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a b s t r a c t

The problem of minimizing the root mean square deviation of a uniform string with clamped ends from
an equilibrium position is investigated. It is assumed that the initial conditions are specified and the
ends of the string are clamped. The Fourier method is used, which enables the control problem with a
partial differential equation to be reduced to a control problem with a denumerable system of ordinary
differential equations. For the optimal control problem in the l2 space obtained, it is proved that the
optimal synthesis contains singular trajectories and chattering trajectories. For the initial problem of the
optimal control of the vibrations of a string it is also proved that there is a unique solution for which the
optimal control has a denumerable number of switchings in a finite time interval.

© 2010 Elsevier Ltd. All rights reserved.

The problem of controlling the vibrations of a string was considered previously1–3 in the class of generalized solutions, and a method of
determining the optimal control was presented for which the string transfers from an arbitrary specified position to an arbitrary specified
final position with a minimum value of the boundary energy integral. Here the control is either a displacement of one of the ends of the
string,1 or an elastic force acting on one of the ends,2 or a combined control is considered, namely, an elastic force, applied to the left end
of the string and a displacement of the right end.3 The problem of the transfer of the string from a rest position to a specified fixed position
in a specified time, when the displacement of one of the ends of the string serves as the control was considered in Ref. [4]; it was shown
that a sequence of finite-dimensional approximations of the problem (based on the Fourier representation) can be reduced in the norm of
the L2[0,T] space to the solution of the initial problem. Using a modified method of moments, the problem of the control of the motion of
an elastic system (described by a linear hyperbolic equation) by a concentrated force-type boundary action was investigated in Ref. [5]. A
detailed review of the results for problems of controlling elastic systems can be found in Ref. [6].

In this paper it is shown that, for the problem of minimizing the root mean square deviation of a uniform string with clamped ends
from an equilibrium position, the optimal control is a chattering control, i.e., it has a denumerable number of switchings in a finite time
interval.

1. Formulation of the problem

Consider the equation of small transverse vibrations of a tensed string of length l and constant linear density �

(1.1)

where u(t, x) and g(x, t) are the displacement of the string and the external force density (per unit mass of the string) at the instant of time
t at the point x, and K is the tension in the string. We will assume that the ends of the string are clamped:

(1.2)

and that the initial position and velocity of the string are fixed:

(1.3)

� Prikl. Mat. Mekh. Vol. 74, No. 5, pp. 857–863, 2010.
E-mail address: 1manita@rambler.ru

0021-8928/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2010.11.011

dx.doi.org/10.1016/j.jappmathmech.2010.11.011
http://www.sciencedirect.com/science/journal/00218928
http://www.elsevier.com/locate/jappmathmech
mailto:1manita@rambler.ru
dx.doi.org/10.1016/j.jappmathmech.2010.11.011


612 L.A. Manita / Journal of Applied Mathematics and Mechanics 74 (2010) 611–616

We will consider the external force density in the form

where f(x) is a certain specified function, and q(t) is the control function that obeys the constraints

(1.4)

The control q(t) is chosen so as to minimize the root mean square deviation of the string from the equilibrium position:

(1.5)

To solve problem (1.1)–(1.5) of the optimal control of the vibrations of a string, we will use Fourier’s method, which is successful in
solving many problems, for example, in problems of controlling a Timoshenko beam.7 In other words, we will seek a solution u(t, x) in
the form of a series in eigenfunctions of the elliptic operator L = −d2/dx2 with Fourier coefficients that depend on the variable t. We will
show below that the series obtained converges and gives a unique solution of the problem (a solution almost everywhere). The Fourier
coefficients turn out to be solutions of a certain optimal control problem with a denumerable system of ordinary differential equations –
the problem of stabilizing a denumerable number of oscillators under the action of a single force of limited modulus. We will prove that, for
initial conditions from a certain neighbourhood of the origin of coordinates, a solution of the problem exists and is unique, and the optimal
trajectories contain parts of a singular trajectory, which is connected with a non-singular control with an infinite number of switchings.

2. Reduction to an optimal-control problem in l2 space

In the domain of definition

we will consider the positive self-adjoint operator L = −d2/dx2, which possesses a complete system of eigenfunctions {hj(x)}∞
j=1, orthonor-

malized in the L2(0, l) space, and a corresponding system of eigenvalues {�j}∞j=1:

We will assume that the functions �(x),�(x), f(x)∈L2(0,l). We expand the solution u(t, x) of Eq. (1.1) and the function f(x) in the system
of eigenfunctions of the operator L (everywhere henceforth summation is carried out from j = 1 to j = ∞):

(2.1)

The cost functional (1.5) then takes the form

(2.2)

Substituting expansions (2.1) into Eq. (1.1), we obtain

Hence, by virtue of the orthogonality of the system of eigenfunctions it follows that the Fourier coefficients sj(t) satisfy the following
denumerable system of ordinary differential equations

(2.3)

and the problem consists of obtaining the Fourier coefficients sj(t).
We expand the functions �(x) and �(x) in Fourier series in the system {hj(x)∞

j=1}.
We obtain

The initial conditions for the functions sj(t) take the form

(2.4)

3. Optimal control with a denumerable system of oscillators

Thus, to obtain the functions sj(t) we consider the optimal control problem (2.2)–(2.4). The control q(t) is a scalar measurable function
that satisfies constraints (1.4). The following conditions are imposed on the problem parameters: cj /= 0 for all j, and the vectors � = (�1,
�2,. . .), � = (�1, �2,. . .) and C = (C1, C2,. . .) from the space l2.
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We introduce the following notation8

Problem (2.2)–(2.4) then takes the form

(3.1)

(3.2)

(3.3)

(3.4)

We define the following vectors

It necessarily follows from the minimization (3.1) that

The existence, uniqueness and continuous dependence on the initial data and the continuability over the whole numerical axis of the
solutions of Cauchy problem (3.2)–(3.3) were obtained8 from the explicit representation of the corresponding solutions.

For problem (3.1)–(3.4) it was shown in Ref. 8 that, for all initial data (a, b) from a certain open neighbourhood of the origin of the
space l2 × l2, the set of admissible trajectories is non-empty, namely, an admissible control exists which ensures an exponential decay in
the trajectory of system (3.2), whence the finiteness of functional (3.1) follows. Hence we obtain the assertion that a solution of problem
(3.1)–(3.4) exists for any initial data (a, b) from a certain open neighbourhood of the origin. The uniqueness of the optimal trajectory follows
from the strict convexity of functional (3.1) in the solutions of system (3.2).

We will apply a formally generalized Pontryagin’s maximum principle to problem (3.1)–(3.4). We desire the Pontryagin function

Denote the vector (�i1, �i2. . .)(i = 1,2) by �i.
Consider the following Hamiltonian system in the space l2 × l2 × l2 × l2

(3.5)

where

(3.6)

It was proved in Ref. 8 that for problem (3.1)–(3.4) Pontryagin’s maximum principle is the necessary and sufficient condition of
optimality. Thus we have the following assertions.

Lemma 1 ((the sufficient condition of optimality)). Suppose (�1(t), �2(t), s(t), �(t)) is an arbitrary solution of system (3.5)–(3.6) with the
boundary conditions

Then (s(t), �(t)) is a solution of problem (3.1)–(3.4).

Suppose q*(t) is the optimal control in problem (3.1)–(3.4) (it exists and is unique) and (s*(t), �*(t)) is the corresponding optimal trajectory.

Lemma 2 ((the necessary condition of optimality)). A non-trivial function (�1(·), �2(·)) exists with values in the space l2 × l2, which satisfies
the adjoint system of equations

such that following maximum condition holds

The optimal control is determined uniquely from the maximum condition, provided H1(t) /= 0.
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We will assume that an interval (t1, t2) exists such that

We will differentiate the identity H1(t) ≡ 0, by virtue of system (3.5), until a control appears with non-zero coefficient. We will then
assume that all the series obtained converge. We will introduce the following notation

We will have

(3.7)

It follows from relations (3.7) that, in the interval (t1, t2),

(3.8)

We will determine the extremal (i.e., the solution of system (3.5)–(3.6)), which lies on the surface (3.8) as a singular extremal. The
control on the singular extremal is then found from the last equation of (3.7) and is equal to

(3.9)

The following is proved for problem (3.1)–(3.4). For the initial data (a, b) from a sufficiently small neighbourhood of the origin of
coordinates, the optimal trajectory reaches the surface filled with the singular extremals in a finite time with an infinite number of control
switchings, and then the optimal trajectory remains on the singular surface. Namely, the following assertion holds.

Theorem 1 ((see Ref. 8).). Suppose cj /= ∀ j and the vector
(

c1ω4
1, c2ω4

2, c3ω4
3, . . .

)
∈ l2. We will assume that positive constants � and D

exist such that

Then, a neighbourhood of the origin of the space (s, �) exists such that, for all the initial data (�, �) from this neighbourhood, the
following assertions hold:

1) an optimal solution of problem (3.1)–(3.4) exists and is unique;
2) in the space (s, �, �1, �2) there is a surface � of codimensionality 4, given by Eqs (3.8), filled with the singular extremals of problem

(3.1)–(3.4), the control on which is defined by formula (3.9);
3) for all the initial data, not belonging to the projection of the singular surface � onto the space (s, �), the optimal trajectories reach � in

a finite time with an infinite number of control switchings.

4. The generalized solution of the problem of controlling the vibrations of a string and its properties

We proved in Section 3 that the optimal solution (s*(t), q*(t)) of problem (3.1)–(3.4) exists and is unique, and the optimal synthesis
contains singular trajectories and chattering trajectories.

If we fix the control q(t)=q*(t), the components of the vector s*(t) can be written in the form

(4.1)

After substitution into the first series (2.1) we obtain

(4.2)

Series (4.2) formally satisfies Eq. (1.1), boundary conditions (1.2) and initial conditions (1.3). We will further show that, when certain
constraints on these problems are satisfied, this series gives a generalized solution of problem (1.1)–(1.3).
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We will put QT=(0, l) × (0, T), where T > 0. We will define the space Hk(QT) = W2
k(QT) as a Sobolev space of functions from the L2(QT)

space, such that all their generalized derivatives up to order k belong to the L2(QT) space. We will denote by H0
k(QT) the space Wk

2,0(QT ),

which is a supplement of the space C∞
0 (QT ) with respect to the norm Hk(QT).

Definition 1. The function u ∈ H1(QT) is called a generalized solution in QT of problem (1.1)–(1.3), if it satisfies boundary conditions (1.2),
initial conditions (1.3) and the identity

for all � ∈ H1(QT), for which

Definition 2. The function u ∈ H2(QT) is called the solution, almost everywhere, of the initial-boundary-volume problem (1.1)–(1.3), if it
satisfies Eq. (1.1) in QT (for almost all (t, x) ∈ QT, and satisfies boundary conditions (1.2) and initial conditions (1.3).

We will formulate the main result for problem (1.1)–(1.5).

Theorem 2. Suppose the functions ˛ ∈ H2
0(0, l), ˇ ∈ H1

0(0, l), the function f(x) satisfies the conditions

(4.3)

and, moreover, all the coefficients of the Fourier expansion of the function f(x) in the system
{

hj(x)
}∞

j=1
are non-zero. Positive constants

�1 and �2 exist such that if

then a) the optimal solution u*(t, x) of problem (1.1)–(1.5) exists and is unique, u * (t, x) ∈ H2(QT), ∀ T > 0 and b) the optimal trajectories are
chatterings trajectories, i.e., the control on the optimal trajectory has an infinite number of switchings in a finite time interval.

Proof. We will check that the conditions of Theorem 1 are satisfied. Since the function f(x) satisfies conditions (4.3), then, for its Fourier
coefficients Cj in the expansion in the system of functions

the following estimates are true9

We then have

Hence it follows that

Moreover

Hence, for problem (3.1)–(3.4) Theorem 1 holds, i.e., the optimal control q*(t) has an infinite number of switchings in a finite time
interval.

We set up the series

(4.4)

where s∗
j
(t)(j = 1, 2, . . .) is the optimal solution of problem (3.1)–(3.4).

When the conditions of the theorem, imposed on the functions f, � and �, are satisfied, it follows10,11 that the function u*(t, x), defined
by series (4.4), is a unique generalized solution of problem (1.1)–(1.3), where u*(t, x) ∈ H2(QT). Consequently,10 u*(t, x) is the solution,
almost everywhere, of problem (1.1)–(1.3), i.e., the function u*(t, x) satisfies in QT (for any T > 0) Eq. (1.1) (for almost all (t, x) ∈ QT), boundary
conditions (1.2) and initial conditions (1.3).

In addition, we have
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Hence, if the function s∗(t) =
(

s∗
1(t), s∗

2(t), . . .
)

yields the minimum of functional (2.2), then the function u*(t, x), defined by series (4.4),
yields a minimum of functional (1.5), i.e., u*(t, x) is a solution of problem (1.1)–(1.5).
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