsion free sheaf on Q. Then for the set of all subsheaves
F in E one has the following properties:

(1) The values u(F), ji(F) are upper bounded.

(2) If u(F) is fixed then (O, F) is upper bounded.

(3) In the set of 7(F) there is a maximal element j,,,.

(4) There is a maximal subsheaf F,,, in the set of subsheaves F, 7 (F) = Jpax-

in E such that
). We will call

So as a result of the proposition we see that there is the subsheaf F,
for any other subsheaf Feither 7 (F) < § (F,,,) or F< F,,, and (F) = j(F,,
F,,, the maximal subsheaf in E.

max

ax

Definition. A filtration0 = E;, c E, c -+ ¢ E, = Esuchthat the sheaf gr, = E,/E, _,
is the maximal subsheaf in E/E;_, is called Harder-Narasimhan filtration in E.

The existence and uniqueness (having a vector slope chosen) of the Harder-
Narasimhan filtration in a torsion free sheaf E is a consequence of the proposition. Indeed,
if ' is a preimage of a torsion sheaf in E/F then 7 (F) = 7 (F). Hence E/F,,,, is torsion free.
So the maximal sheaf in E/F,,, exists and so we make the filtration.

Proof of the Proposition. 1t is well known that if a factor sheaf F, /F, has codimen-
sion 2 singularities then u(F,) = u(F,) and ji(F,) = ji(F,). This is the case for F**/F, so
proving (1) you can suppose that E = E** and F = F**, hence that both E and F are
locally free. The restriction E |, on a general line / from the linear system | (¢ (0, 1)| is a direct
sum of O (n). Let n’ be a maximal value of » in this sum and »n” be a similar maximum for
a restriction on a line from |©(1,0)|. One sees that for F it is

W(FYsn'+n", GF)<2n +n"

and so is (1).

For (2) let us prove that if d, £ u(F) < d, then 0,(F) = x(¢ F) is bounded. If a
sheaf F, /F, has only codimension 2 singularities then

x(F) = 1(F)
so we only need a proof for the case E = E**, F = F**,

Let us use an induction by the rank of E. For rk E = 1 the statement is obvious. Then
if the sequence

0-E -E->E, -0

is exact and F < E then sheaves F, c E,, F, < E, exist such that the restriction of the above
sequence

0->F ->F-F -0
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is exact. Using (1) we see that the values of u(F,), u(F,) are bounded, so by induction
x(0, F)), x(0, F,) are bounded and their sum

2O F) = (6, F) + (0 F,)

is also bounded. The statement (3) obviously follows from (1) and (2).

To prove (4) let us note that if there are two subsheaves F,, F, with

T(F) =7 (F2) = Vmax
and F = F, + F, then from an exact sequence
0> FnF, > FF®F,>F->0
and inequalities 7(Fi N F,) £ Ynaxs T(F) = Tmaxs 7 (F1 @ F,) = Y, and the definition of j
one derives that 7 (F) = 5 (F; N F;) = ... Of course this implies (4).
6. Comparison of filtrations and a maximal filtration
The following definitions are really quite general but we will look only on our case.

We will associate with a filtration in a sheaf E, rk (E ) = r a piecewise linear mapping of
a segment [0,r] to R3. We will call this mapping a weight of the filtration as in [D-L].

Definition. Given a filtration 0 = F,c F, < -+ ¢ E_, = E in a torsion free sheaf E,
take points

(rk F;0,(F); 0,(F); 05 (E))

in [0,r] x R? as vertices of a graph of a piecewise linear mapping O,y - [0,7] = R3. This
mapping will be called a weight of the filtration.

A mapping 7: [0,r] = R* will be called convex iff for any a, b€ [0,r]

_(a+b ii(a) + ii(b)
n =
2 - 2
for the lexicographic order.
If a weight of a filtration is convOex then one calls the filtration convex.

Remark. A Harder-Narasimhan filtration is convex.

Let us make an order on the mappings defining # < 7 iff for any x € [0, r] there is
#(x) £ 0(x) lexicographically.

Proposition 6.1. For a torsion free sheaf E of rank r
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(a) a set of weights of convex filtrations in E is finite,

(b) the weight of the Harden-Narasimhan filtration dominates a weight of any other
filtration in E.

Proof. Let0 = F,c F, < ‘- < F, = E beaconvex filtration in E. Then its associated
grading satisfies

7(gr) = y(gr) = -+ 2 7(gr,) .

This implies that y(F,) 2 y(F,) 2 - 2 7(F,,) = y(E), hence u(F) = u(E). Then from
Proposition 5.1 one derives that there is only a finite quantity of possibilities for u(F),
1(0, F) and A(F) and so for 7(F).

Now let 0 = F, c F, < -+ < F,, = E be a maximal filtration. If E/F, is not torsion
free then taking F; such that

F/|F, = F,|F, + tors E/F,

one has a filtration 0 = Fy < F{ < -+ c F,, = E which dominates the previous one. Thus
E/F, is torsion free and E/F; also by the same reason. The maximality of {F;} implies }-
semistability of F,. Really if F'< F, and y(F") > 7(F,) then the filtration

O=FcFcFc-cF,=E

is bigger {F;}. Hence 7(F,) £ Ymax and F; < E,,,. Using induction by rank one can easily
derive (b) from this.

Proposition 6.2. Let T be an algebraic variety and E be a T-flat coherent sheafon Q X T
such that r(E(t)), 7(E(t)) are independent of t € T. Then the weights of Harden-Narasimhan
filtrations in E(t) belong to a finite set.

Proof. Denote by gr;(E(¢)) the factors of a Harder-Narasimhan filtration in E(¢).
General theorems about cohomologies of flat families imply that there is only a finite set of
possibilities for E(¢), where [ is a generic line from |¢(1,0)| or |©(0,1)|. Hence we see that
values u(gr; E(¢)) and ji(gr; E(¢)) are bounded and so lie in a finite set. Then from the
Riemann-Roch theorem for x(0), E(f)) one sees that Y r, 4(gr; E(f)) has a finite set of
values. Integers r, are taken from a finite set, so to prove the proposition it is sufficient to
prove that for a j-semistable torsion free sheaf F there is 4(F) = 0. There are numbers
m', m"” such that

O<v—m'<1, 0Svi—m'<1.
Then either 5(F) = 5(0(m’,m")) and A(F) = A(O(m’,m")) = 0 or 7(F) # 7(O(m’,m")).
In the last case also either 5(F) > 7(0(m', m")) or (O (m’, m")) > y(F)and v(F) = (m',m").

Now we can apply Proposition 2.3 either for O(m’,m”), F or for F,O(m’,m"). So one
sees that either

2 (F,0m',m")) = re((m' —vi + )(m" —vf +1) — A(F)) <0

9 Journal fiir Mathematik. Band 453
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or
1O, m"), F) = rg(0+1)(0+1) — 4(F)) £0.

Then in both cases 4(F) = 0.

7. Filtrations and cohomologies

Here we recall some properties of cohomologies Extf. , and Ext} _ for sheaves or
complexes with a filtration from [D-L]. Here if X is a sheaf or a complex of sheaves then
we use the notation F, K for members of the filtration F in K.

(1) There is an exact sequence
— Ext; _(K,K) - Ext'(K,K) - Ext} , (K, K) - Ext;"}(K,K) — .

(2) If K is left bounded then there is a spectral sequence with limit Ext; . (K, K)
where

pra_ ) LI EX"T@nK g K) for p<0,
1T = i
0 for p20.

(3) Under the same conditions there is a spectral sequence with limit Exty _ (K, K)
where

P+a(gr K >
Ere = H Ext?*4(gr, K, gr,_ ,K) for p20,
0 for p<0.
(4) Let K = K/F, K and a filtration in K be induced from K. Then there is an exact
sequence
— Extlp 4 (K K) > Ext} , (K, K) > Ext'(F,,K) > Extiii (K, K) > .

Proposition 7.1. Let E be a torsion free sheaf on Q with its Harder-Narasimhan
filtration F. Then

Ext) .(E,E)=0 and Ext} (E,E)=0.
This follows immediately from the above spectral sequences and the definitions of
semistability and of the Harder-Narasimhan filtration.
8. Filtrations with fixed weight
Our reasoning here is a slight generalisation of the similar one in [D-L]. Given a
torsion free sheaf E of a rank r and a piecewise linear mapping 7: [0, 7] = R? let us look

at the functor Drap: Sz4s» — S2¢ such that Drap(S) is a set of filtrations

0=FcF,c - cF,=9*E
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where g is a projection Q X S —» Q and F; are sheaves on Q x S for which
(a) factors gr; = F,/F;_, are S-flat,

(b) the weight of the induced filtration 0 = F,(s) < F, (s) = --- < F,,(s) = E is equal
to 71 for any se S.

Proposition 8.1. The described functor Drap is represented by a projective variety
Drap”(E). Points in Drap”(E) are corresponding to filtrations in E with the weight ii
bijectively. If F is such a filtration then the Zariski tangent space for Drap"(E) at F is
Ext} , (E, E) and the condition Ext} , (E, E) = 0 is sufficient for F to be a nonsingular point in
Drap”(E).

Proof. Let n be a mapping [0, r] - R* made out of 7 just by dropping out the
last coordinate in R3. Then n is equal to the weight of the filtration in E in the sense of
Drezet and LePotier ([D-L]) or say a y-weight. Having a y-weight fixed you have a finite
quantity of possible weights. One can prove this from Proposition 5.1 (1) for E and i*E
where i: Q — Q is an involution such that i*@¥(1,0) = ¢(0,1). Thus our flag variety

Drap"(E) is a component in the Drezet-LePotier flag variety, so the formula for the tangent
space and the nonsingularity condition are the same.

Let 0 = QxS and & be a coherent S-flat sheaf on J. For an S-scheme f: S’ - S
look at a filtration

0=FcFc cF=(dxf)*¢
such that

(a) F,/F,_, are S-flat sheaves on Q X §’,
(b) for any se S’ the induced filtration in (id X f)*& (s) is of weight 7.

So we can make a functor Drap: S-%24» — ¢, defining Drap S equal to the set of
filtrations of the above type.

Proposition 8.2. (1) The functor Drap is represented by a projective S-scheme
n: Drap®(8) —» S
and the fiber of  over s is Drap®(& (s)).

(2) Let se S and Fe Drap”(&(s)) = Drap”(8). Then there is an exact sequence

0 - Ext? , (£(s), £(s)) —» T;Drap"(¢) —» TsS — Ext} . (£(s), £(5))

where w , is a composition of the Kodaira-Spencer morphism w and a cohomology morphism
from the exact sequence in 7.1:

w,: T.S - Ext'(8(s), £(s)) = Ext} . (6(5), £(5)).
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(3) Let S be smooth in s and Ext*(8(s), £(s)) = 0 and w , surjective. Then Drap® (&)
is smooth at F.

One can derive that in a similar way from [D-L].
The most important conclusion of the previous consideration is the following:

Suppose that S is a smooth variety and & is a coherent S-flat sheaf on Q =0xS
such that for any se S the sheaf &(s) is torsion free of rank r and 7(&(s)) = & is inde-
pendent of s. ‘

Denote by 7i: [0,r] — R> a piecewise linear mapping with 7(0) = 0, () = & and by
H the Harder-Narasimhan filtration of & (s).

Proposition 8.3. Let for any se S

(1) Ext*(8(s), £(s)) =0,

(2) the Kodaira-Spencer morphism w: T,S — Ext' (& (s), &(s)) is surjective.
Then:

(@) The set Q(7) = {s€ S|Gye) < A} is open in S.

(b) The points seQ(n), for which ii = Gy s holds, constitute a closed smooth
subvariety in Q(fi) and its normal space at s is Exty , (6 (s), &(s)).

Proof. Let X(7) = {s€ S|Gye, = fi}; s€ X(7) implies se€ Im (n: Drap”(£) — S)
in notations Proposition 8.2. Let Y (77) = Im (n: Drap"(£) — S), then Y (77) is closed because
of projectivity of Drap®(&). From Proposition 6.1 (b) follows

X@cY@e | X@)

DR

and Proposition 6.2 implies that X (77) + @ only for a finite number of .

Thus we can conclude that

Uxe = Y@

o>h o>n
and so we have (a).
Look now at a restriction of a structure morphism 7’
n': Drap"(€|gm) = Q7).
If se Q1) and Fen’'~!(s) then the weight of F is 77 and F is a Harder-Narasimhan filtra-

tion because of Proposition 6.1 and the definition of Q (7). So the fiber of n’ consists of not
more than one point. And from Proposition 7.1 it follows that
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Extp, (£(s),6(s)) = Ext;_(8(s),6(5) =0,
so the standard morphism
Ext' (6 (s), £(s)) — Extg (6(5), £ (5))

is surjective. Hence w . is surjective and we can apply Proposition 8.2 to &|,.,. We see
that dn’ is an imbedding and from the diagram

Extg . (£(s),6(s9)) — TDrap"(8lom) — T.S — Ext}, (6(s),6(s)) - 0

I an'| I |

0 - T, X () - T,S — Ext; (6(s),6(5)) - 0
we conclude the formula for a normal space.

Corollary. Ifse Sand Extly , (6(5), 8(s)) + O then there is s’ € S such that the weight
of the Harder-Narasimhan filtration for & (s') is strictly less than the one for &(s).

Indeed such a point s is contained in a closure of the set Q(71) — X (1) by the pro-
position, so there is some w such that s belongs to a closure of X' (w). Then 7 > w and by
definition of X'(Ww) any s’ € X(w) fulfills the corollary.

9. The key lemma

Proposition 9.1. Let e satisfy the conditions of the theorem and E be a locally free
sheaf on Q such that

(i) the restrictions E|, and E|;, on a general line of linear systems |0(1,0)| and
|0(0,1)| are rigid,

(i1) the Harder-Narasimhan filtration in E is nontrivial,
(i) [E] =e.
Then Exty, . (E, E) + 0.

Proof. Let 0 = Fyc F, < -~ c F, = E be the Harder-Narasimhan filtration in E
and k > 1 by assumption. Let gr;, i =1, ..., k, be factors of this filtration.

We can rewrite the condition (i) as follows

E|, = 0(m)"® O(m; +1)",

where s; + ¢, = Ik E.
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As before we will use the notation

v = (cl; (0, 1)) ,

v' = (c;;(1,0).
There is a monomorphism

0 - Hom(0(n), F,|,) -» Hom(0O(n), E|,,)

and F, =~ gr,, so this implies
viegn) S m+1, v(grn)Sm,+1.

Also for gr, there are exact sequences (k is the last index in the filtration):

Ext'(0(n), &1,) — Ext' (O(n), gr,l,) = 0.
They show us that for a direct summand of the type O(m) in gr,|, there is m = m;, so

vigr) 2 my, v'(gr) 2 m;.
From these four inequalities we derive that
p(gry) — pu(gr) <2

and the definition of a Harder-Narasimhan filtration gives us

0 =< u(gr;) — p(ery) -
So there is

(1 0=u(gr)—uEn)=2.

To calculate Ext , (E, E) one can use the spectral sequence from Section 7 with the first
terms

EPi = @Ext"”(grj, gr;_,) for p<o0,
EPi=0 for p20.

In our situation for p > 0, 7(gr;) > 7(gr; . ,) so Ext° (gr;, grj+,) = 0 and we have
Ext?(gr;, gr;, ) = Ext°(gr;, ,, gr;(—2, —2))*.
But from (1) we conclude
n(gr;,,) 2 u(gry) 2 u(gry) —2 2 u(gr) —2
30 7(gr;+ ,) > 7(gr;(—2, —2)), hence

Ext?(grj, grj4,) = 0.
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Thus Ef*=0 for p+q +1.

As a result we see that all the differentials in the spectral sequence are trivial and
then

dimExt; ,(E,E)= ) dimExt'(gr;,gr;,,).
ip>0
Let us suppose that the conclusion is false, so
Ext'(gr;,gr;,,) =0 forall j,p>0.
This gives us x(gr;, gr;,,) = 0 for j, p > 0. Then from the bilinearity of x it follows that
x(gry, E) = x(gry, 81y)
x(E, gr,) = x(gry, 8r,)
x(gry, 8r,) =0.

We want to show that this system of equations is selfcontradictory. Let us use the Riemann-
Roch theorem for the explicit computation of x. Then

XE, F)=rgre((vp — v+ D) (vp — v+ 1) =14+ 6+ 6;),

1 1 -
where § = 3~ 4,4 = ;(cz - r2r1 cf) And from this formula we also have

x(F,F)
2r2

Op =

Let v; = v'(gry), v/ = v"(gr,), 6; = Oy,

Lemma 9.2. Either 6, = 6, = 0 or one of these numbers is strictly positive.

Proof. As x(gr,gr,) =0, so

= vi+ D —vi+1)—=14+06,+6,=0.
Setting a = v, — v{, b = v; — v{ we have proved that
a+b=<0, az-1, bz -1.
Then the maximum value of (a + 1)(b + 1) is equal to 1 for a = b = 0. Hence
—(0;+6)=(@+1Hb+1)—-1=<0,

thus 4, + 6, = 0 and the lemma is proved.

In the following we will consider several cases for é,, d,.
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Case1: 6, =9, =0. In this situation follows from the proof of the lemma that
Vi =V, Vi =V, SO

p(gry) = u(gry) = - = u(gr,) .

Also from ¢, = J, follows that g, (gr,) = a,(gr,) so

72(811) = 7,(8r,) = - =7,(gry) .

Then from the definition of the filtration y, (gr,) > y,(gr,) but this gives us a contradiction
as y5(gr) = 2v{ +v/.

Lemma. If 6 >0 for a semistable sheaf G then there is a stable sheaf G, such that

[G] = m[G,],

where m is a positive integer.
Proof. As always there is a Jordan-Hoélder filtration

0cG cGyc =G, =G,

m

where each factor is a stable sheaf with the same slope as G. The condition d; > 0 implies
x (G, G) > 0 so for any two factors G', G” of the filtration y(G’, G") > 0 since the sign of
x depends only on the slopes of the sheaves. So we have Hom (G, G”) # 0 and from their
stability it follows that G’ ~ G". Then [G] = m[G,] as needed.

Case 2: 6, >0. For a semistable class [gr,] there‘is a stable element g such that
Ler,] = mg.
Then x(g,g) > 0 and by Proposition 3.1, g e6zc. Also we have either
u(gry) > u(E) > p(gr,) 2 u(gr,) —2

or
p(gry) = u(E) = p(gry) > u(gry) — 2

and 7(g) = 7(gr,). Thus

7(8) > 7(E), p(E)>pu(g)—2
and
my(g, E) = x(gry, E) = x(gry, 8r,)>0.

But this is impossible by the condition (D-L) of the theorem.

Case 3: §,>0. Here we can write
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[er,] = mg
and g€ ézc,7(g) = 7(gry)- It is
7(gr) <7(E), np(E)<p(gr)+2
and

my(g, E) = x(gry, E) = x(E, gr,) = x(gr,, gr,) >0,

but this contradicts the condition (D-L) and the proposition is proved.

10. Proof of the theorem

Our first step is to prove the existence of a j-semistable sheaf in the class e. Such a sheaf
will be also y-semistable and p-semistable by Proposition 2.2.

Consider the sheaf & on Q0 = Q x S defined in Proposition 4.1. Then & is a family of
sheaves on Q with base S. Proposition 8.3 gives us the stratification of S and by Proposition
6.2 there is a finite number of strata. From Propositions 9.1 and 8.3 we conclude that a
stratum with a nontrivial Harder-Narasimhan filtration has a nonzero codimension. Thus a
restriction & of & on the open stratum S’ is a family of y-semistable sheaves. It is impor-
tant to mention that the conditions of Proposition 4.1 are also valid for &".

1 .
Our next step is to prove that if 4(e) + 2 then for some se S’ the sheaf &'(s) is y-
stable. This will complete the proof.

Here we can use some results from [D-L]. Let
OcFycFc:-cF,=8&'()

for some se S’ be a filtration with y-stable factors gr; without torsion and u(gr;) = u(e),
4(gr;) = A(e). One calls such a filtration a Jordan-Hoélder filtration.

Lemma 10.1. For such a filtration
Ext2_(6'(s),6'(s)) =0.
Proof. We see from 7(3) that it is sufficient to prove that Ext?(gr,, gr;_,) = 0 for

p20,i=1,..., k. But Ext(gr, gr,_,) = Hom(gr, _ ,, gr;(2, 2))* by Serre duality, so it is
equal to zero because

pu(gr- ) = pler) > ulgrn (-2, —2)

as a result of y-stability.

Denote by H; the Hilbert polynomial for gr; with respect to the polarisation (1, 1).
Propositions (1.5) and (1.7) from [D-L] state that a subset of points s in S’ for which in
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&' (s) there is a Jordan-Holder filtration with Hilbert polynomials (H,, ..., H,) is equal to
the image of a canonical mapping

n: DrapHv-He 5 §7
And if s is a regular point in the image then the codimension of the image is equal to
dimExt} , (& (), &' (9)) .
Lemma 10.2. If the number k of factors in the filtration F is more than one then
dimExt} , (€'(s),&'(s)) £ 0.
Proof. 1t is sufficient to prove that
c=Y (—1)'dimExt; , (£'(s), &'(5))

is negative. By the spectral sequence from 7(2) and the Riemann-Roch theorem

c= ) x(gr,-,gr,-)=Zr,-r,-(1—24(e))

15i<jsk

because all the factors have the same slope.

. . 1 .\
Suppose ¢ is non-negative then 4(e) = 4(gr;) < 2 and by Proposition 3.1 the sheaves

gr; are exceptional. They all have the same rank r because
A(gr) = A(e) = —;—(1 - %) .
But since 4(&’ (s)) = 4(e) one can rewrite this as
1<1 _ x(é”(s),é"(S))> _ 1(1 _ 1>.
2 (kr)? 2 r?
So x(&'(s), &'(s)) = k2.
But on the other hand we have
1(8'(s), 6'(s)) = k + Ej x(gri, gr)) -
Sublemma. If F,, F, are exceptional and u(F,) = u(F,), F, + F,, then x(F,, F,) £0.
This follows from Proposition 2.1 and 3.1.

So the only possibility for us is that all gr; are isomorphic. Then

X(gria ‘5(5)) =ky(gr,,gr) = k>0
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and this contradicts the condition (D-L) for &’(s). Thus the Lemma 10.2 is proven.

Now we see from Proposition (1.7) of [D-L] and from the finiteness of systems of
Hilbert polynomials that there is an open subset in S” where & = 1 and thus &' (s) is y-stable.

The theorem is proved.
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