
Probab. Theory Relat. Fields (2009) 143:137–176
DOI 10.1007/s00440-007-0123-9

Small time Edgeworth-type expansions for weakly
convergent nonhomogeneous Markov chains

Valentin Konakov · Enno Mammen

Received: 14 December 2006 / Revised: 29 October 2007 / Published online: 6 December 2007
© Springer-Verlag 2007

Abstract We consider triangular arrays of Markov chains that converge weakly to
a diffusion process. Second order Edgeworth type expansions for transition densities
are proved. The paper differs from recent results in two respects. We allow nonhomo-
geneous diffusion limits and we treat transition densities with time lag converging to
zero. Small time asymptotics are motivated by statistical applications and by resulting
approximations for the joint density of diffusion values at an increasing grid of points.
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1 Introduction

Recently, there was some activity on Edgeworth-type expansions for dependent data.
In most approaches higher order expansions have been derived by application of
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138 V. Konakov, E. Mammen

classical Edgeworth expansions for independent data. The approaches differ in their
main idea how the dependence structure can be reduced to the case of independent
data. For sums of independent random variables and for functionals of such sums the
theory of Edgeworth expansions is classical and well understood in a very general
setting (see [5,11]). For models with dependent variables three approaches have been
developed where the expansion is derived from models with sums of independent
random variables. In the first approach mixing properties are used to approximate the
Markov chain by a sum of independent random variables and it is shown that their
Edgeworth expansion carries over to the Markov chain up to a certain accuracy. The
mixing approach was first used by Götze and Hipp [12] and it was further applied to
continuous time processes in [23,31]. Under appropriate conditions Markov chains
can be split at regeneration times into a sequence of i.i.d. variables. This fact has
been used in [6,7] to get Berry–Esseen bounds for Markov chains. For the statement
of Edgeworth expansions the regenerative method has been used in [3,9,17,25]. The
higher order Edgeworth expansions have been used to show higher order accuracy of
different bootstrap schemes, see [4,10,26].

Both approaches, the mixing method and the regenerative method only have been
used for Markov chains with a Gaussian limit. In this paper we study Markov chains
that converge weakly to a diffusion limit. For the treatment of this case we make use of
the parametrix method. In this approach the transition density is represented as a nested
sum of functionals of densities of sums of independent variables. Plugging Edgeworth
expansions into this representation will result in an expansion for the transition density.
Thus as in the mixing method and in the regenerative method the expansion is reduced
to models with sums of independent random variables.

The parametrix method permits to obtain tractable representations of transition
densities of diffusions and of Markov chains. For diffusions the parametrix expansion
is based on Gaussian densities, see Lemma 2 below, and standard references for the
parametrix method are the books of [8] and Ladyzenskaja, Solonnikov and Ural’ceva
(1968) on parabolic PDE (see also [27]). For a short exposition of the parametrix
method, see Sect. 3 and [19]. Similar representations hold for discrete time Markov
chains Xk,h , see Lemma 4 below. The parametrix method for Markov chains was
developed in [19] and it is exposed in Sect. 3.2. In [20] the approach was used to state
Edgeworth-type expansions for Euler schemes for stochastic differential equations.
Related treatments of Euler schemes can be found in [1,2,13–16,28].

In this paper we study triangular arrays of Markov chains Xk,h (k ≥ 0) that converge
weakly to a diffusion process Ys (s ≥ 0) for n −→ ∞. We consider the Markov chains
for the time interval (0 ≤ k ≤ n). The corresponding time interval of the diffusion
is (0 ≤ s ≤ T ). The term h = T/n denotes the discretization step. We allow that T
depends on n. In particular, we consider the case that T → 0 for n → ∞. Furthermore,
we allow nonhomogeneous diffusion limits.

Weak convergence of the distribution of scaled discrete time Markov processes to
diffusions has been extensively studied in the literature ( see [29,30]). Local limit
theorems for Markov chains were given in [18–20]. In [19] it was shown that the
transition density of a Markov chain converges with rate O(n−1/2) to the transition
density in the diffusion model. For the proof there an analytical approach was chosen
that made essential use of the parametrix method.
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Edgeworth-type expansions for Markov chains 139

The main result of this paper will give Edgeworth type expansions for the transition
densities of the Markov chains Xk,h (0 ≤ k ≤ n). The first order term of the expansion
is the transition density of the diffusion process Ys (0 ≤ s ≤ T ). The order of the
expansion is o(h−1−δ)with δ > 0. Related results were shown in [21]. The work of this
paper generalizes the results in [21] in two directions. The time horizon T is allowed to
converge to 0 and also cases are treated with nonhomogeneous diffusion limit. Small
time asymptotics is done for two reasons. First of all it allows approximations for the
joint density of values of the Markov chain at an increasing grid of points. Secondly,
it is motivated by statistical applications. In statistics, diffusion models are used as
an approximation to the truth. They can be motivated by a high frequency Markov
chain that is assumed to run in the background on a very fine time grid and is only
observed on a coarser grid. If the number of time steps between two observed values
of the process converges to infinity this allows diffusion approximations (under appro-
priate conditions). This asymptotics reflects a set up occurring in the high frequency
statistical analysis for financial data where diffusion approximations are used only for
coarser time scales. For the finest scale discrete pattern in the price processes become
transparent and do not allow diffusion approximations. The statistical implications of
our result will be discussed elsewhere. The mathematical treatment of nonhomoge-
neous diffusion limits with time horizon T going to zero contributes some additional
qualitatively new problems. In this case some additional terms appear that explode for
T → 0 and for this reason these terms need a qualitatively different treatment as in
the case with fixed T . The nonhomogeneity adds an additional term in the Edgeworth
expansion. See also below for more details.

The paper is organized as follows. In the next section we will present our model for
the Markov chain and state our main result that gives an Edgeworth-type expansion
for Markov chains. Connections with previously known results are also discussed in
Sect. 2. In Sect. 3.1 we will give a short introduction into the parametrix method for
diffusions. In Sect. 3.2 we will recall the parametrix approach developed in [19] for
Markov chains. Technical discussions, auxiliary results and proofs are given in Sects. 4
and 5.

2 The main result: an Edgeworth-type expansion for Markov chains converging
to diffusions

We consider a family of Markov processes in R
d that have the following form

Xk+1,h = Xk,h +m
(
kh, Xk,h

)
h + √

hξk+1,h, X0,h = x ∈ R
d , k =0, . . . , n − 1.

(1)

The innovation sequence
(
ξi,h

)
i=1,...,n is assumed to satisfy the Markov assumption:

the conditional distribution of ξk+1,h given the past Xk,h = xk, . . . , X0,h = x0 depends
only on the last value Xk,h = xk and has a conditional density q (kh, xk, ·). The condi-
tional covariance matrix corresponding to this density is denoted by σ(kh, xk) and the
conditional νth cumulant by χν(kh, xk). The transition densities of

(
Xi,h

)
i=1,...,n are
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140 V. Konakov, E. Mammen

denoted by ph (0, kh, x, ·). The time horizon T = T (n) ≤ 1 is allowed to depend on
n and h = T/n is the discretization step.

We make the following assumptions.

(A1) It holds that
∫
Rd yq (t, x, y) dy = 0 for 0 ≤ t ≤ 1, x ∈ R

d .
(A2) There exist positive constants σ� and σ� such that the covariance matrix

σ (t, x) = ∫
Rd yyT q (t, x, y) dy satisfies

σ� ≤ θT σ (t, x) θ ≤ σ�

for all ‖θ‖ = 1 and t ∈ [0, 1] and x ∈ R
d .

(A3) There exist a positive integer S′ and a real nonnegative functionψ (y) , y ∈ R
d

satisfying supy∈Rd ψ (y) < ∞ and
∫
Rd ‖y‖S ψ (y) dy < ∞ with S = 2d S′+4

such that
∣∣∣Dν

yq (t, x, y)
∣∣∣ ≤ ψ (y) , t ∈ [0, 1], x, y ∈ R

d |ν| = 0, 1, 2, 3, 4

and

∣
∣Dν

x q (t, x, y)
∣
∣ ≤ ψ (y) , t ∈ [0, 1], x, y ∈ R

d |ν| = 0, 1, 2.

Moreover, for all x, y ∈ Rd , h > 0, 0 ≤ t, t + jh ≤ 1, j ≥ j0, with a bound
j0 that does not depend on x, t ,

∣∣∣Dν
x q( j) (t, x, y)

∣∣∣ ≤ C j−d/2ψ
(

j−1/2 y
)
, |ν| = 0, 1, 2, 3

for a constant C < ∞. Here q( j)(t, x, y) denotes the j-fold convolution of q
for fixed x as a function of y:

q( j)(t, x, y) =
∫

q( j−1)(t, x, u)q(t + ( j − 1)h, x, y − u)du,

q(1)(t, x, y) = q(t, x, y).

Note that the last condition is motivated by (A2) and the classical local limit theorem.
Note also that for 1 ≤ j ≤ j0

∫
‖y‖S q( j)(t, x, y)dy ≤ C( j0 , S).

(B1) The functions m (t, x) and σ (t, x) and their first and second derivatives w.r.t.
t and their derivatives up to the order six w.r.t. x are continuous and bounded
uniformly in t and x . All these functions are Lipschitz continuous with respect
to x with a Lipschitz constant that does not depend on t. The functions χν(t, x),
|ν| = 3, 4, are Lipschitz continuous with respect to t with a Lipschitz constant
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Edgeworth-type expansions for Markov chains 141

that does not depend on x . A sufficient condition for this is the following
inequality

∫

Rd

(1 + ‖z‖4)
∣∣q (t, x, z)− q

(
t ′, x, z

)∣∣ dz ≤ C
∣∣t − t ′

∣∣ , 0 ≤ t, t ′ ≤ 1, x ∈ R
d ,

with a constant that does not depend on x ∈ R
d . Furthermore, Dν

xσ (t, x) exist
for |ν| ≤ 6 and are Holder continuous w.r.t. x with a positive exponent and a
constant that does not depend on t.

(B2) There exists 	 < 1
5 such that lim infn→∞ T (n)n	 > 0.

The Markov chain Xk,h , see (1), is an approximation to the following stochastic
differential equation in R

d :

dYs = m (s,Ys) ds +
(s,Ys) dWs, Y0 = x ∈ R
d , s ∈ [0, T ],

where (Ws)s≥0 is the standard Wiener process and 
 is a symmetric positive definite
d × d matrix such that 
(s, y)
 (s, y)T = σ (s, y) . The conditional density of
Yt , given Y0 = x is denoted by p (0, t, x, ·). We will use the following differential
operators L and L̃:

L f (s, t, x, y) = 1

2

d∑

i, j=1

σi j (s, x)
∂2 f (s, t, x, y)

∂xi∂x j
+

d∑

i=1

mi (s, x)
∂ f (s, t, x, y)

∂xi
,

L̃ f (s, t, x, y) = 1

2

d∑

i, j=1

σi j (s, y)
∂2 f (s, t, x, y)

∂xi∂x j
+

d∑

i=1

mi (s, y)
∂ f (s, t, x, y)

∂xi
.

(2)

To formulate our main result we need also the following operators

L ′ f (s, t, x, y) = 1

2

d∑

i, j=1

∂σi j (s, x)

∂s

∂2 f (s, t, x, y)

∂xi∂x j
+

d∑

i=1

∂mi (s, x)

∂s

∂ f (s, t, x, y)

∂xi
,

L̃ ′ f (s, t, v, z) = 1

2

d∑

i, j=1

∂σi j (s, y)

∂s

∂2 f (s, t, x, y)

∂xi∂x j
+

d∑

i=1

∂mi (s, y)

∂s

∂ f (s, t, x, y)

∂xi
.

(3)

and the convolution type binary operation ⊗ :

f ⊗ g (s, t, x, y) =
t∫

s

du
∫

Rd

f (s, u, x, z) g (u, t, z, y) dz.
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142 V. Konakov, E. Mammen

Konakov and Mammen [19] obtained a nonuniform rate of convergence for the
difference ph (0, T, x, ·) − p (0, T, x, ·) as n → ∞ in the case T 
 1. Edgeworth
type expansions for the case T 
 1 and homogenous diffusions were obtained in
[21]. The goal of the present paper is to obtain an Edgeworth type expansion for
nonhomogeneous case which remains valid for the both cases T 
 1 or T = o (1). The
following theorem contains our main result. It gives Edgeworth type expansions for
ph . For the statement of the theorem we introduce the following differential operators

F1[ f ](s, t, x, y) =
∑

|ν|=3

χν(s, x)

ν! Dν
x f (s, t, x, y),

F2[ f ](s, t, x, y) =
∑

|ν|=4

χν(s, y)

ν! Dν
x f (s, t, x, y).

Furthermore, we introduce two terms corresponding to the classical Edgeworth
expansion (see [5])

π̃1(s, t, x, y) = (t − s)
∑

|ν|=3

χν(s, t, y)

ν! Dν
x p̃(s, t, x, y), (4)

π̃2(s, t, x, y) = (t − s)
∑

|ν|=4

χν(s, t, y)

ν! Dν
x p̃(s, t, x, y)

+ 1

2
(t − s)2

⎧
⎨

⎩

∑

|ν|=3

χν(s, t, y)

ν! Dν
x

⎫
⎬

⎭

2

p̃(s, t, x, y), (5)

where

χν(s, t, y) = 1

t − s

t∫

s

χν(u, y)du

and χν(t, x) is the νth cumulant of the density of the innovations q(t, x, ·). The gaus-
sian transition densities p̃(s, t, x, y) are defined in (6). Note, that in the homogenous
case χν(u, y) ≡ χν(y) and χν(s, t, y) ≡ χν(y), where χν(y) is the νth cumulant of
the density q(y, ·).

Theorem 1 Assume (A1)–(A3), (B1)–(B2). Then there exists a constant δ > 0 such
that the following expansion holds:

sup
x,y∈Rd

T d/2

(

1 +
∥∥
∥∥

y − x√
T

∥∥
∥∥

S′)

× |ph(0, T, x, y)− p(0, T, x, y)

− h1/2π1(0, T, x, y)− hπ2(0, T, x, y)
∣∣∣ = O(h1+δ),
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Edgeworth-type expansions for Markov chains 143

where S′ is defined in Assumption (A3) and where

π1(0, T, x, y) = (p ⊗ F1[p])(0, T, x, y),

π2(0, T, x, y) = (p ⊗ F2[p])(0, T, x, y)+ p ⊗ F1[p ⊗ F1[p]](0, T, x, y)

+ 1

2
p ⊗ (L2

� − L2)p(0, T, x, y)− 1

2
p ⊗ (L ′ − L̃ ′)p(0, T, x, y).

Here p(s, t, x, y) is the transition density of the limiting diffusion Ys and the operator
L � is defined as L̃, but with the coefficients “frozen” at the point x. The norm ‖·‖ is
the usual Euclidean norm.

Remark 1 The terms of the Edgeworth expansion have subgaussian tails and are of
order n−1/2 or n−1, respectively:

∣∣
∣h1/2π1(0, T, x, y)

∣∣
∣ ≤ C1n−1/2T −d/2 exp

[

−C2

∥∥∥
∥

y − x√
T

∥∥∥
∥

2
]

,

|hπ2(0, T, x, y)| ≤ C1n−1T −d/2 exp

[

−C2

∥∥∥∥
y − x√

T

∥∥∥∥

2
]

,

with some positive constants C1 and C2.

Remark 2 If the innovation density q(t, x, ·) and the conditional mean m(t, x) do
not depend on x then we are in the classical case of independent nonidentically
distributed random vectors. We now show that then the Edgeworth expansion of
Theorem 1 coincides with the first two terms of the classical Edgeworth expansion
h1/2π̃1(0, T, x, y) + hπ̃2(0, T, x, y). Note first that in this case L� = L , L ′ = L̃ ′
and p(s, t, x, y) = p̃(s, t, x, y) where p̃ is defined in (6) with σ(s, t, y) = σ(s, t) =∫ t

s σ(u)du and m(s, t, y) = m(s, t) = ∫ t
s m(u)du. This gives

π1(0, T, x, y) =
T∫

0

ds
∫

p̃(0, s, x, v)
∑

|ν|=3

χν(s)

ν! Dν
v p̃(s, T, v, y)dv

= −
∑

|ν|=3

T∫

0

χν(s)

ν! ds Dν
y

∫
p̃(0, s, x, v) p̃(s, T, v, y)dv

= −
∑

|ν|=3

T

ν!χν(0, T )Dν
y p̃(0, T, x, y)

=
∑

|ν|=3

T

ν!χν(0, T )Dν
x p̃(0, T, x, y) = π̃1(0, T, x, y),
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144 V. Konakov, E. Mammen

p̃ ⊗ F1[ p̃](s, T, z, y) =
T∫

s

du
∫

p̃(s, u, z, w)
∑

|ν|=3

χν(u)

ν! Dν
w p̃(u, T, w, y)dw

= −
∑

|ν|=3

T∫

s

χν(u)

ν! du Dν
y p̃(s, T, z, y)

= (T − s)
∑

|ν|=3

χν(s, T )

ν! Dν
z p̃(s, T, z, y),

F1[ p̃ ⊗ F1[ p̃]](s, T, z, y) = (T − s)
∑

|ν|=3

χν(s)

ν! Dν
z

×
⎡

⎣
∑

|ν′|=3

χν′(s, T )

ν′! Dν′
z p̃(s, T, z, y)

⎤

⎦

= (T − s)
∑

|ν|=3,|ν′|=3

χν(s)

ν!
χν′(s, T )

ν′! Dν+ν′
z p̃(s, T, z, y),

p̃ ⊗ F2[ p̃](0, T, x, y)+ p̃ ⊗ F1[ p̃ ⊗ F1[ p̃]](0, T, x, y)

= T
∑

|ν|=4

χν(0, T )

ν! Dν
x p̃(0, T, x, y)

+
T∫

0

ds
∫

p̃(0, s, x, z)(T − s)
∑

|ν|=3,|ν′|=3

χν(s)

ν!
χν′(s, T )

ν′! Dν+ν′
z p̃(s, T, z, y)dz

= T
∑

|ν|=4

χν(0, T )

ν! Dν
x p̃(0, T, x, y)

+
∑

|ν|=3,|ν′|=3

1

ν!
1

ν′!
T∫

0

χν(s)

⎛

⎝
T∫

s

χν′(u)du

⎞

⎠ ds Dν+ν′
x p̃(s, T, x, y).

For ν = ν′ we have

T∫

0

χν(s)

⎛

⎝
T∫

s

χν′(u)du

⎞

⎠ ds = 1

2

T∫

0

T∫

0

χν(s)χν(u)dsdu = T 2

2
χν(0, T )χν(0, T ).

For ν �= ν′ we get

T∫

0

χν(s)

⎛

⎝
T∫

s

χν′(u)du

⎞

⎠ ds +
T∫

0

χν′(s)

⎛

⎝
T∫

s

χν(u)du

⎞

⎠ ds
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=
T∫

0

T∫

s

[χν(s)χν′(u)+ χν′(s)χν(u)] dsdu

= 1

2

T∫

0

T∫

0

[χν(s)χν′(u)+ χν′(s)χν(u)] dsdu

= T 2

2
χν(0, T )χν′(0, T )+ T 2

2
χν′(0, T )χν(0, T ).

From these equations we obtain

p̃ ⊗ F2[ p̃](0, T, x, y)+ p̃ ⊗ F1[ p̃ ⊗ F1[ p̃](0, T, x, y)

= T
∑

|ν|=4

χν(0, T )

ν! Dν
x p̃(0, T, x, y)+ T 2

2

⎧
⎨

⎩

∑

|ν|=3

χν(0, T )

ν! Dν
x

⎫
⎬

⎭

2

p̃(0, T, x, y)

= π̃2(0, T, x, y).

This shows the claim that we get for this case the first two terms of the classical
Edgeworth expansion.

Remark 3 If χν(t, x) = 0 for |ν| = 3 and for t ∈ [0, T ] × Rd then it holds that
F1 ≡ 0. The Theorem 1 holds with

π1(0, T, x, y) = 0,

π2(0, T, x, y) = (p ⊗ F2[p])(0, T, x, y)+ 1

2
p ⊗ (L2

� − L2)p(0, T, x, y)

− 1

2
p ⊗ (L ′ − L̃ ′)p(0, T, x, y).

If in addition χν(t, x) = 0 for |ν| = 4 then the first four moments of the innovations
coincide with the first four moments of a normal distribution with zero mean and
covariance matrix σ(t, x). In this case we have F2 = 0 and we have

π1(0, T, x, y) = 0,

π2(0, T, x, y) = 1

2
p ⊗ (L2

� − L2)p(0, T, x, y)− 1

2
p ⊗ (L ′ − L̃ ′)p(0, T, x, y)

and the first two terms of the Edgeworth expansion do not depend on the innovation
density. In particular, it holds that χν(t, x) = 0 for |ν| = 3, 4 for Markov chains that
are defined by Euler approximations to diffusions. Thus, an Edgeworth expansion for
the Euler scheme holds with the same π1 and π2 as just defined. For the homogenous
case we have that L ′ = L̃ ′ = 0 and we obtain for the Euler scheme in this case

π1(0, T, x, y) = 0,

π2(0, T, x, y) = 1

2
p ⊗ (L2

� − L2)p(0, T, x, y).
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This result for T = [0, 1] under Hormander’s condition on a diffusion matrix was
obtained by Bally and Talay [1,2].

Remark 4 We now shortly discuss an application of our result to statistics. Assume
that one observes a Markov process X1,h, . . . , Xnk,h at time points k, 2k, . . . , nk. That
means we assume that a high frequency Markov chain runs in the background on a very
fine time grid but that it is only observed on a coarser grid. This asymptotics reflects
a set up occurring in the high frequency statistical analysis for financial data where
diffusion approximations are used only for coarser time scales. For the finest scale
discrete pattern in the price processes become transparent that could not be modeled
by diffusions. The joint distribution of the observed values of the Markov process
is denoted by Ph . We assume that this joint distribution can be approximated by the
distribution of (Y1, . . . ,Yn) where Y1, . . . ,Yn are the values of a diffusion on the
equidistant grid kh, 2kh, . . . , nkh. The joint distribution of (Y1, . . . ,Yn) is denoted
by Qh . According to our theorem the one-dimensional marginal distributions of Ph

can be approximated by the one-dimensional marginal distributions of Qh . Under
appropriate conditions the L1-norm of this difference is of order k−1/2. This implies
that the L1-norm of the difference between the joint distributions Ph and Qh is of order
nk−1/2. That means the diffusion approximation is only accurate if k 
 n2, i.e., only
if the grid of observed points is very coarse in comparison to the grid on which the
Markov process lives. Only in this case it can be guaranteed that a statistical inference
that is based on the diffusion model is accurate. Or put it in another way, data that come
from the Markov model could not be asymptotically statistically distinguished from
diffusion observations. Our results help to analyze what may go wrong if k 
 n2 does
not hold. The (signed) transition densities p + h1/2π1 + hπ2 given in the statement
of Theorem 1 define a joined (signed) measure Rh . According to Theorem 1, the
marginal distributions of Rh approximate the one-dimensional marginal distributions
of Ph with order o(k−1−δ). One may conjecture that under some regularity assumptions
the exact order is k−3/2. This implies that ‖Ph − Rh‖1 is of order nk−3/2. Thus, this
approximation is appropriate as long as k 
 n2/3. This is a much more acceptable
assumption. Now, one can check which statistical procedures behave differently under
the models Qh and Rh . These procedures may lead to erroneous conclusions for the
Markov data.

3 The parametrix method

3.1 The parametrix method for diffusions

We now give a short overview on the parametrix method for diffusions. For any
s ∈ [0, T ], x, y ∈ R

d we consider the following family of “frozen” diffusion processes

dỸt = m (t, y) dt +
(t, y) dWt , Ỹs = x, s ≤ t ≤ T .

Let p̃ y (s, t, x, ·) be the conditional density of Ỹt , given Ỹs = x . In the sequel for any
z we will denote p̃ (s, t, x, z) = p̃ z (s, t, x, z) , where the variable z acts here twice:
as the argument of the density and as defining quantity of the process Ỹt .
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The transition densities p̃ can be computed explicitly

p̃ (s, t, x, y) = (2π)−d/2 (det σ (s, t, y))−1/2

× exp

(
−1

2
(y − x − m (s, t, y))T σ−1 (s, t, y) (y − x − m (s, t, y))

)
,

(6)

where

σ (s, t, y) =
t∫

s

σ (u, y) du, m (s, t, y) =
t∫

s

m (u, y) du.

Note that the following differential operators L and L̃ correspond to the infinitesimal
operators of Y or of the frozen process Ỹ , respectively, i.e.,

L f (s, t, x, y) = lim
h→0

h−1{E[ f (s, t,Y (s + h), y) | Y (s) = x] − f (s, t, x, y)},
L̃ f (s, t, x, y) = lim

h→0
h−1{E[ f (s, t, Ỹ (s + h), y) | Ỹ (s) = x] − f (s, t, x, y)}.

We put

H = (L − L̃) p̃.

Then

H (s, t, x, y) = 1

2

d∑

i, j=1

(
σi j (s, x)− σi j (s, y)

) ∂2 p̃ (s, t, x, y)

∂xi∂x j

+
d∑

i, j=1

(mi (s, x)− mi (s, y))
∂ p̃ (s, t, x, y)

∂xi
.

In the following lemmas the k-fold convolution of H is denoted by H (k).The following
results have been proved in [19].

Lemma 2 Let 0 ≤ s < t ≤ T . It holds

p(s, t, x, y) =
∞∑

r=0

p̃ ⊗ H (r)(s, t, x, y).

Lemma 3 Let 0 ≤ s < t ≤ T . There are constants C and C1 such that

|H(s, t, x, y)| ≤ C1ρ
−1φC,ρ(y − x)
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and

∣∣∣ p̃ ⊗ H (r)(s, t, x, y)
∣∣∣ ≤ Cr+1

1
ρr

�(1 + r
2 )
φC,ρ(y − x),

where ρ2 = t − s, φC,ρ(u) = ρ−dφC (u/ρ) and

φC (u) = exp(−C ‖u‖2)
∫

exp(−C ‖v‖2 dv)
.

3.2 The parametrix method for Markov chains

We now give a short overview on the parametrix method for Markov chains. This
theory was developed in [19]. For any 0 ≤ jh ≤ T, x, y ∈ R

d we consider an
additional family of “frozen” Markov chains defined for jh ≤ ih ≤ T as

X̃i+1,h = X̃i,h + m (ih, y) h + √
hξ̃i+1,h, X̃ j,h = x ∈ R

d , j ≤ i ≤ n, (7)

where ξ̃ j+1,h, . . . , ξ̃n,h is an innovation sequence such that the conditional density of
ξ̃i+1,h given the past X̃i,h = xi , . . . , X̃0,h = x0 equals to q (ih, y, ·) . Let us introduce
the infinitesimal operators corresponding to Markov chains (1) and (7) respectively,

Lh f ( jh, kh, x, y) = h−1
(∫

ph ( jh, ( j + 1) h, x, z) f (( j + 1) h, kh, z, y) dz

− f (( j + 1) h, kh, x, y)

)

and

L̃h f ( jh, kh, x, y) = h−1
(∫

p̃y
h ( jh, ( j + 1) h, x, z) f (( j + 1) h, kh, z, y) dz

− f (( j + 1) h, kh, x, y)

)
,

where p̃y
h

(
jh, j ′h, x, ·) denotes the conditional density of X̃ j ′,h given X̃ j,h = x .Simi-

larly as above, for brevity for any z we write p̃h
(

jh, j ′h, x, z
) = p̃z

h

(
jh, j ′h, x, z

)
,

where the variable z acts here twice: as the argument of the density and as defining
quantity of the process X̃i,h .For technical convenience the terms f (( j + 1) h, kh, z, y)
on the right hand side of Lh f and L̃h f appear instead of f ( jh, kh, z, y) .

In analogy with the definition of H we put, for k > j,

Hh ( jh, kh, x, y) = (
Lh − L̃h

)
p̃h ( jh, kh, x, y) .
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We also shall use the convolution type binary operation ⊗h which is a discrete version
of ⊗:

g ⊗h f ( jh, kh, x, y) =
k−1∑

i= j

h
∫

Rd

g ( jh, ih, x, z) f (ih, kh, z, y) dz,

where 0 ≤ j < k ≤ n.We write g⊗h H (0)
h = g and g⊗h H (r)

h =
(

g ⊗h H (r−1)
h

)
⊗h Hh

for r ≥ 1. For the higher order convolutions we use the convention
∑l

i= j = 0 for
l < j. One can show the following analog of the “parametrix” expansion for ph (see
[19]).

Lemma 4 Let 0 ≤ jh < kh ≤ T . It holds

ph( jh, kh, x, y) =
k− j∑

r=0

p̃h ⊗h H (r)
h ( jh, kh, x, y),

where

p̃h( jh, jh, x, y) = ph(kh, kh, x, y) = δ(y − x)

and δ is the Dirac delta symbol.

4 Some technical tools

4.1 Plugged in Edgeworth expansions for independent observations

In this Section we will develop some tools that are helpful for the comparison of
the expansion of p (see Lemma 2) and the expansion of ph ( see Lemma 4). These
expansions are simple expressions in p̃ or p̃h , respectively. Recall that p̃ is a
Gaussian density, see (6), and that p̃h is the density of a sum of independent variables.
The densities p̃ and p̃h can be compared by application of the classical Edgeworth
expansions. This is done in Lemma 5 and this is the essential step for the comparison
of the expansions of p and ph . Lemma 7 contains technical tools that will be used
below. The proof of Lemma 5 can be found in the extended version of this paper, see
[22]. Lemma 7 contains bounds on derivatives of p̃h that will be used at several places
in the proof of Theorem 1. Its proof makes use of Lemma 6 that is a generalization
of a result in [18] (Lemma 4 on page 68). Lemma 5 is a higher order extension of the
results from Sect. 3.3 in [19].

Denote

µ j,k(y) = h
k−1∑

i= j

m(ih, y), Vj,k(y) = h
k−1∑

i= j

σ(ih, y). (8)
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Lemma 5 The following bound holds with a constant C for ν = (ν1, . . . νp)
T with

0 ≤ |ν| ≤ 6

∣∣
∣Dν

z p̃h( jh, kh, x, y)− Dν
z p̃( jh, kh, x, y)− √

h Dν
z π̃1( jh, kh, x, y)

− h Dν
z π̃2( jh, kh, x, y)

∣∣∣

≤ Ch3/2ρ−3ζ S−|ν|
ρ (y − x)

for all j < k, x and y. Here Dν
z denotes the partial differential operator of order ν

with respect to z = V −1/2
j,k (y)(y − x − µ j,k(y)). The quantity ρ denotes again the

term ρ = [h(k − j)]1/2 and the functions π̃1 and π̃2 are defined in (4) and (5). We
write ζ k

ρ (·) = ρ−dζ k(·/ρ) where

ζ k(z) = [1 + ‖z‖k]−1

∫ [1 + ‖z′‖k]−1dz′ .

Lemma 6 Let L(d) be the set of symmetric matrices, and for 0 < λ− < λ+ < ∞
let Dλ+,λ− ⊂ L(d) be the open subset of L(d) that contains all 
 ∈ L(d) with
λ− I < 
 < λ+ I . For 
 ∈ L(d) define A = A(
) as the symmetric solution of the
equation A2 = 
. Then for any k, l, i, j ≤ d and 
 ∈ Dλ+,λ− we have that with a
constant Cm depending on m

∣∣∣
∣
∂mai j (
)

(∂λkl)m

∣∣∣
∣ ≤ Cm(λ

−)−(2m−1)/2. (9)

Here ai j (
) are the elements of A = A(
).

Proof of Lemma 6. For m = 1 the lemma was proved in [18] (see Lemma 4). Suppose
now that (9) holds for m ≤ l. From the equality AA = 
 we obtain for m = l + 1

dl+1(AA) = (dl+1 A)A +
(

l + 1
1

)
(dl A)d A + · · · +

(
l + 1

l

)
d A(dl A)

+ A(dl+1 A) = 0,

where d denotes elementwise differentiation of a matrix with respect to a fixed element
of 
. This implies

(dl+1 A)A + A(dl+1 A) = −
(

l + 1
1

)
(dl A)d A − · · · −

(
l + 1

l

)
d A(dl A). (10)

Denote the symmetric matrix in the right hand side of (10) by 
̃. Then equality (10)
determines a linear operator � mapping dl+1 A to 
̃. In the linear space of symmetric
d × d matrices we introduce the scalar product 〈X,Y 〉 = trace(XY ). The operator �
determines a quadratic form
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〈�X, X〉= trace[(X A + AX)X ]=2trace[X AX ] ≥ 2
√
λ−trace[X X ]=2

√
λ−〈X, X〉,

where in the inequality we have used that A − √
λ− I positive definite implies that

X (A−√
λ− I )X = X AX −√

λ− X X is positive definite. Similarly, we get 〈�X, X〉 ≤
2
√
λ+〈X, X〉. Hence,

2
√
λ− ≤ ‖�‖ = sup

X �=0

‖�X‖
‖X‖ ≤ 2

√
λ+

and

1

2
√
λ+ ≤ ‖�−1‖ ≤ 1

2
√
λ− .

We obtain

‖dl+1 A‖ ≤ 1

2
√
λ− ‖
̃‖.

Using the induction hypothesis we get from (10)

‖dl+1 A‖ ≤ Cl+1(λ
−)(2l+1)/2.

This completes the proof. ��
From Lemmas 5 and 6 we get the following corollary. The statement of the next

lemma is an extension of Lemma 3.7 in Konakov and Mammen (2000) where the
result has been shown for 0 ≤ |b| ≤ 2, a = 0. (In formula (3.15) of this lemma there
is a typo. Differentiation with respect to u should be replaced by differentiation with
respect to x .)

Lemma 7 The following bound holds:

∣∣∣Da
y Db

x p̃h( jh, kh, x, y)
∣∣∣ ≤ Cρ−|a|−|b|ζ S−|a|

ρ (y − x)

for all j < k, for all x and y and for all a, b with 0 ≤ |a| + |b| ≤ 6. Here,
ρ = [(k − j)h]1/2. The constant S has been defined in Assumption (A3).

Proof of Lemma 7. For two matrices A and B with elements ai j or bkl , respectively

where ai j (B) are smooth functions of bkl we write
∣
∣ ∂A
∂B

∣
∣ ≤ C if

∣
∣∣
∂ai j
∂bkl

∣
∣∣ ≤ C for

all 1 ≤ i, j ≤ d, 1 ≤ k, l ≤ d. To obtain the assertion of the lemma we have to
estimate the derivatives Da

y Db
x z, where z = V −1/2

j,k (y)(y − x − µ j,k(y)). Note that

z = z(x, y), where V −1/2
j,k = V −1/2

j,k (y) and µ j,k = µ j,k(y). For l = 1, . . . , 6 it
follows from condition (B1) and (8) that

∣∣∣∣∣
∂ lµ j,k(y)

(∂y)l

∣∣∣∣∣
≤ Cρ2,

∣∣∣∣∣
∂ l V j,k(y)

(∂y)l

∣∣∣∣∣
≤ Cρ2. (11)
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It follows from Lemma 6 that

∣∣∣
∣∣

∂ l V 1/2
j,k

(∂Vj,k)l

∣∣∣
∣∣
≤ Cρ−(2l−1)/2. (12)

From inequalities (3.16) in [19] and from the representation of an inverse matrix in
terms of cofactors divided by the determinant we obtain that

∣∣∣
∣∣

∂ l V −1/2
j,k

(∂V 1/2
j,k )

l

∣∣∣
∣∣
≤ Cρ−(l+1). (13)

From (11) to (13) and from the chain rule (or from de Bruno’s formula) we get

∣
∣∣∣∣

∂ l V −1/2
j,k (y)

(∂y)l

∣
∣∣∣∣
≤ Cρ−1. (14)

This gives for l ≥ 1

∣
∣∣∣
∂ l z

(∂y)l

∣
∣∣∣ ≤ Cρ−1.

This bound,
∣∣ ∂z
∂x

∣∣ ≤ Cρ−1 and ∂l z
(∂x)l

= 0 (for l ≥ 2) can be plugged into the formula
of Lemma 5. This implies the assertion of Lemma 7. ��

4.2 Bounds on operator kernels used in the parametrix expansions

In this Section we will present bounds for operator kernels appearing in the expansions
based on the parametrix method. In Lemma 8 we compare the infinitesimal operators
Lh and L̃h with the differential operators L and L̃ . We give an approximation for the
error if, in the definition of Hh = (Lh − L̃h) p̃h , the terms Lh and L̃h are replaced
by L or L̃ , respectively. We show that this term can be approximated by Kh + Mh ,
where Kh = (L − L̃) p̃h and where Mh is defined in Remark 5 after Lemma 8. The
bounds obtained in Lemma 9 will be used in the proof of our theorem to show that in
the expansion of ph the terms p̃h ⊗h H (r)

h can be replaced by p̃h ⊗h (Kh + Mh)
(r).

Lemma 8 The following bound holds with a constant C

∣∣Hh( jh, kh, x, y)− K ′
h( jh, kh, x, y)− M ′

h( jh, kh, x, y)− Rh( jh, kh, x, y)
∣∣

≤ Ch3/2ρ−1ζ S
ρ (y − x)
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with ζ S
ρ as in Lemma 5 for all j < k, x and y. For j<k − 1 we define

K ′
h( jh, kh, x, y) = (L − L̃)λ(x),M ′

h( jh, kh, x, y)

= Mh,1( jh, kh, x, y)+Mh,2( jh, kh, x, y)+ M ′
h,3( jh, kh, x, y),

Mh,1( jh, kh, x, y) = h1/2
∑

|ν|=3

Dν
xλ(x)

ν! (χν( jh, x)− χν( jh, y)),

Mh,2( jh, kh, x, y) = h
∑

|ν|=4

Dν
xλ(x)

ν! (χν( jh, x)− χν( jh, y)),

M ′
h,3( jh, kh, x, y) = h

2
(L2
� − L̃2)λ(x),

Rh( jh, kh, x, y) = h3/2
∑

|ν|=4

Dν
xλ(x)

ν!
d∑

r=1

νr [mr ( jh, x)µν−er ( jh, x)

− mr ( jh, y)µν−er ( jh, y)]

+ 5
∑

|ν|=5

1

ν!
d∑

k=1

(mk( jh, x)

− mk( jh, y))

⎧
⎨

⎩
νk

∫
q( jh, x, θ )̃hν−ek (θ)

×
⎡

⎣
1∫

0

(1 − u)4 Dνλ(x + uh̃(θ))du

⎤

⎦ dθ

+
∫

q( jh, x, θ )̃hν(θ)

×
⎡

⎣
1∫

0

(1 − u)4u Dν+ekλ(x + uh̃(θ))du

⎤

⎦ dθ

⎫
⎬

⎭

+ h2
∑

|ν|=4

Dν
xλ(x)

ν!
∑

|ν′|=2

ν!N (ν, ν′)[mν′
( jh, x)µν−ν′( jh, x)

− mν′
( jh, y)µν−ν′( jh, y)].

Here L� is defined as L̃ but with the coefficients “frozen” at the point x, er denotes
a d-dimensional vector with the rth element equal to 1 and with all other elements
equal to 0. Furthermore, for |ν| = 4,

∣∣ν′∣∣ = 2 we define

N (ν, ν′) = 2χ [ν′!=1]+χ [(ν−ν′)!=1]−2,

where χ(·) is the indicator function. We put m(x)ν = m1(x)ν1 ×· · ·×md(x)νd and we
define µν(t, x) = ∫

zνq(t, x, z)dz. We put m(x)ν = 0, µν(t, x) = 0, and ν! = 0, if at
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least one of the coordinates of ν = (ν1, . . . , νd) is negative. We use also the following
definitions

λ(x) = p̃h(( j + 1)h, kh, x, y),

h̃(θ) = m( jh, y)h + θh1/2.

Here again ρ denotes the term ρ = [h(k − j)]1/2 . For j = k − 1 we define

K ′
h( jh, kh, x, y) = Rh( jh, kh, x, y) = Mh,2( jh, kh, x, y)

= M ′
h,3( jh, kh, x, y) = 0

and

Mh,1( jh, kh, x, y) = h−(d+2)/2
[
q
{

jh, x, h−1/2(y − x − m[ jh, x]h)
}

− q
{

jh, y, h−1/2(y − x − m[ jh, y]h)
}]
.

Proof of Lemma 8. As in the proof of Lemma 3.9 in [19] we have

Hh( jh, kh, x, y) = H1
h ( jh, kh, x, y)− H2

h ( jh, kh, x, y),

where

H1
h ( jh, kh, x, y) = h−1

∫
q( jh, x, θ)[λ(x + h(θ))− λ(x)]dθ, (15)

H2
h ( jh, kh, x, y) = h−1

∫
q( jh, y, θ)[λ(x + h̃(θ))− λ(x)]dθ, (16)

h(θ) = m( jh, x)h + θh1/2, h̃(θ) = m( jh, y)h + θh1/2.

For [λ(x +h(θ))−λ(x)] and [λ(x + h̃(θ))−λ(x)] in (15), (16) we use now the Taylor
expansion up to order 5 with remaining term in integral form. To pass from moments
to cumulants we use the well known relations (see, e.g., relation (6.11) on page 46 in
[5]). After long but simple calculations we come to the conclusion of the lemma. ��
Remark 5 We show now that the function K ′

h( jh, kh, x, y) + M ′
h,3( jh, kh, x, y) in

Lemma 8 is equal to Kh( jh, kh, x, y)+ h
2 (L

2
�−2L L̃ + L̃2)λ(x)+ M ′′

h,3( jh, kh, x, y)
where

M ′′
h,3( jh, kh, x, y) = −h2

∑

|µ|=2

mµ( jh, y)

µ! (L − L̃)Dµλ(x)

− 3
∑

|µ|=3

1∫

0

(1 − δ)2dδ

×
∫

q( jh, y, θ)
h̃(θ)µ

µ! (L − L̃)Dµλ(x + δh̃(θ))dθ. (17)
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Thus in Lemma 8 we can replace K ′
h( jh, kh, x, y)+ M ′

h( jh, kh, x, y) by Kh( jh, kh,
x, y) + Mh( jh, kh, x, y) where Kh( jh, kh, x, y) = (L − L̃) p̃h( jh, kh, x, y),
Mh( jh, kh, x, y) = h

2 (L
2
� − 2L L̃ + L̃2)λ(x) + M ′′

h ,M ′′
h = Mh,1( jh, kh, x, y) +

Mh,2( jh, kh, x, y)+ M ′′
h,3( jh, kh, x, y) and

max
{∣∣M ′

h( jh, kh, x, y)
∣∣ , |Mh( jh, kh, x, y)|} ≤ Cρ−1ζρ(y − x),

ρ2 = kh − jh. To show this we note that

p̃h( jh, kh, x, y) =
∫

q( jh, y, θ)λ(x + h̃(θ))dθ,

where h̃(θ) = m( jh, y)h + h1/2θ. From the Taylor expansion we get

p̃h( jh, kh, x, y) = λ(x)+ hL̃λ(x)+ h2
∑

|µ|=2

mµ( jh, y)

µ! Dµλ(x)

+ 3
∑

|µ|=3

1∫

0

(1 − δ)2dδ
∫

q( jh, y, θ)
h̃(θ)µ

µ! Dµλ(x + δh̃(θ))dθ

and, hence,

K ′
h( jh, kh, x, y) = Kh( jh, kh, x, y)+ (L − L̃)[λ(x)− p̃h( jh, kh, x, y)]
= Kh( jh, kh, x, y)+ h(L̃2 − L L̃)λ(x)+ M ′′

h,3( jh, kh, x, y). (18)

From

h(L̃2 − L L̃)λ(x)+ M ′
h,3( jh, kh, x, y) = h(L̃2 − L L̃)λ(x)+ h

2
(L2
� − L̃2)λ(x)

= h

2
(L2
� − 2L L̃ + L̃2)λ(x)

and from the definitions of the operators L , L̃ and L� and from the Lipschitz conditions
on the coefficients m(t, x) and σ(t, x) we obtain that

∣∣∣∣
h

2
(L2
� − 2L L̃ + L̃2)λ(x)

∣∣∣∣ ≤ Chρ−3ζ S
ρ (y − x) (19)
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with ζ S defined as in Lemma 5 and with the constant S introduced in (A3). Analo-
gously, we have

∣∣∣∣∣∣
h2

∑

|µ|=2

mµ( jh, y)

µ! (L − L̃)Dµλ(x)

∣∣∣∣∣∣
≤ Ch2ρ−3ζ S

ρ (y − x), (20)

∣
∣∣∣∣∣
3
∑

|µ|=3

1∫

0

(1 − δ)2dδ
∫

q( jh, y, θ)
h̃(θ)µ

µ! (L − L̃)Dµλ(x + δh̃(θ))dθ

∣
∣∣∣∣∣

≤ Ch3/2ρ−4ζ S
ρ (y − x). (21)

Now (18)–(21) imply the assertion of this remark.

Lemma 9 The following bound holds:

∣
∣∣∣∣

n∑

r=0

p̃h ⊗h (Kh + Mh + Rh)
(r)(0, T, x, y)−

n∑

r=0

p̃h ⊗h (Kh + Mh)
(r)(0, T, x, y)

∣
∣∣∣∣

≤ C(ε)hn−1/2+εζ S√
T
(y − x), (22)

where limε↓0 C(ε) = +∞.

The proof of Lemma 9 can be found in the extended version of this paper, see [22].

Lemma 10 Let A(s, t, x, y), B(s, t, x, y),C(s, t, x, y) be some functions with abso-
lute value less than C(t −s)−1/2ζ κ√

t−s
(y−x) for a constant C and an integer κ ≥ S′d.

Then

∞∑

r=0

A ⊗h (B + C)(r)(ih, jh, x, y)−
∞∑

r=0

A ⊗h B(r)(ih, jh, x, y)

=
∞∑

r=1

[
A ⊗h B∞] ⊗h

[
C ⊗h B∞](r)

(ih, jh, x, y),

where B∞ = ∑∞
r=0 B(r).

Proof of Lemma 10. Under the conditions of the lemma all series are absolutely
convergent. The assertion of this lemma is a consequence of the linearity of the opera-
tion ⊗h and of the possibility to permutate the terms in absolutely convergent series.

��
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5 Proof of Theorem 1

We now come to the proof of Theorem 1. Main tools for the proof have been given in
Sects. 3.1, 3.2, 4.1 and 4.2. From Lemmas 2 and 3 we get that

p(0, T, x, y) =
n∑

r=0

p̃ ⊗ H (r)(0, T, x, y)+ o(h2T )φC,
√

T (y − x).

With Lemma 4 this gives

p(0, T, x, y)− ph(0, T, x, y) = T1 + · · · + T7 + o(h2T )φC,
√

T (y − x), (23)

where

T1 =
n∑

r=0

p̃ ⊗ H (r)(0, T, x, y)−
n∑

r=0

p̃ ⊗h H (r)(0, T, x, y),

T2 =
n∑

r=0

p̃ ⊗h H (r)(0, T, x, y)−
n∑

r=0

p̃ ⊗h (H + M ′′
h + √

hN1)
(r)(0, T, x, y),

T3 =
n∑

r=0

p̃ ⊗h (H + M ′′
h + √

hN1)
(r)(0, T, x, y)

−
n∑

r=0

p̃ ⊗h (H + Mh + √
hN1)

(r)(0, T, x, y),

T4 =
n∑

r=0

p̃ ⊗h (H + Mh + √
hN1)

(r)(0, T, x, y)

−
n∑

r=0

p̃ ⊗h (Kh + Mh)
(r)(0, T, x, y),

T5 =
n∑

r=0

p̃ ⊗h (Kh + Mh)
(r)(0, T, x, y)−

n∑

r=0

p̃h ⊗h (Kh + Mh)
(r)(0, T, x, y),

T6 =
n∑

r=0

p̃h ⊗h (Kh + Mh)
(r)(0, T, x, y)

−
n∑

r=0

p̃h ⊗h (Kh + Mh + Rh)
(r)(0, T, x, y),

T7 =
n∑

r=0

p̃h ⊗h (Kh + Mh + Rh)
(r)(0, T, x, y)−

n∑

r=0

p̃h ⊗h H (r)
h (0, T, x, y).

Here we put N1(s, t, x, y) = (L − L̃)π̃1(s, t, x, y).
We now discuss the asymptotic behavior of the terms T1, . . . , T7.
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Asymptotic treatment of the term T1.
We start from the recurrence relations for r = 1, 2, 3, . . .

(
p̃ ⊗ H (r)

)
(0, jh, x, y)−

(
p̃ ⊗h H (r)

)
(0, jh, x, y)

=
[(

p̃ ⊗ H (r−1)
)

⊗ H −
(

p̃ ⊗ H (r−1)
)

⊗h H
]
(0, jh, x, y)

+
[(

p̃ ⊗ H (r−1)
)

−
(

p̃ ⊗h H (r−1)
)]

⊗h H (0, jh, x, y) . (24)

By summing up the identities in (24) from r = 1 to ∞ and by using the linearity of
the operations ⊗ and ⊗h we get

(p − pd) (0, jh, x, y) = (p ⊗ H − p ⊗h H) (0, jh, x, y)

+ (p − pd)⊗h H (0, jh, x, y) , (25)

where we put

pd(ih, i ′h, x, y) =
∞∑

r=0

( p̃ ⊗h H (r))(ih, i ′h, x, y). (26)

By iterative application of (25) we obtain

(p − pd) (0, jh, x, y) = (p ⊗ H − p ⊗h H) (0, jh, x, y)

+ (p ⊗ H − p ⊗h H)⊗h �(0, jh, x, y) , (27)

where �(ih, i ′h, z, z′) = H(ih, i ′h, z, z′) + H ⊗h H(ih, i ′h, z, z′) + · · · =∑∞
r=1 H (r)(ih, i ′h, z, z′).
By application of a Taylor expansion we get

(p ⊗ H − p ⊗h H) (0, jh, x, z) =
j−1∑

i=0

(i+1)h∫

ih

du
∫

Rd

[λ (u)− λ (ih)] dv

=
j−1∑

i=0

(i+1)h∫

ih

(u − ih)du
∫

Rd

λ′(ih)dv

+
j−1∑

i=0

(i+1)h∫

ih

(u − ih)2

×
1∫

0

(1 − δ)

∫

Rd

λ′′(s) |s=si dvdδdu, (28)

where λ (u) = p(0, u, x, v)H(u, jh, v, z), si = si (u, i, δ, h) = ih + δ(u − ih).
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Note that

∫

Rd

λ′(ih)dv =
∫

Rd

∂

∂s
p(0, s, x, v) |s=ih H(ih, jh, v, z)dv

+
∫

Rd

p(0, ih, x, v)
∂

∂s
H(s, jh, v, z) |s=ih dv

=
∫

Rd

Lt p(0, ih, x, v) (L − L̃) p̃(ih, jh, v, z)dv

−
∫

Rd

p(0, ih, x, v)[(L − L̃)L̃ p̃(ih, jh, v, z)

− H1(ih, jh, v, z)]dv
=

∫

Rd

p(0, ih, x, v)H1(ih, jh, v, z)dv

+
∫

Rd

p(0, ih, x, v)(L2 − 2L L̃ + L̃2) p̃(ih, jh, v, z)dv, (29)

where H1(s, t, v, z) is defined below in (35). We get from (29)

j−1∑

i=0

(i+1)h∫

ih

(u − ih)du
∫

Rd

λ′(ih)dv = h

2
(p ⊗h H1)(0, jh, x, z)

+ h

2
(p ⊗h A0)(0, jh, x, z), (30)

where A0(s, jh, v, z) = (L2 − 2L L̃ + L̃2) p̃(s, jh, v, z). Direct calculations show
that

A0(s, jh, v, z) = 1

4

d∑

p,q,r,l=1

(σpq(s, v)− σpq(s, z))(σrl(s, v)

− σrl(s, z))
∂4 p̃(s, jh, v, z)

∂vp∂vq∂vr∂vl

+
d∑

p,q,r=1

(σpq(s, v)− σpq(s, z))(mr (s, v)− mr (s, z))
∂3 p̃(s, jh, v, z)

∂vp∂vq∂vr

+ 1

2

d∑

p,q,r,l=1

σpq(s, v)
∂σrl(s, v)

∂vp

∂3 p̃(s, jh, v, z)

∂vq∂vr∂vl
+ (≤ 2), (31)
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where we denote by (≤ 2) the sum of terms that contain derivatives of p̃(s, jh, v, z)
of order less or equal 2. Note that for a constant C < ∞ and for any 0 < ε < 1

2

∣
∣∣∣
h

2
(p ⊗h H1)(0, jh, x, z)

∣
∣∣∣ ≤ ChφC,

√
jh (z − x) ,

∣∣∣∣
h

2
(p ⊗h A0)(0, jh, x, z)

∣∣∣∣ ≤ C(ε)h1/2 j−(1/2−ε)φC,
√

jh (z − x) . (32)

The first inequality (32) follows from (B1) and well known estimates for the diffusion
density p and for the kernel H1. The second inequality (32) follows from (B1), (31)
and the following estimate

h

2

j−1∑

i=0

h

∣∣∣
∣∣∣∣

∫

Rd

p(0, ih, x, v)
∂3 p̃(ih, jh, v, z)

∂vq∂vr∂vl
dv

∣∣∣
∣∣∣∣

≤ h3

2

∣∣
∣∣
∂3 p̃(0, jh, x, z)

∂vq∂vr∂vl

∣∣
∣∣ + h

2

j−1∑

i=1

h

∣∣∣
∣∣∣∣

∫

Rd

∂p(0, ih, x, v)

∂vq

∂2 p̃(ih, jh, v, z)

∂vr∂vl
dv

∣∣∣
∣∣∣∣

≤ h3

2

∣∣∣∣
∂3 p̃(0, jh, x, z)

∂vq∂vr∂vl

∣∣∣∣ + Ch1/2 j−(1/2−ε)B
(

1

2
, ε

)
φC,

√
jh (z − x) . (33)

Now we estimate the second summand in the right hand side of (28). Clearly,

λ′′(s) = ∂2

∂s2 p(0, s, x, v)H(s, jh, v, z)+ 2
∂

∂s
p(0, s, x, v)

∂

∂s
H(s, jh, v, z)

+ p(0, s, x, v)
∂2

∂s2 H(s, jh, v, z).

Using forward and backward Kolmogorov equations we get from this equation after
long but simple calculations

j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

∫

Rd

λ′′(s) |s=si dvdδdu

=
j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

4∑

k=1

∫

Rd

p(0, s, x, v)Ak(s, jh, v, z) |s=si dvdδdu,

(34)
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where

A1(s, jh, v, z) = (L3 − 3L2 L̃ + 3L L̃2 − L̃3) p̃(s, jh, v, z),

A2(s, jh, v, z) = (L1 H + 2L H1)(s, jh, v, z),

A3(s, jh, v, z) = [(L − L̃)L̃1 + 2(L1 − L̃1)L̃] p̃(s, jh, v, z),

A4(s, jh, v, z) = H2(s, jh, v, z),

Hl(s, t, v, z) = (Ll − L̃l) p̃(s, t, v, z)

= 1

2

d∑

i, j=1

(
∂ lσi j (s, v)

∂sl
− ∂ lσi j (s, z)

∂sl

)
∂2 p̃(s, t, v, z)

∂vi∂v j

+
d∑

i=1

(
∂ lmi (s, v)

∂sl
− ∂ lmi (s, z)

∂sl

)
∂ p̃(s, t, v, z)

∂vi
, l = 1, 2.

(35)

Using integration by parts and the definition of A2, A3 and A4 it is easy to get that for
any 0 < ε < 1/2 and for k = 2, 3, 4

∣∣∣
∣∣∣∣

j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

∫

Rd

p(0, s, x, v)Ak(s, jh, v, z) |s=si dvdδdu

∣∣∣
∣∣∣∣

≤ C(ε)h3/2−εφC,
√

jh (z − x) . (36)

For k = 1 we shall prove the following estimate for any 0 < ε < 1
2

∣∣∣∣∣
∣∣

j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

∫

Rd

p(0, s, x, v)A1(s, jh, v, z) |s=si dvdδdu

∣∣∣∣∣
∣∣

≤ C(ε)hj−(1/2−ε)φC,
√

jh (z − x) . (37)

Note that the function A1(s, jh, v, z) can be written as the following sum

A1(s, jh, v, z) = 1

8

d∑

i, j,p,q,l,r=1

(σi j (s, v)− σi j (s, z))(σpq(s, v)−σpq(s, z))(σlr (s, v)

− σlr (s, z))
∂6 p̃(s, jh, v, z)

∂vi∂v j∂vp∂vq∂vl∂vr

+ 3

4

d∑

i, j,p,q,l=1

(σi j (s, v)− σi j (s, z))(σpq(s, v)

− σpq(s, z))(ml(s, v)− ml(s, z))
∂5 p̃(s, jh, v, z)

∂vi∂v j∂vp∂vq∂vl
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+ 3

4
σi j (s, v)

∂σpq(s, v)

∂vi
(σlr (s, v)

− σlr (s, z))
∂5 p̃(s, jh, v, z)

∂v j∂vp∂vq∂vl∂vr
+ (≤ 4), (38)

where we denote by (≤ 4) the sum of terms that contain derivatives of p̃(s, jh, v, z)
of order less or equal 4. By (B1) and (38) it is clear that (up to a constant) the estimate
for the left hand side of (36) for k = 1 will be the same as for the following sum (with
fixed p, q, r, l)

∣
∣∣∣∣∣
∣

j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

∫

Rd

p(0, s, x, v)
∂4 p̃(s, jh, v, z)

∂vp∂vq∂vl∂vr
|s=si dvdδdu

∣
∣∣∣∣∣
∣
.

After integration by parts w.r.t. vp and after the substitution hw = (u − ih) in each
integral we obtain

∣∣∣∣∣∣
∣

j−1∑

i=0

(i+1)h∫

ih

(u − ih)2
1∫

0

(1 − δ)

∫

Rd

p(0, s, x, v)
∂4 p̃(s, jh, v, z)

∂vp∂vq∂vl∂vr
|s=si dvdδdu

∣∣∣∣∣∣
∣

=

∣∣∣∣∣∣
∣

j−1∑

i=0

(i+1)h∫

ih

(u−ih)2
1∫

0

(1−δ)
∫

Rd

∂p(0, s, x, v)

∂vp

∂3 p̃(s, jh, v, z)

∂vq∂vl∂vr
|s=si dvdδdu

∣∣∣∣∣∣
∣

≤ Ch2φC,
√

jh (z − x)

1∫

0

w2

1∫

0

(1 − δ)

×
j−1∑

i=0

h
1√

ih + δhw

1

[( j − i)h − δhw)]3/2 dδdw

≤ Ch3/2−εφC,
√

jh (z − x)

1∫

0

w2

1∫

0

(1 − δ)1/2−ε

×
j−1∑

i=0

h
1√

ih+δhw
1

[( j − δw)h − ih)]1−ε dδdw

≤ Ch3/2−εφC,
√

jh (z − x)

1∫

0

w2dw

1∫

0

(1−δ)1/2−εdδ
( j−1)h∫

0

dt√
t[( j − 1)h − t]1−ε

≤ Chj−(1/2−ε)B
(

1

2
, ε

)
φC,

√
jh (z − x) ,

(39)
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where B(p, q) is the Beta function and φC,ρ (z − x) is defined as in Lemma 3. As we
mentioned above, (37) follows now from (39). By (B2), (28), (30), (31), (33), (36) and
(37) we obtain for 0 < ε < 1

2 , j ≥ 1

|(p ⊗ H − p ⊗h H)(0, T, x, z)| ≤ C(ε)h1/2n−(1/2−ε)φC,
√

T (z − x). (40)

We use now the following estimate for �(ih, i ′h, z, z′)

∣∣�(ih, i ′h, z, z′)
∣∣ ≤ C

1√
i ′h − ih

φC,
√

i ′h−ih

(
z′ − z

)
, (41)

see (5.7) in [20]. From (B2), (28), (30), (39), (40) and (41) we obtain

(p − pd) (0, T, x, y) = h

2
(p ⊗h H1)(0, T, x, y)+ h

2
(p ⊗h A0)(0, T, x, y)

+ h

2
(p ⊗h H1 ⊗h �) (0, T, x, y)+ h

2
(p ⊗h A0 ⊗h �)(0, T, x, y)+R(0, T, x, y),

(42)

where for any 0 < ε < 1/2 it holds that |R(0, T, x, y)| ≤ C(ε)(h3/2−ε+hn−(1/2−ε))
φC,

√
T (y − x) = φC,

√
T (y − x) o(h1+δ). This representation implies that

T1 = h

2
[p ⊗h (L

2 − 2L L̃ + L̃2) p̃ ⊗h �0)](0, T, x, y)

+ h

2
[p ⊗h (L

′ − L̃ ′) p̃ ⊗h �0](0, T, x, y)+ RT (0, T, x, y), (43)

where for any 0 < ε < 1/2

|RT (0, T, x, y)| ≤ C(ε)hn−1/2+εφC,
√

T (y − x) ≤ C(ε)h1+δφC,
√

T (y − x) (44)

for δ > 0 small enough and where �0(s, t, x, y) = ∑∞
r=0 H (r)(s, t, x, y). Here

the summand H (0)(s, t, x, y) is introduced to shorten the notation. By definition we
suppose that g ⊗h H (0)(s, t, x, y) = g(s, t, x, y) for a function g. Note, that in the
homogenous case σi j (s, x) = σi j (x),mi (s, x) = mi (x) and thus the second summand
in (43) is equal to 0.
Asymptotic treatment of the term T2. We will show that

∣∣∣∣∣
T2 − 3

∞∑

r=0

p̃ ⊗h H (r)(0, T, x, y)+
∞∑

r=0

p̃ ⊗h (H + Mh,1 + √
hN1)

(r)(0, T, x, y)

+
∞∑

r=0

p̃ ⊗h (H + Mh,2)
(r)(0, T, x, y)+

∞∑

r=0

p̃ ⊗h (H + M ′′
h,3)

(r)(0, T, x, y)

∣∣
∣∣∣

≤ Chn−δζ√T (y − x) (45)
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with some positive δ > 0. The proof of this estimate can be found in the extended
version of this paper, see [22].
Asymptotic treatment of the term T3. We will show that

∣∣∣
∣∣
T3 −

[ ∞∑

r=0

p̃ ⊗h (H + A)(r)(0, T, x, y)−
∞∑

r=0

p̃ ⊗h H (r)(0, T, x, y)

]∣∣∣
∣∣

≤ Chn−δζ√T (y − x), (46)

where A = M ′′
h − Mh = − h

2 (L
2
� − 2L L̃ + L̃2)λ(x). Write

Cr = p̃ ⊗h (H + M ′′
h + √

hN1)
(r)(0, T, x, y)

− p̃ ⊗h (H + Mh + √
hN1)

(r)(0, T, x, y)

−[ p̃ ⊗h (H + A)(r) − p̃ ⊗h H (r)](0, T, x, y).

We use the following recurrence relation

Cr = Cr−1 ⊗h H +
[

p̃ ⊗h (H + M ′′
h + √

hN1)
(r−1)

− p̃ ⊗h (H + Mh + √
hN1)

(r−1)
]

⊗h (M
′′
h + √

hN1)

+
[

p̃ ⊗h (H + Mh + √
hN1)

(r−1) − p̃ ⊗h (H + A)(r−1)
]

⊗h A

= I + I I + I I I. (47)

With the notation

Dr−1 = p̃ ⊗h (H + Mh + √
hN1)

(r−1) − p̃ ⊗h (H + A)(r−1)

we get

Dr−1 = Dr−2 ⊗h (H + Mh +√
hN1)+ p̃h ⊗h (H + A)(r−2) ⊗h (Mh − A+√

hN1).

Iterative application gives

I I I = Dr−1 ⊗h A

=
r−2∑

l=0

p̃4,l ⊗h (Mh − A+√
hN1)⊗h (H +Mh +√

hN1)
(r−l−2) ⊗h A(0, T, x, y),

where p̃4,l = p̃ ⊗h (H + A)(l). This sum can be estimated in exactly the same way
as the sum in (86) in [22]. This gives for r = 2, 3, . . .

|I I I | ≤ C(ε)h3/2−2ε Cr

�( r−1
2 )

T 3ε+ r−4
2 ζ√T (v − x). (48)
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To estimate I I we write

Er−1 = p̃ ⊗h (H + M ′′
h + √

hN1)
(r−1) − p̃ ⊗h (H + Mh + √

hN1)
(r−1).

For r = 2 we have E1 = p̃ ⊗h A and we get

|E1| ≤ Ch1−ε(kh)ε−1/2 B

(
1

2
, ε

)
ζ S√

kh
(y − x).

For r ≥ 3 we use the recurrence relation

Er−1 = Er−2 ⊗h (H + M ′′
h + √

hN1)+ [ p̃ ⊗h (H + Mh + √
hN1)

(r−2)] ⊗h A

= I ′ + I I ′.

The terms I ′ and I I ′ have a similar structure as the corresponding terms in (81) in [22]
and they can be estimated similarly. This gives the following estimates for r = 2, 3, . . .

|Er−1| ≤ Cr h1−εB

(
1

2
, ε

)
× · · · × B

(
1

2
, ε + r − 2

2

)
(kh)ε+

r−3
2 ζ S√

kh
(y − x),

|I I | =
∣∣∣Er−1 ⊗h (M

′′
h + √

hN1)(0, T, x, y)
∣∣∣

≤ C(ε)h3/2−2ε Cr

�( r−1
2 )

T 3ε+ r−4
2 ζ√T (v − x).

The claim (46) follows from (47), (48) and the last two inequalities.
Asymptotic treatment of the term T4. It suffices to show that

T4 =
∞∑

r=1

p̃ ⊗h H (r)(0, T, x, y)−
∞∑

r=1

p̃ ⊗h [H + hN2](r)(0, T, x, y)+ R�h(x, y)

with N2(s, t, x, y) = (L− L̃)π̃2(s, t, x, y),
∣∣R�h(x, y)

∣∣ ≤ Chn−δζ S√
T
(y−x) for δ > 0

small enough, and a constant C depending on δ. The proof of this claim is elementary
but rather long. For this reason we omit it. Details can be found in [22].
Asymptotic treatment of the term T5. We will show that,

T5 = −√
h

∞∑

r=0

π̃1 ⊗h (H + Mh,1 + √
hN1)

(r)(0, T, x, y)

− h
∞∑

r=0

π̃2 ⊗h H (r)(0, T, x, y)+ Rh(x, y), (49)

where |Rh(x, y)| ≤ Chn−γ ζ S−2√
T
(y−x) for someγ > 0.Note that with Sh(s, t, x, y) =

∑n
r=1(Kh + Mh)

(r)(s, t, x, y) the term T5 can be rewritten as

T5 = ( p̃ − p̃h)(0, T, x, y)+ ( p̃ − p̃h)⊗h Sh(0, T, x, y).
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We start by showing that for 	 < δ < 1−	
4 uniformly for x, y ∈ R

∣∣∣
∣∣∣
h

∑

1≤ j≤nδ

∫
( p̃h − p̃)(0, jh, x, u)Sh( jh, T, u, y)du

∣∣∣
∣∣∣

≤ O(hn−1/2(1−	−4δ))ζ S−2√
T
(y − x) (50)

for δ small enough. For the proof of (50) we will show that uniformly for 1 ≤ j ≤ nδ

and for x, y ∈ Rd

∫
p̃h(0, jh, x, u)Sh( jh, T, u, y)du = Sh( jh, T, x, y)

+ O[h1/2T −1/2n−1/2+δ + h1/2T −1 + nδ/2h1/2]ζ S−2√
T
(y − x), (51)

∫
p̃(0, jh, x, u)Sh( jh, T, u, y)du = Sh( jh, T, x, y)

+ O[h1/2T −1/2n−1/2+δ + h1/2T −1 + nδ/2h1/2]ζ S−2√
T
(y − x). (52)

Claim (50) immediately follows from (51) to (52 ). For the proof we will make use of
the fact that for all 1 ≤ j ≤ nδ and for all x, y ∈ Rd and |ν| = 1

∣∣Dν
x Sh( jh, T, x, y)

∣∣ ≤ C(T − jh)−1ζ S−2√
T − jh

(y − x). (53)

Claim (53) can be shown with the same arguments as in the proof of (5.7) in [20].
Note that the function � in that paper has a similar structure as Sh . For 1 ≤ j ≤ nδ

the bound (53) immediately implies for a constant C ′

∣∣Dν
x Sh( jh, T, x, y)

∣∣ ≤ C ′T −1ζ S−2√
T
(y − x). (54)

We have p̃h(0, jh, x, u) = h−d/2q( j)[0, u, h−1/2(u−x −h
∑ j−1

i=0 m(ih, u))].Denote

the determinant of the Jacobian matrix of u − h
∑ j−1

i=0 m(ih, u) by �h . From the
condition (A3) and (54) we get that for 1 ≤ j ≤ nδ

∫
p̃h(0, jh, x, u)Sh( jh, T, u, y)du

=
∫

h−d/2q( j)

⎡

⎣0, u, h−1/2

⎛

⎝u − x − h
j−1∑

i=0

m(ih, u)

⎞

⎠

⎤

⎦ Sh( jh, T, u, y)du

=
∫

q( j)

⎛

⎝0, x + h1/2w + h
j−1∑

i=0

m(ih, u(w)),w

⎞

⎠
∣∣∣�−1

h

∣∣∣ Sh

⎛

⎝ jh, T, x + h1/2w

+ h
j−1∑

i=0

m(ih, u(w)), y

⎞

⎠ dw
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=
∫ [

q( j)(0, x, w)+ O( j−d/2h1/2)(‖w‖ + 1)ψ( j−1/2w)
]

×[1 + O( jh)][Sh( jh, T, x, y)

+ O(h1/2T −1)ζ S−2√
T
(y − x)(1 + h(S−2)/2 ‖w‖S−2)(‖w‖ + 1)]dw

= Sh( jh, T, x, y)+ O[h1/2T −1/2n−1/2+δ + h1/2T −1 + h1/2nδ/2]ζ S−2√
T
(y − x)

with u = u(w) in
∑ j−1

i=0 m(ih, u) defined by the Inverse Function Theorem from

the substitution w = h−1/2(u − x − h
∑ j−1

i=0 m(ih, u)). This proves (51). Claim (52)
follows by similar arguments. From (50) we get that for δ < 1−	

4 (with 	 defined as
in (B2))

T5 = ( p̃ − p̃h)(0, T, x, y)

+ h
∑

nδ< j<n

∫
( p̃ − p̃h)(0, jh, x, u)Sh( jT, u, y)du + Rh(x, y)

with |Rh(x, y)| ≤ O(hn−1/2(1−	−4δ))ζ S−2√
T
(y−x) .We now make use of the expansion

of p̃h − p̃ given in Lemma 5. We have with ρ = ( jh)1/2 ≥ h1/2nδ/2

∣∣∣
∣∣∣
h

n∑

j=nδ

h3/2ρ−3
∫
ζ S
ρ (u − x)Sh( jh, T, u, y)du

∣∣∣
∣∣∣

≤ Ch2T −δ′n−δ′′
n∑

j=nδ

ρ−2+2δ′
∫ ∣∣∣ζ S

ρ (u − x)Sh( jh, T, u, y)
∣∣∣ du, (55)

where δ′ < 1
2δ(1 − δ)−1, 2 δ′′ = δ + 2δδ′ − 2δ′. Now we get that

h
n∑

j=nδ

ρ−2+2δ′
∫ ∣∣∣ζ S

ρ (u − x)Sh( jh, T, u, y)
∣∣∣ du ≤C B(δ′, 1/2)T δ

′−1/2ζ S−2√
T
(y − x)

(56)

for a constant C. This shows that for δ′ > 0 small enough

T5 = −
[√

hπ̃1 + hπ̃2

]
(0, T, x, y)

− h
∑

nδ< j<n

∫ [√
hπ̃1 + hπ̃2

]
(0, jh, x, u)Sh( jh, T, u, y)du + R′

h(x, y)
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with
∣
∣R′

h(x, y)
∣
∣ ≤ O(hn−(δ′′−	/2))ζ S−2√

T
(y − x) with a constant in O(·) depending

on δ′. It follows from (50), (55) and (56) that

T5 = −
∞∑

r=0

[√
hπ̃1 + hπ̃2

]
⊗h (Kh + Mh)

(r)(0, T, x, y)+ R′′
h (x, y), (57)

where
∣∣R′′

h (x, y)
∣∣ ≤ O(hn−(δ′′−	/2))ζ S−2√

T
(y − x). Now we apply Lemma 10 with

A = √
hπ̃1, B = H + Mh,1 + √

hN1,C = (Kh − H − √
hN1)+ (Mh − Mh,1) to

−
∞∑

r=0

√
hπ̃1 ⊗h (Kh + Mh)

(r)(0, T, x, y)

+
∞∑

r=0

√
hπ̃1 ⊗h (H + Mh,1 + √

hN1)
(r)(0, T, x, y) (58)

and with A = hπ̃2, B = H,C = (Kh − H)+ Mh to

−
∞∑

r=0

hπ̃2 ⊗h (Kh + Mh)
(r)(0, T, x, y)+

∞∑

r=0

hπ̃2 ⊗h H (r)(0, T, x, y). (59)

The estimate (49) follows from (56), (58), ( 59), Lemmas 10 and 5.
Asymptotic treatment of the term T6. By application of Lemma 9 we get that

|T6| ≤ C(ε)hn−1/2+εζ S√
T
(y − x).

Asymptotic treatment of the term T7. From the recurrence relation for r = 2, 3, . . .

p̃h ⊗h (Kh + Mh + Rh)
(r)(0, T, x, y)− p̃h ⊗h Hh

(r)(0, T, x, y)

=
[

p̃h ⊗h (Kh + Mh + Rh)
(r−1) − p̃h ⊗h Hh

(r−1)
]

⊗h Hh(0, T, x, y)

+
[

p̃h ⊗h (Kh + Mh + Rh)
(r−1) ⊗h (Kh + Mh + Rh − Hh)

]
(0, T, x, y)

and from Lemma 8 with r = 1 we get by similar arguments as in the proof of Lemma 9
that

|T7| ≤ Ch3/2T −1/2ζ S√
T
(y − x) = Chn−1/2ζ S√

T
(y − x).
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Plugging in the asymptotic expansions of T1, . . . , T7. We now plug the asymptotic
expansions of T1, . . . , T7 into (23). Using Lemma 10, Theorem 2.1 in [20] we get

ph(0, T, x, y)− p(0, T, x, y)

= √
h
[
π̃1 + pd ⊗h �1

]
⊗h �(0, T, x, y)

+ h

{ [
π̃2 + π̃1 ⊗h �⊗h �1 + pd ⊗h �2 + pd ⊗h �3

]
⊗h �(0, T, x, y)

+ pd ⊗h (�1 ⊗h �)
(2) (0, T, x, y)

+ 1

2
p ⊗h (L

2
� − L2)pd(0, T, x, y)− 1

2
p ⊗h (L

′ − L̃ ′)pd(0, T, x, y)

}

+ O(h1+δζ√T (y − x)), (60)

where

pd(ih, i ′h, x, y) =
∞∑

r=0

p̃ ⊗h H (r)(ih, i ′h, x, y),

�1(s, t, x, y) = N1(s, t, x, y)+ M1(s, t, x, y)− M̃1(s, t, x, y),

�2(s, t, x, y) = N2(s, t, x, y)+�1(s, t, x, y)− �̃1(s, t, x, y),

�3(s, t, x, y) =
∑

|ν|=4

(χν(s, x)− χν(s, y)

ν! Dν
x p̃(s, t, x, y),

M1(s, t, x, y) =
∑

|ν|=3

χν(s, x)

ν! Dν
x p̃(s, t, x, y),

M̃1(s, t, x, y) =
∑

|ν|=3

χν(s, y)

ν! Dν
x p̃(s, t, x, y),

�1(s, t, x, y) =
∑

|ν|=3

χν(s, x)

ν! Dν
x π̃1(s, t, x, y),

�̃1(s, t, x, y) =
∑

|ν|=3

χν(s, y)

ν! Dν
x π̃1(s, t, x, y).

Note that for the homogenous case and T = [0, 1] (60) coincides with formula (53)
on page 623 in [21].
Asymptotic replacement of pd by p. It follows from (26), (39) and (40) that

∣
∣∣(pd − p)(ih, jh, x, z)

∣
∣∣ ≤ C(ε)h1−ε( jh − ih)ε−1/2φC,

√
( j−i)h(z − x) (61)

for any 0 < ε < 1/2. Using (61) and making an integration by parts we can replace
pd by p in (60 ). For example the operator L2

� − L2 is an operator of order three.
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Applying integration by parts we get for |ν| = 3

∣
∣∣∣∣

n−1∑

i=1

h
∫

Dν
z p(0, ih, x, z)(pd − p)(ih, T, z, y)dz

∣
∣∣∣∣

≤ C(ε)h1−ε
n−1∑

i=1

h
1

(ih)3/2
1

(T − ih)1/2−ε φC,
√

T (y − x)

≤ C(ε)h1/2−2εT 2ε−1/2 B(ε, ε + 1

2
)φC,

√
T (y − x).

By (B2) we have 0 < 	 < 1 − 4ε. This implies

∣∣∣
∣
h

2
p ⊗h (L

2
� − L2)(pd − p)(0, T, x, y)

∣∣∣
∣ ≤ C(ε)hT 1/2n−(1/2−2ε−	/2)φC,

√
T (y − x)

≤ C(ε)h1+δφC,
√

T (y − x)

for some 0 < δ < 1/2. The other terms in (60) containing pd can be estimated
analogously. Thus we get the following representation

ph(0, T, x, y)− p(0, T, x, y)

= √
h [π̃1 + p ⊗h �1] ⊗h �(0, T, x, y)

+ h

{
[π̃2 + π̃1 ⊗h �⊗h �1 + p ⊗h �2 + p ⊗h �3] ⊗h �(0, T, x, y)

+ p ⊗h (�1 ⊗h �)
(2) (0, T, x, y)

+ 1

2
p ⊗h (L

2
� − L2)p(0, T, x, y)− 1

2
p ⊗h (L

′ − L̃ ′)p(0, T, x, y)

}

+ O(h1+δζ√T (y − x)).

In the further analysis we make use of the following binary operation ⊗′
h . This operator

generalizes the binary operation ⊗ introduced in [21]. For s ∈ [0, t − h] and t ∈
{h, 2h, . . . , T } the operation ⊗′

h is defined as follows

f ⊗′
h g(s, t, x, y) =

∑

s≤ jh≤t−h

h
∫

f (s, jh, x, z)g( jh, t, z, y)dz.

Note that for s ∈ {0, h, 2h, . . . , T } the two operations ⊗′
h and ⊗h coincide.

Asymptotic replacement of (p⊗h �i )⊗h�(0, T, x, y) by p⊗(�i ⊗′
h�)(0, T, x, y) =

(p ⊗ �i )⊗h �(0, T, x, y), i = 1, 2, 3, [p ⊗h (�1 ⊗h �)] ⊗h (�1 ⊗h �) (0, T, x, y)
by p ⊗ [(�i ⊗′

h �)⊗′
h (�i ⊗′

h �)](0, T, x, y), p ⊗h (L2
� − L2)p(0, T, x, y) by p ⊗

(L2
�−L2)p(0, T, x, y) and p⊗h (L ′− L̃ ′)p(0, T, x, y) by p⊗(L ′− L̃ ′)p(0, T, x, y).
These replacements follow from the definitions of �i , i = 1, 2, 3, and can be

proved by the same method as in the treatment of T1. For more details see [22]. With
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these replacements we come to the following representation

ph(0, T, x, y)− p(0, T, x, y)

= √
h
[
π̃1 ⊗′

h �(0, T, x, y)+ p ⊗ (�1 ⊗′
h �)(0, T, x, y)

]

+ h
[
π̃2 ⊗′

h �(0, T, x, y)+ p ⊗ (�2 ⊗′
h �)(0, T, x, y)

+ p ⊗h (�3 ⊗′
h �)(0, T, x, y)

]

+ h
[
π̃1 ⊗′

h �+ p ⊗ (�1 ⊗′
h �

)] ⊗′
h (�1 ⊗′

h �)(0, T, x, y)

+ h

2
p ⊗ (L2

� − L2)p(0, T, x, y)− h

2
p ⊗ (L ′ − L̃ ′)p(0, T, x, y)

+ O(h1+δζ√T (y − x)). (62)

We now further simplify our expansion of ph − p.We start by showing the following
expansion

ph(0, T, x, y)− p(0, T, x, y)

= √
h(p ⊗ F1[p�])(0, T, x, y)+ h (p ⊗ F2[p�]) (0, T, x, y)

+ h (p ⊗ F1[p ⊗ F1[p�]]) (0, T, x, y)

+ h

2
p ⊗ (L2

� − L2)p(0, T, x, y)− h

2
p ⊗ (L ′ − L̃ ′)p(0, T, x, y)

+ O(h1+δζ√T (y − x)), (63)

where for s ∈ [0, t − h], t ∈ {h, 2h, . . . , T }

p�(s, t, z, y) = ( p̃ ⊗′
h �)(s, t, z, y)

= p̃(s, t, z, y)+
∑

s≤ jh≤t−h

h
∫

p̃(s, jh, z, v)�′( jh, t, v, y)dv.

Here �′ = H + H ⊗′
h H + H ⊗′

h H ⊗′
h H + · · · . We now treat the term p ⊗

L̃π̃1(s, t, x, y).

p ⊗ L̃π̃1(s, t, x, y) =
t∫

s

dτ
∫

p(s, τ, x, v)(t − τ)
∑

|ν|=3

χν(τ, t, y)

ν! Dνv (L̃v p̃(τ, t, v, y))dv

= −
∑

|ν|=3

1

ν!
∫

dv

⎡

⎣
t∫

s

p(s, τ, x, v)

⎛

⎝
t∫

τ

χν(u, y)du

⎞

⎠

× ∂

∂τ
Dνv p̃(τ, t, v, y)dτ

⎤

⎦
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= −
∑

|ν|=3

1

ν!
∫

dv

s+t
2∫

s

· · · −
∑

|ν|=3

1

ν!
∫

dv

t∫

s+t
2

. . .

= I + I I. (64)

By integrating by parts w.r.t. the time variable we obtain for I

I = −
∑

|ν|=3

1

ν!
∫

dv

⎡

⎢
⎣p(s, τ, x, v)

⎛

⎝
t∫

τ

χν(u, y)du

⎞

⎠ Dν
v p̃(τ, t, v, y) |τ=(s+t)/2

τ=s

−
s+t

2∫

s

Dν
v p̃(τ, t, v, y)

⎛

⎝∂p(s, τ, x, v)

∂τ

t∫

τ

χν(u, y)du

− p(s, τ, x, v)χν(τ, y)

⎞

⎟
⎠ dτ

⎤

⎥
⎦

= −
∑

|ν|=3

1

ν!
∫

dv

⎡

⎢
⎣p

(
s,

s + t

2
, x, v

)
⎛

⎜
⎝

t∫

s+t
2

χν(u, y)du

⎞

⎟
⎠ Dν

v p̃(
s + t

2
, t, v, y)

+
∑

|ν|=3

1

ν!

⎛

⎝
t∫

s

χν(u, y)du

⎞

⎠ Dν
v p̃(s, t, x, y)

⎤

⎥
⎦

+
∑

|ν|=3

1

ν!

s+t
2∫

s

dτ

⎛

⎝
t∫

τ

χν(u, y)du

⎞

⎠
∫

Lt p(s, τ, x, v)Dν
v p̃(τ, t, v, y)dv

−
∑

|ν|=3

1

ν!

s+t
2∫

s

χν(τ, y)dτ
∫

p(s, τ, x, v)Dν
v p̃(τ, t, v, y)dv. (65)

For the second term we get

I I =
∑

|ν|=3

1

ν!
∫

p

(
s,

s + t

2
, x, v

)
⎛

⎜
⎝

t∫

s+t
2

χν(u, y)du

⎞

⎟
⎠ Dν

v p̃(
s + t

2
, t, v, y)dv

+
∑

|ν|=3

1

ν!
t∫

s+t
2

dτ

⎛

⎝
t∫

τ

χν(u, y)du

⎞

⎠
∫

Lt p(s, τ, x, v)Dν
v p̃(τ, t, v, y)dv
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−
∑

|ν|=3

1

ν!
t∫

s+t
2

χν(τ, y)dτ
∫

p(s, τ, x, v)Dν
v p̃(τ, t, v, y)dv. (66)

From (64) to (66) we have

p ⊗ L̃π̃1(s, t, x, y) = π̃1(s, t, x, y)+ p ⊗ Lπ̃1(s, t, x, y)− p ⊗ M̃1(s, t, x, y).

This shows that

π̃1(s, t, x, y)+ p ⊗ �1(s, t, x, y) = π̃1(s, t, x, y)

+ p ⊗ Lπ̃1(s, t, x, y)− p ⊗ L̃π̃1(s, t, x, y)

+ p ⊗ M1(s, t, x, y)− p ⊗ M̃1(s, t, x, y)

= p ⊗ M1(s, t, x, y). (67)

It follows from (67) and the definitions of the operations ⊗ and ⊗′
h that

√
h
[
π̃1 ⊗′

h �(s, t, x, y)+ (p ⊗ �1)⊗′
h �(s, t, x, y)

]

= √
h(π̃1 + p ⊗ �1)⊗′

h �(s, t, x, y)

= √
h(p ⊗ M1)⊗′

h �(s, t, x, y)

= √
h

∑

0≤ jh≤t−h

h
∫
(p ⊗ M1)(s, jh, x, z)�( jh, t, z, y)dz

= √
h

∑

0≤ jh≤t−h

h
∫

⎡

⎢
⎣

jh∫

s

du
∫

p(s, u, x, v)M1(u, jh, v, z)dv

⎤

⎥
⎦�( jh, t, z, y)dz

= √
h

∑

0≤ jh≤t−h

h
∫

⎡

⎣
t∫

s

duχ [s, jh]
∫

p(s, u, x, v)M1(u, jh, v, z)dv

⎤

⎦

×�( jh, t, z, y)dz

= √
h

t∫

s

du
∫

p(s, u, x, v)
∑

|ν|=3

χν(u, v)

ν!

× Dν
v

⎡

⎣
∑

0≤ jh≤t−h

hχ [s, jh]
∫

p̃(u, jh, v, z)�( jh, t, z, y)dz

⎤

⎦ dv

= √
h

t∫

s

du
∫

p(s, u, x, v)×
∑

|ν|=3

χν(u, v)

ν! Dν
v p�(u, t, v, y)dv

= √
h(p ⊗ F1)[p�](s, t, x, y). (68)
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Here, χ [s, jh] denotes the indicator of the interval [s, jh]. Using similar arguments
as in the proof of (68) one can show that

h
[
π̃2 ⊗′

h �(s, t, x, y)+ (p ⊗ �2)⊗′
h �(s, t, x, y) +p ⊗h (�3 ⊗′

h �)(s, t, x, y)
]

= h(p ⊗ F2)[p�](s, t, x, y)+ hp ⊗�1 ⊗′
h �(s, t, x, y). (69)

For the first two terms in the right hand side of (62) we obtain from (68) and (69)

√
h
[
π̃1 ⊗′

h �(0, T, x, y)+ (p ⊗ �1)⊗′
h �(0, T, x, y)

]

+ h
[
π̃2 ⊗′

h �(0, T, x, y)+ p ⊗ (�2 ⊗′
h �)(0, T, x, y)

+ p ⊗h (�3 ⊗′
h �)(0, T, x, y)

]

= √
h(p ⊗ F1)[p�](0, T, x, y)+ h(p ⊗ F2)[p�](s, t, x, y)

+ hp ⊗�1 ⊗′
h �(s, t, x, y). (70)

Using (68) we get

h
[
π̃1 ⊗′

h �+ p ⊗ (�1 ⊗′
h �

)] ⊗′
h (�1 ⊗′

h �)(0, T, x, y)

= h(p ⊗ F1[p�])⊗′
h (�1 ⊗′

h �)(0, T, x, y)

= hp ⊗ F1
[

p� ⊗′
h (�1 ⊗′

h �)
]
(0, T, x, y).

Note that

hp ⊗�1 ⊗′
h �(s, t, x, y) = h

t∫

s

du
∫

p(s, u, x, v)

×
∑

|ν|=3

χν(u, v)

ν! Dν
v [π̃1 ⊗′

h �](u, t, v, y)

= hp ⊗ F1[π̃1 ⊗′
h �](s, t, x, y).

For the proof of (63) it remains to show that

hp ⊗ F1[π̃1 ⊗′
h �+ p� ⊗′

h (�1 ⊗′
h �)](0, T, x, y)

= h (p ⊗ F1[p ⊗ F1[p�]]) (0, T, x, y)+ O(h1+δζ√T (y − x)). (71)

We will show that

hp ⊗ F1[(p − p�)⊗′
h (�1 ⊗′

h �)](0, T, x, y) = O(h1+δζ√T (y − x)), (72)

hp ⊗ F1[p ⊗′
h (�1 ⊗′

h �)](0, T, x, y)− hp ⊗ F1[p ⊗ (�1 ⊗′
h �)](0, T, x, y)

= O(h1+δζ√T (y − x)). (73)

Claim (71) follows from (72), (73) and (68). The estimate (73) can be shown similarly
as in the proof of (112) in [22]. An additional singularity arising from the derivatives
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in the operator F1[·] can be treated by using the additional factor h in (73). For the
estimate (72) see [22].

The proof of Theorem 1 is now completed by showing that

hp ⊗ F2[p�](0, T, x, y)− hp ⊗ F2[p](0, T, x, y) = O(h1+γ φC,
√

T (y − x)).

hp ⊗ F1[p ⊗ F1[p − p�]] = O(h1+δφC,
√

T (y − x)).

For a proof of these claims see [22].
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