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Abstract: The fourth power algebraic characteristic 
equation is obtained  for the wave number  of the 
individual electron waves that exist in periodic slow-wave  
systems(SWS) with discrete electron-wave interaction. 
The study of properties of these waves and the solution of 
the corresponding boundary-value problem have been 
performed.  It  has allowed to find some properties of 
electron-wave interaction  which are different or  are 
identical to the SWS with discrete interactions or  
"smooth" SWS, for example helical SWS. 
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Introduction 
The equations of the discrete electron-wave interaction in 
TWT with periodic slow-wave structures (SWS) of the 
type of a coupled cavities system  or  of a disk-loaded 
waveguide have been analyzed in [1,2] and the interaction 
equations of  small-signal theory have been obtained. 
Unlike in the previously known works, the equation of 
excitation of periodic waveguides with second-order finite 
differences [3] and the local interaction impedance  
instead of  Pierce's coupling impedance  are used in the 
suggested  theory. It  allows to get the unified description 
the SWS interaction of electrons with a full field of two 
waves - forward and backward -  in  both the  passband 
and  the stopband (Fig.1). 

 

Figure 1. The 
dispersion 

characteristics 
for 1) helical 

SWS (- . -, φ0) 
and 2) coupled 
cavities system 

(___,φ1) in 
passband 

In the small-signal theory equation for the electron beam 
RF current J has a well-known form, such as shown in 
[1,2]: 
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where /e eh v – electron wavenumber, /p p eh v  

– wavenumber of plasma, S –  effective cross-sectional 
area of electron beam, Ã – reduction coefficient of 

plasma frequency p . In the interaction gaps on the 

electron beam operates the total electric field of direct and 

backward-waves dUEEEE qqss /  , 

where d – effective width of gap, Uq – the voltage at q-m 
gap. The voltage Uq defined beam current and must 
satisfy the equation excitation periodic SWS. This 
equation is the excitation finite-difference equation for 
quadripoles circuit describing periodic SWS (Fig.2). 

Figure 2. One section of periodic slow-wave system as 
circuit of quadripoles 
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where 
2

sins s sZ R L  - local interaction impedance, 

sR - specific coupling impedance, L - the period of gap 

distance,  s - the phase shift of the field over the period. 

The current induced  in the q gap is determined 
from the expression 
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where normalized induced current is 
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where 2 2
sin( )M

  - interaction coefficient,  - the 

gap transit angle, ( )Y  - complex conductance of electron 

gap, C  – the gain parameter, which is calculated using 

the local interaction impedance,  , I ,
m

qF Vq q - normalized 

gap field, RF current and RF  velocity of electron beam. 
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Equations (1)-(4) are system of equations describing the 
discrete small-signal electron-wave interaction in 
passbands and stopbands. 

 
The properties of electron waves 
In this study, the fourth power algebraic characteristic 
equation is obtained  for the wave number  of the 
individual electron waves that exist in this system. The 
study of properties of these waves and the solution of the 
corresponding  boundary-value problem have been 
performed.  It  has allowed to find some properties of 
electron-wave interaction  which are different or  are 
identical to the SWS with discrete interactions or  
"smooth" SWS. 
In case of  the SWS with the main spatial harmonic 

having the phase shift 0  at period L  ( 00    ), at 

0 0   (ie. for decreasing of L) the characteristic equation 

becomes the cubic equation, which coincides with the 
known equation of the Peirce’s  theory, obtained for the 

helical SWS. With the increasing 0  an effect of 

backward wave appears. It leads to a small change of  the 
wave number  already in the middle of the SWS passband  

at  0 2  . Increasing the phase further to the point of 

cut-off   0 
 

leads to a substantial change in the 

electron waves wave numbers    due to interaction of 
electrons  with the spatial harmonic of SWS backward 
wave. There is  a reactive attenuation after SWS cut-off 

point , so that  0 0Im( )i     . However, gaining 

one electron waves remains and the gain band expands. 
The magnitude of expanding that band depends on the 
interaction parameters and can be calculated from the 
resulting characteristic equation for the each specific case 
(Fig. 3). 

 

Figure 3. Roots x1=-x2 of 
the characteristic equation 

calculated for the case 
main spatial harmonic: 

φs→0 (―,smooth SWS); 
φs→π/2 (- - -); φs→0.9π(-.-

.-); φs→π(…); 

 

Similar results are obtained for using the first spatial 
harmonic as the working one, in the coupled cavities 

systems   and similarly folded SWS, where 1 0    . 

However, the SWS  remains as a periodic structure  for 

00     (ie. 1  ),  and it is then possible to gain in 

the stopband  for 1 1Im( )i      as well. 

We give examples of calculating the field distribution and 
the RF beam current along one section of  passband  or  
stopband sections of  SWS, showing the possibility of 
increasing the RF current (and  the field in some regime ) 
in the   stopband sections.  
The calculation was performed by solving the boundary-
value problem with given reflection coefficients at the 
ends of sections and recurrent recalculation of the field 
and RF current from the gap to the gap without  a 
representation as the sum of the electron waves in the  
system “periodic SWS-electron beam”. 

 
Simulation the multisection TWT with stopband 
sections 
In addition to the study of electron waves in separate 
sections of SWS, the multisection TWT with stopband   
sections has been simulated . The methods of  individual 
sections conjugation for the simulation were elaborated, 
and the distribution of RF currents and  fields along the 
SWS were found.  The resulting gain coefficient  by small  
signal  is close to the experimental data (Fig 4). 

 
Figure 4. Calculated (1) and experimental (2) gain 

coefficient in passband, λπ according to stopsection cut-off. 
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