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1 Introduction

Let Λ = {λi}∞i=1 ⊂ R be a sequence of real numbers such that

0 < λi ≤ λi+1 for all i ∈ N and
∞∑
i=1

1/λi =∞. (1)

A function f : I = [a, b]→ R is said to be of Λ-bounded variation (in the sense
of Waterman [22], [23]), in which case we write f ∈ ΛBV, if the following
quantity, called the Λ-variation of f on the interval I, is finite:

VΛ(f) ≡ VΛ(f, I) = sup
m∑
i=1

|f(bi)− f(ai)|/λi ; (2)

the supremum being taken over all m ∈ N and all (non-ordered) collections
of non-overlapping intervals [ai, bi] ⊂ [a, b], i = 1, . . . ,m.

It is easily seen that ΛBV = BV, the space of functions of ordinary Jordan
bounded variation on I, if and only if Λ is a bounded sequence. Consequently,
if we suppose that supi∈N λi =∞, then BV is a proper subspace of ΛBV.
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The classes ΛBV with different sequences Λ have proven to be of interest in
the study of Fourier series (e.g., [8], [9], [20], [22], [23], and references therein).
Our aim in this note is to present a different type of application of the class
ΛBV connected with the characterization of superposition operators on ΛBV
satisfying the global Lipschitz condition.

Let RI stand for the set of all functions mapping I into R. Given a function
of two variables h : I × R → R, the operator of substitution (also called the
Nemytskii or superposition operator) H = Hh : RI → RI , generated by h, is
defined for f : I → R by

(Hf)(x) ≡ H(f)(x) = h(x, f(x)), x ∈ I. (3)

Let B ⊂ RI be a Banach function space with norm ‖ · ‖. We are interested in
characterization of those functions h, for which the corresponding operator of
substitution H maps the space B into itself and is Lipschitzian in the sense
that there exists a number µ > 0 such that

‖H(f1)−H(f2)‖ ≤ µ ‖f1 − f2‖ for all f1, f2 ∈ B. (4)

The study of operators of substitution H satisfying (4) is important in
connection with systems with hysteresis [10] and difference equations [21].

Matkowski [12] proved that if B = Lip, the space of Lipschitz functions
on I with the usual Lipschitzian norm, then condition (4) is equivalent to the
existence of two functions h0, h1 ∈ Lip such that h(x, ξ) = h0(x) + h1(x)ξ for
all x ∈ I and ξ ∈ R. Matkowski and Mís [16] showed that if B = BV and
condition (4) is satisfied, then there exist two functions h0, h1 ∈ BV, which
are continuous from the left on (a, b], such that h∗(x, ξ) = h0(x) + h1(x)ξ,
(x, ξ) ∈ (a, b]× R, where h∗(x, ξ) = limy→x−0 h(y, ξ) is the left regularization
of h in the first variable. We note (cf. [12, p. 131]) that the spaces Lip and
BV above cannot be replaced by the space C of continuous functions on I
with the uniform norm or by the space Lp (p > 0) of Lebesgue p-summable
functions on I with the standard norm (e.g., h(x, ξ) = sin ξ).

The above two results have been further extended to various spaces of
functions and mappings of generalized bounded variation of one variable ([1]–
[5], [13]–[15], [17], [18]) and two real variables ([6], [7]).

The main result of this paper (Theorem 2.1) asserts that the generating
functions h of Lipschitzian operators of substitution H on the space B = ΛBV
admit the representation of Matkowski and Mís. The general idea of this
representation belongs to Matkowski, and the test functions fj used in the
proof of Theorem 2.1 are those from [2], [4], [5] and [7]. The preliminaries and
main results of this paper are presented in Section 2, while their proofs are
given in Section 3. Section 4 contains some generalizations when functions
under consideration take their values in normed linear spaces (Theorem 4.1).



2 Main Results

It is known (cf. [23, Sec. 3]) that ΛBV is a Banach space with respect to the
norm

‖f‖Λ = |f(a)|+ VΛ(f), f ∈ ΛBV. (5)

We note, moreover, that it was shown in [11, Theorem 4] that ΛBV is a
normed Banach algebra (for details see step 4 in the proof of Theorem 2.1).

Any function f ∈ ΛBV has the limit from the left f(x−0) = limy→x−0 f(y)
at each point x ∈ (a, b] and the limit from the right f(x+ 0) = limy→x+0 f(y)
at each point x ∈ [a, b), and the set of discontinuities of f is at most countable
(cf. [23, Theorems 2, 3]).

Given f ∈ ΛBV, we define its left regularization f∗ : I → R by

f∗(x) = f(x− 0) if a < x ≤ b, and f∗(a) = lim
x→a+0

f∗(x). (6)

The existence of the second limit in (6) will be proved in Section 3 (see
Lemma 3.1). We set

ΛBV∗ = {f ∈ ΛBV | f is continuous from the left on (a, b]}.

Let Λ′ = {λ′i}∞i=1 ⊂ R be a sequence satisfying conditions of the form (1)
and let Λ′BV be the associated space of functions of Λ′-bounded variation.

The main result of the present paper is the following

Theorem 2.1 Suppose that H : RI → RI is an operator of substitution gen-
erated by the function h : I × R→ R according to formula (3).

If H maps Λ′BV into ΛBV and is Lipschitzian in the sense that

∃µ > 0 such that ‖H(f1)−H(f2)‖Λ ≤ µ ‖f1 − f2‖Λ′ ∀ f1, f2 ∈ Λ′BV, (7)

then there exists a constant µ0 > 0, depending on µ, λ1 and λ′1, such that

|h(x, ξ1)− h(x, ξ2)| ≤ µ0|ξ1 − ξ2|, x ∈ I, ξ1, ξ2 ∈ R, (8)

and there exist two functions h0, h1 ∈ ΛBV∗ such that

h∗(x, ξ) = h0(x) + h1(x)ξ, x ∈ I, ξ ∈ R, (9)

where h∗(x, ξ) is the left regularization of x 7→ h(x, ξ) for each fixed ξ ∈ R.
Conversely, if h0, h1 ∈ ΛBV, h(x, ξ) = h0(x) + h1(x)ξ, x ∈ I, ξ ∈ R, and

the following condition is satisfied :

∃C > 0 such that
n∑
i=1

1/λi ≤ C
n∑
i=1

1/λ′i for all n ∈ N, (10)

then H maps Λ′BV into ΛBV and is Lipschitzian in the sense of (7).



This theorem will be proved in Section 3. Now we present its corollary.

Corollary 2.2 Let h : I×R→ R be a function such that h∗ exists and h∗ = h
on I × R, and let H be the operator of substitution generated by h. Then the
following two conditions are equivalent :

(a) H maps the algebra ΛBV into itself and is Lipschitzian;
(b) there exist two functions h0, h1 ∈ ΛBV∗ such that h(x, ξ) = h0(x) +

h1(x)ξ for all x ∈ I and ξ ∈ R.

3 Proofs

In order to prove Theorem 2.1 we need three lemmas.

Lemma 3.1 The second limit in (6) exists for any f ∈ ΛBV.

Proof. Let ε > 0. From the definition of f(a + 0) we find a δ = δ(ε) > 0
such that |f(x) − f(a + 0)| ≤ ε for all x ∈ (a, a + δ]. Let x1, x2 ∈ (a, a + δ].
For small σ > 0 (such that σ < xj − a, j = 1, 2) we have:

|f∗(x1)− f∗(x2)| ≤ |f∗(x1)− f(x1 − σ)|+ |f(x1 − σ)− f(x2 − σ)|+
+ |f(x2 − σ)− f∗(x2)|,

where the expression in the middle is estimated by

|f(x1−σ)− f(x2−σ)| ≤ |f(x1−σ)− f(a+ 0)|+ |f(a+ 0)− f(x2−σ)| ≤ 2ε.

From the existence of f∗(xj) we can choose a (smaller) σ > 0 such that
|f∗(xj) − f(xj − σ)| ≤ ε, j = 1, 2. It follows that |f∗(x1) − f∗(x2)| ≤ 4ε for
all x1, x2 ∈ (a, a + δ], and it remains to apply the Cauchy criterion for the
existence of a limit. �

Lemma 3.2 If f ∈ ΛBV, then f∗ ∈ ΛBV∗ and VΛ(f∗) ≤ VΛ(f).

Proof. Clearly, f∗ is continuous from the left on (a, b], so we prove that
f∗ ∈ ΛBV. Since f∗ = f at the points of continuity of f and, by virtue of (6)
and Lemma 3.1, f∗ has an internal saltus at each of its points of discontinuity
(i.e., if x ∈ I is a point of discontinuity of f∗, then lim infy→x f∗(y) ≤ f∗(x) ≤
lim supy→x f∗(y)), then, applying Theorem 2 from [19], we conclude that
f∗ ∈ ΛBV and VΛ(f∗) ≤ VΛ(f). �

The next lemma easily follows from definition (2).

Lemma 3.3 If f : I → R is monotone, then VΛ(f) = |f(b)− f(a)|/λ1.



Proof of Theorem 2.1. For clarity we divide the proof into four steps.
1. General part. Given f1, f2 ∈ Λ′BV, by (5) and (7), we have, in partic-

ular, VΛ(Hf1 − Hf2) ≤ µ ‖f1 − f2‖Λ′ , so that if m ∈ N and [ai, bi] ⊂ [a, b],
i = 1, . . . ,m, are non-overlapping intervals, then, by virtue of (2),

m∑
i=1

|(Hf1 −Hf2)(bi)− (Hf1 −Hf2)(ai)|
λi

≤ µ ‖f1 − f2‖Λ′ ,

or, according to (3),
m∑
i=1

|h(bi, f1(bi))− h(bi, f2(bi))− h(ai, f1(ai)) + h(ai, f2(ai))|
λi

≤

≤ µ ‖f1 − f2‖Λ′ . (11)

If α, β ∈ R, α < β, we define auxiliary Lipschitz functions ηα,β : R → [0, 1]
by

ηα,β(y) =


0 if y ≤ α,
(y − α)/(β − α) if α ≤ y ≤ β,
1 if y ≥ β.

2. Proof of (8). Let ξ1, ξ2 ∈ R. Suppose first that x ∈ (a, b]. Setting
m = 1, b1 = x and a1 = a in (11), we substitute into (11) two functions
defined by

fj(y) = ηa,x(y)ξj , y ∈ I, j = 1, 2.

Since fj(a) = 0, j = 1, 2, and VΛ′(f1 − f2) = |ξ1 − ξ2|/λ′1 by Lemma 3.3, we
have ‖f1 − f2‖Λ′ = |ξ1 − ξ2|/λ′1. It follows from (11) now that

|h(x, ξ1)− h(x, ξ2)|/λ1 ≤ µ |ξ1 − ξ2|/λ′1,

which is (8) with µ0 = µλ1/λ
′
1. If x = a, we set m = 1, b1 = b and a1 = a in

(11) and substitute into (11) two functions defined by

fj(y) = (1− ηa,b(y))ξj , y ∈ I, j = 1, 2.

Now fj(a) = ξj , j = 1, 2, and so, as above, ‖f1 − f2‖Λ′ = (1 + 1/λ′1)|ξ1 − ξ2|.
Inequality (11) gives:

|h(a, ξ1)− h(a, ξ2)|/λ1 ≤ µ (1 + 1/λ′1)|ξ1 − ξ2|,

which is (8) with the desired constant µ0 = µλ1(1 + 1/λ′1).
By the definition of h∗(·, ξ), we have from (8):

|h∗(x, ξ1)− h∗(x, ξ2)| ≤ µ0|ξ1 − ξ2|, x ∈ I, ξ1, ξ2 ∈ R. (12)

3. Proof of (9). Let ξ1, ξ2 ∈ R and x ∈ (a, b]. Suppose that m ∈ N and
a < a1 < b1 ≤ a2 < b2 ≤ . . . ≤ am < bm < x in (11). We substitute into (11)
the following two functions:

fj(y) = ηm(y)ξ1 + (2− j)ξ2, y ∈ I, j = 1, 2,



where the Lipschitz function ηm : I → [0, 1] is defined as follows:

ηm(y) =


0 if a ≤ y ≤ a1,

ηai,bi(y) if ai ≤ y ≤ bi, i = 1, . . . ,m,
1− ηbi,ai+1(y) if bi ≤ y ≤ ai+1, i = 1, . . . ,m− 1,
1 if bm ≤ y ≤ b.

(13)

We note that (f1 − f2)(y) = ξ2 for all y ∈ I, and so, ‖f1 − f2‖Λ′ = |ξ2|. Since
f1(bi) = ξ1 + ξ2, f2(bi) = ξ1, f1(ai) = ξ2 and f2(ai) = 0, (11) yields

m∑
i=1

|h(bi, ξ1 + ξ2)− h(bi, ξ1)− h(ai, ξ2) + h(ai, 0)|
λi

≤ µ |ξ2|. (14)

Because constant functions belong to Λ′BV and H takes its values in ΛBV,
we infer that h(·, ξ) = H(ξ) ∈ ΛBV for all ξ ∈ R. Taking into account the
definition of h∗ and passing to the limit as a1 → x − 0 in (14), we find that
for each x ∈ (a, b] the following inequality holds:

|h∗(x, ξ1 + ξ2)− h∗(x, ξ1)− h∗(x, ξ2) + h∗(x, 0)| ≤ µ |ξ2|
/∑m

i=1(1/λi).

Therefore, the last inequality holds also at x = a. Passing to the limit as
m→∞ and taking into account (1) we arrive at the equality

h∗(x, ξ1 +ξ2)−h∗(x, ξ1)−h∗(x, ξ2)+h∗(x, 0) = 0, x ∈ I, ξ1, ξ2 ∈ R. (15)

The remaining part of the proof of (9) is the same as in [12] (for the reader’s
convenience we present it here). For a fixed x ∈ I we define Sx : R → R by
Sx(ξ) = h∗(x, ξ) − h∗(x, 0), ξ ∈ R, so that (15) can be rewritten in the form
Sx(ξ1 +ξ2) = Sx(ξ1)+Sx(ξ2) for all ξ1, ξ2 ∈ R, showing that Sx is an additive
function. On the other hand, (12) implies |Sx(ξ1) − Sx(ξ2)| ≤ µ0|ξ1 − ξ2|,
and so, Sx is continuous on R. Thus, there exists h1 : I → R such that
Sx(ξ) = h1(x)ξ for all x ∈ I and ξ ∈ R. Setting h0(x) = h∗(x, 0), x ∈ I, we
arrive at (9). Noting that h0(·) = h∗(·, 0) and h1(·) = h∗(·, 1) − h∗(·, 0) and
applying Lemma 3.2, we conclude that h0, h1 ∈ ΛBV∗.

4. In order to prove the converse assertion, we note that the operator of
substitution H is given by

(Hf)(x) = h0(x) + h1(x)f(x), f ∈ Λ′BV, x ∈ I. (16)

By virtue of [11, Theorem 4] the following inequality holds:

VΛ(fg) ≤ ‖f‖uVΛ(g) + VΛ(f)‖g‖u, f, g ∈ ΛBV, (17)

where ‖f‖u = supx∈I |f(x)|. It is clear from (1) and (2) that

‖f‖u ≤ |f(a)|+ λ1VΛ(f), f ∈ ΛBV. (18)



Making use of (5), (17) and (18), we find that

‖fg‖Λ ≤ max{1, 2λ1}‖f‖Λ‖g‖Λ, f, g ∈ ΛBV. (19)

According to [19, Theorem 3], condition (10) is equivalent to the inclusion
Λ′BV ⊂ ΛBV. Let us show that this implies the existence of a positive
constant κ = κ(Λ′,Λ) such that

‖f‖Λ ≤ κ ‖f‖Λ′ for all f ∈ Λ′BV. (20)

In fact, the identity operator Id, defined by Id(f) = f , maps the Banach space
Λ′BV into the Banach space ΛBV and is closed by virtue of (5) and (18), and
so, by the closed graph theorem, it is continuous. It sufficies to define the
constant κ(Λ′,Λ) to be equal to the operator norm of Id.

Now, (10), (16) and (19) imply that H maps Λ′BV into ΛBV. Finally, if
f1, f2 ∈ Λ′BV, it follows from (19) and (20) that

‖H(f1)−H(f2)‖Λ = ‖h1(f1 − f2)‖Λ ≤ max{1, 2λ1}‖h1‖Λ‖f1 − f2‖Λ ≤
≤ max{1, 2λ1}κ(Λ′,Λ)‖h1‖Λ‖f1 − f2‖Λ′ , (21)

and so, H satisfies condition (7). This completes the proof. �

Remark 3.4 A theorem similar to Theorem 2.1 holds for the right regulariza-
tion of h(·, ξ). However, the function h∗ in (9) in general cannot be replaced
by h (see Example on p. 157 in [16]). When Λ and Λ′ are constant or bounded
sequences, Theorem 2.1 gives the results of [16].

Remark 3.5 If h0, h1 ∈ ΛBV and ‖h1‖Λ < 1/max{1, 2λ1}, then, by Ba-
nach’s contraction principle and (21) (with Λ′=Λ, in which case κ(Λ′,Λ)=1),
there exists a unique function f ∈ ΛBV such that f(x) = h0(x) + h1(x)f(x)
for all x ∈ I.

4 Generalizations

Here we extend the result of Theorem 2.1 to the case when functions from
ΛBV take their values in normed or Banach spaces.

Let X be a Banach space with norm | · |. For a function f : I → X we
write f ∈ ΛBV(I;X) provided the value (2) is finite.

(i) Each function f ∈ ΛBV(I;X) has the limit from the left f(x− 0) ∈ X
at any point x ∈ (a, b] and the limit from the right f(x+ 0) ∈ X at any point
x ∈ [a, b), and the set of discontinuities of f is at most countable. This follows
from [23], since Theorems 2 and 3 there carry over to the present case with
the same proofs.

(ii) ΛBV(I;X) is a Banach space with respect to norm (5). To see the
completeness of this space, we first note that the functional VΛ(·) is lower



semicontinuous, i.e., if f, fn : I → X, n ∈ N, and limn→∞ |fn(x)− f(x)| = 0
for all x ∈ I (pointwise convergence on I), then

VΛ(f) ≤ lim inf
n→∞

VΛ(fn). (22)

In fact, let m ∈ N and [ai, bi] ⊂ [a, b], i = 1, . . . ,m, be arbitrary non-
overlapping intervals. From the definition of VΛ(fn) we have:

m∑
i=1

|fn(bi)− fn(ai)|/λi ≤ VΛ(fn) for all n ∈ N.

Taking the limit inferior as n→∞ in both sides of this inequality and taking
into account the pointwise convergence of fn to f , we get:

m∑
i=1

|f(bi)− f(ai)|/λi ≤ lim inf
n→∞

VΛ(fn),

and (22) follows from the definition of VΛ(f).
Now, suppose that {fn}∞n=1 ⊂ ΛBV(I;X) is a Cauchy sequence:

‖fn − fm‖Λ = |fn(a)− fm(a)|+ VΛ(fn − fm)→ 0 as n, m→∞. (23)

From the estimate (18) (which is obvious for f ∈ ΛBV(I;X) as well) we
find that, for each x ∈ I, {fn(x)}∞n=1 is a Cauchy sequence in X and, by
virtue of completeness of X, we may denote its limit by f(x) ∈ X. Since
|VΛ(fn)− VΛ(fm)| ≤ VΛ(fn− fm), the sequence {VΛ(fn)}∞n=1 is Cauchy in R,
and, hence, it is bounded and convergent. By (22), f ∈ ΛBV(I;X). Once
again, (22) and the pointwise convergence of {fm}∞m=1 give: ‖fn − f‖Λ ≤
limm→∞ ‖fn − fm‖Λ for all n ∈ N, and so, due to (23),

lim sup
n→∞

‖fn − f‖Λ ≤ lim
n→∞

lim
m→∞

‖fn − fm‖Λ = 0,

which means that fn converges to f as n→∞ in the norm of ΛBV(I;X).
(iii) We define the left regularization f∗ of f according to (6). Then

Lemma 3.1 holds for f ∈ ΛBV(I;X) with the same proof. Lemma 3.2 is valid
for f ∈ ΛBV(I;X) as well, but we have to change from the previous (real
valued case) proof to a more direct one, which we present now.

Let us show that f∗ is continuous from the left at x ∈ (a, b]. By (i), there
exists a sequence {xn}∞n=1 of points of continuity of f lying strictly at the left
of x such that xn → x as n→∞. Thus, we have in X:

lim
y→x−0

f∗(y) = lim
n→∞

f∗(xn) = lim
n→∞

f(xn) = lim
y→x−0

f(y) = f∗(x).

Let us prove that f∗ ∈ ΛBV(I;X) and VΛ(f∗) ≤ VΛ(f). Let Q =
{1, 2, 3, . . .} be a finite or countable set and {xn}n∈Q ⊂ (a, b] be the set
of points of discontinuity from the left of f . Let us define f1 : I → X by



f1(x) = f(x) if x 6= x1 and f1(x1) = f(x1− 0), so that f1 and f differ only at
x1, and let us show that VΛ(f1) ≤ VΛ(f). Given m ∈ N and non-overlapping
intervals [ai, bi] ⊂ I, i = 1, . . . ,m, we have the following three possibilities:
a) x1 6= ai and x1 6= bi for all i ∈ {1, . . . ,m}; b) there exists i0 ∈ {1, . . . ,m}
such that x1 = bi0 ; c) there exists i0 ∈ {1, . . . ,m} such that x1 = ai0 . In case
a) we have:

m∑
i=1

|f1(bi)− f1(ai)|/λi =
m∑
i=1

|f(bi)− f(ai)|/λi ≤ VΛ(f).

If case b) holds, then

m∑
i=1

|f1(bi)− f1(ai)|
λi

=
i0−1∑
i=1

|f(bi)− f(ai)|
λi

+
|f(x1 − 0)− f(ai0)|

λi0
+

+
m∑

i=i0+1

|f(bi)− f(ai)|
λi

,

where the first or the last sum on the right hand side should be omitted
depending on whether i0 = 1 or i0 = m in the case m ≥ 2, or both these sums
should be omitted if m = 1. Let ε > 0. By the definition of f(x1 − 0), there
exists a y ∈ (ai0 , x1) such that |f(x1 − 0)− f(y)| ≤ ε λ1, and so,

|f(x1 − 0)− f(ai0)|
λi0

≤ |f(y)− f(ai0)|
λi0

+ ε.

Since the intervals [a1, b1],. . . ,[ai0−1, bi0−1], [ai0 , y], [ai0+1, bi0+1],. . . ,[am, bm]
are still non-overlapping, we find from the above that

m∑
i=1

|f1(bi)− f1(ai)|/λi ≤ VΛ(f) + ε.

In a similar manner we treat case c). Thus, we have proved that VΛ(f1) ≤
VΛ(f) + ε for all ε > 0.

If functions f1, . . . , fn−1 are already constructed and x ∈ I, we set fn(x) =
fn−1(x) for x 6= xn and fn(xn) = fn−1(xn − 0) = f(xn − 0), n = 2, 3, . . .. By
induction,

VΛ(fn) ≤ VΛ(fn−1) ≤ . . . ≤ VΛ(f1) ≤ VΛ(f), n ∈ Q.

If Q is finite, we are through, so let Q be infinite. Define f∗ : I → X by
f∗(x) = f(x) if x /∈ {xn}∞n=1 and f∗(xn) = f(xn − 0) for n ∈ Q, and note
that fn converges in X pointwise on I to f∗ as n → ∞, so that, by (22),
VΛ(f∗) ≤ VΛ(f). Finally, since f∗(x) = f∗(x) if x 6= a, and f∗(a) = f∗(a+ 0),
so that f∗ and f∗ differ only at a, by the above argument, we conclude that
VΛ(f∗) ≤ VΛ(f∗) ≤ VΛ(f), which was to be proved.



(iv) The Banach algebra property of ΛBV is extended in the following way.
Let X, Y and Z be normed spaces over the same field R or C with norms | · |
(the same symbol |·| for norms won’t lead to ambiguities). Let M : X×Y → Z
be a bilinear map (called a multiplication) such that |M(ξ, η)| ≤ |ξ| · |η| for
all ξ ∈ X and η ∈ Y . We have: if f ∈ ΛBV(I;X) and g ∈ ΛBV(I;Y ), then
the product fg : I → Z defined by (fg)(x) = M(f(x), g(x)), x ∈ I, is in
ΛBV(I;Z) and inequality (19) holds. This is a consequence of (17) and (5),
which are valid in this more general case.

(v) Denote by L(X;Y ) the normed space of all bounded linear operators
from X into Y . Given h : I ×X → Y , we define the operator of substitution
H : XI → Y I by (3) provided f ∈ XI (i.e. f : I → X). Let P (I;X) ⊂ XI be
a family of functions with the following property: for all ξ1, ξ2 ∈ X, m ∈ N
and a < a1 < b1 < . . . < am < bm < b the polygonal function defined by
I 3 x 7→ ηm(x)ξ1 + ξ2 ∈ X belongs to P (I;X), where ηm is defined in (13).
Clearly, P (I;X) ⊂ ΛBV(I;X).

The analysis of the proof of Theorem 2.1 shows that the following coun-
terpart and generalization of this theorem holds:

Theorem 4.1 If X is a real normed space, Y is a Banach space and H
maps P (I;X) into ΛBV(I;Y ) and is Lipschitzian (in the sense of the norms
in these spaces), then inequality (8) holds for all x ∈ I and ξ1, ξ2 ∈ X, and
there exist two functions h0 ∈ ΛBV∗(I;Y ) and h1 : I → L(X;Y ) with the
property that h1(·)ξ ∈ ΛBV∗(I;Y ) for all ξ ∈ X such that (9) holds for all
x ∈ I and ξ ∈ X.

Conversely, if X and Y are normed spaces, h(x, ξ) = h0(x)+h1(x)ξ, x ∈ I,
ξ ∈ X, where h0 ∈ ΛBV(I;Y ) and h1 ∈ ΛBV(I;L(X;Y )), then the operator
of substitution H maps ΛBV(I;X) into ΛBV(I;Y ) and is Lipschitzian.

Proof of Theorem 4.1 is the same as that of Theorem 2.1; however, two
remarks are in order. In step 3 of the proof we have: since X is real, the
additivity and continuity of Sx imply Sx ∈ L(X;Y ) for all x ∈ I, and so,
setting h1(x)ξ = Sx(ξ), x ∈ I, ξ ∈ X, we find that h1 : I → L(X;Y ) and
h0, h1(·)ξ ∈ ΛBV∗(I;Y ) for all ξ ∈ X. In step 4 we note that, by virtue of
(iv), applied with X there replaced by L(X;Y ), Y — by X and Z — by Y ,
we get: h1f ∈ ΛBV(I;Y ).

(vi) At the end of this paper we present an extension `Λ of the space of
summable sequences `1 in the spirit of Waterman and show that the counter-
part of Theorem 2.1 is wrong in it. Let Λ satisfy conditions (1). A sequence
of real numbers x = {xi}∞i=1 is said to be Λ-summable (in symbols, x ∈ `Λ) if
the following quantity is finite:

‖x‖Λ = sup
{ ∞∑
i=1

|xj(i)|/λi
∣∣∣ j : N→ N is bijective

}
.

One can easily check that ‖ · ‖Λ is a norm in `Λ, and that, given x, y ∈ `Λ, we
have: supi∈N |xi| ≤ λ1‖x‖Λ and ‖xy‖Λ ≤ λ1‖x‖Λ‖y‖Λ, where xy = {xiyi}∞i=1.



If h : N×R→ R, the operator of substitution H : RN → RN is defined by
the formula: (Hx)(i) = h(i, xi), i ∈ N, x = {xi}∞i=1. Let, in particular, h :
R→ R be a function satisfying: ∃µ > 0 such that |h(ξ)−h(η)| ≤ µ |ξ− η| for
all ξ, η ∈ R (e.g. h(ξ) = sin ξ). Then for x, y ∈ `Λ we have: ‖Hx‖Λ ≤ µ ‖x‖Λ
and ‖Hx−Hy‖Λ ≤ µ ‖x− y‖Λ.
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