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A b s t r a c t  

An original model of atmospheric wave propagation from ground 
sources to the ionosphere in the atmosphere with a realistic high-altitude 
temperature profile is analyzed. Shaping of a narrow domain with ele-
vated pressure in the resonance region where the horizontal phase wave 
velocity is equal to the sound velocity is examined theoretically within 
the framework of linearized Eq.s. Numerical simulations for the model 
profiles of atmospheric temperature and viscosity confirm analytical re-
sult for the special feature of wave fields. The formation of the narrow 
domain with plasma irregularities in the D and low E ionospheric layers 
caused by the acoustic gravity wave singularity is discussed. 

Key words: atmosphere, realistic temperature profile, ionosphere, acous-
tic gravity waves, D and E layers. 

1. INTRODUCTION 
An actual problem for many applications is explaining the role of acoustic 
gravity waves (AGW) in the transfer of oscillating processes from the 
Earth’s surface to the upper atmosphere. The cause for the surface sources of 
these waves can be earthquakes, explosions, sea waves, and other artificial 
and natural processes (Blanc 1985). Both infrasound and internal waves play 
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an important role in different atmospheric phenomena (Francis 1975). Many 
important tasks for acoustics gravity waves in the Earth’s atmosphere have 
been studied theoretically. A general form of wave Eq.s is too complex for 
analytical solution, even in the linear approximation. This is caused by the 
real inhomogeneity of the atmosphere. Altitude profiles of the atmospheric 
parameters are taking into account different analytical models (see, e.g., Sav-
ina 1996). At present, the numerical methods of the solution of this problem 
are developed successfully and give a possibility of describing a propagation 
AGW taking into account different important factors, including the nonlin-
earity (see, e.g., Lund and Fritts 2012). 

In this paper, one of the aspects of the problem in question is examined. 
We carry out an analysis of AGW behavior near the resonance level, at 
which the condition of equality of horizontal phase wave velocity to the lo-
cal value of the sound velocity is satisfied. We have shown that in the 
Earth’s atmosphere the temperature profile is such that there is a range of 
wave phase velocities (or a frequency range with fixed horizontal dimen-
sions of the source) in which the wave does not pass through a resonance 
domain. We have found that local disturbances of the wave pressure compo-
nent are formed at the narrow resonance level. 

The resonance mentioned above is the reason for ionospheric irregulari-
ties with relatively small vertical scales in the D and Е layers. As will be 
shown in what follows, such irregularities, flattened vertically, contribute to 
the generation of sporadic E layers of the ionosphere with a large range of 
translucency. 

Sections 2, 3, and 4 of this paper are complementary. Some analytical 
properties of the waves in a non-isothermal atmosphere are discussed in Sec-
tion 2. Analytical conclusions on specific features of the fields of acoustic 
gravity waves at the resonance level are confirmed by numerical calcula-
tions, whose results are given in Section 3. Consideration of the ionospheric 
effects in the D and E ionospheric layers in Section 4 is based on the approx-
imation of passive impurity and the results obtained in the foregoing sec-
tions. 

2. WAVE  FIELD  NEAR  THE  RESONANCE  LEVEL 
The linearized system of equations of gas dynamics for the pressure pertur-
bations p∼ , the horizontal velocity υ∼ , and the vertical velocity w∼ is well 
known. We select axis z in the vertical direction and axis x in the horizontal 
direction. To simplify equations, it is convenient to introduce new field vari-
ables, namely: V = (ρ /ρE)1/2υ∼ , W = (ρ /ρE)1/2w∼ , and  P = (ρ /ρE)1/2p∼ , where 
ρ and ρE are the basic state densities in the current layer and at the ground 
level, respectively. Field variables are proportional to  exp (iωt + ik⊥x)  for 
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a monochromatic signal with frequency ω in plane atmospheric layers. Then 
the linearized system of equations for the wave perturbation can be reduced 
to the following form (Gossard and Hooke 1975): 
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g
E

s E s

ωω ω z W i z P
ρ z
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The perturbation of horizontal velocity can be determined as  V = (k⊥/ω)P. In 
Eq. 1, i is the imaginary unit, k⊥ is the horizontal wave number, /sc γp ρ=  
is the sound velocity, where 
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γ is the ratio of specific heats at constant pressure and volume, respectively, 
g is the acceleration due to gravity, and T(z) is the basic state temperature of 
the atmosphere. In adiabatic approximation, we have 

 /( ) 20.05 ( ) [m/s] ,sc z T z= ⋅ 1 2  

where T is Kelvin temperature. It is important for the following analysis that 
in the steady atmosphere (Lighthill 1978) the Ekkard parameter  Γ > 0  and 

gω >2 0   where ωg is the Brunt Väisälä frequency. According to Eq. 1, the 
averaged vertical energy flux  S = (1/2)(PW*+P*W) = const, i.e., S does not 
depend on altitude (Rapoport et al. 2004) a superscript asterisk is the sign of 
complex conjugation. Note that the basic-state temperature of the atmos-
phere T(z) is altitude dependent. The dependence ρ(z) is governed by the hy-
drostatic election  dp/dz = –ρg, where p is the basic state pressure. Taking 
into account the ideal gas law, we have the basic state density dependence in 
the form 

 1 1

0

( ) ( ) exp ( ) ,
z

E Ez T T z H z dz− −⎛ ⎞
′ ′= −⎜ ⎟

⎝ ⎠
∫ρ ρ  

where H(z) is the pressure scale height. 
Some altitude domain near  z = z*, where 

 [ ]( )sω c z k ω ε⊥< − <
2 20  
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and ε is small in the mathematical meaning with reasonably high accuracy, 
W ≈ 0  the sound velocity and the Ekkard parameter are almost constants, 
and system 1 is reduced to the following form: 

 *( ) 0 , ,z P z z
z
∂⎡ ⎤+ Γ = ≠⎢ ⎥∂⎣ ⎦

 (2a) 

 2 2 2
*( ) 0 , .sc z k P z zω ⊥⎡ ⎤− + = =⎣ ⎦  (2b) 

Consider in greater detail the processes near the resonance level  z = z* , 
which are described by the equation system 2. Pressure disturbances both 
above and below the level  z = z*  are satisfied according to Eq. 2а, but not 
according to Eq. 2b, because  ω ≠ csk⊥ , and W is infinitely small (see equa-
tion system 1), but its derivative can be finite. Exactly at the level,  z = z*  the 
conditions W = 0  and  dW/dz = 0  are fulfilled. Therefore, as follows from 
Eq. 2b, P can have an arbitrary value and Eq. 2а is not defined at this point. 
The absence of disturbances of both the vertical velocity and its derivative, 
leads to a conclusion that above level  z = z*  the solutions both for W and for 
P are identically equal to zero. Consequently, in order to balance the pres-
sure jump at the level in question, the finite mass should be concentrated at 
level  z = z* , which is taken into account in the solution using a delta func-
tion. 

A formal solution of equation system 2 near the level  z = z*  can be writ-
ten as follows (Savina and Bespalov 2014): 

 ( ) ( ) ( )

( )

2
* *

* * * * *

*

exp ( ) ,
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P P E z z z z z z

g
W z z
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where  E(z – z*)  is the Heaviside step function and  δ(z – z*)  is the Dirac 
delta function; by a subscript asterisk we mark the values of the variables at 
the layer  z = z*. Solution 3 depends on a single constant P*, which is deter-
mined by the boundary condition on the Earth’s surface. Thus, local disturb-
ance (Eq. 3) consists of a special feature in the altitude distribution of the 
pressure disturbance and characteristic structures P(z) and W(z) adjoining it 
from below. Actually, one or more resonance levels can exist in the real at-
mosphere for specified ω and k⊥ . Perturbations of the vertical velocity and 
pressure are absent (W = 0  and  P = 0)  everywhere above the first resonance 
level. Hence, if for the wave perturbation in the nonisothermal atmosphere at 
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some level  z = z*  a condition  ω = cs(z*)k⊥  is satisfied, then the averaged 
vertical energy flux is equal to zero. Above the first of such levels, wave per-
turbation are absent along the vertical propagation path. This effect is re-
sponsible for the formation of a waveguide channel between the Earth’s 
surface and the resonance level for the waves whose horizontal phase veloci-
ty is equal to the local sound velocity. 

Under the actual conditions, the resonance in the form of a delta function 
in the pressure disturbance, as well as in the horizontal velocity perturbation 
that is proportional to it  (V = P/cs(z = z*)ρE), is smeared due to the molecular 
viscosity and the nonlinearity. In the numerical calculations given below the 
molecular viscosity was taken into account. 

3. FULL-WAVE  CALCULATIONS  FOR  RESONANCE  ATMOSPHERIC  
PERTURBATION 

In this section, we determine perturbations of the pressure and vertical veloc-
ity by means of full-wave numerical calculations. We assume that on the 
ground level there is a monochromatic source of vertical velocity and that at 
the altitudes higher than 200 km level the atmosphere is isothermal. Numeri-
cal calculation of Eq. 1 made it possible to find the high-altitude distribution 
of the wave perturbations. 

The wave fields are conveniently calculated in dimensionless variables, 
which we selected as follows: 

 2, , ( ) , , .gE sE gE s s sE E E sEk k c c c z c W W W P P cω ω ω ω ρ⊥ ⊥= = = = =� � �� �  

Here, subscript E indicates the value of the variable on the Earth’s surface. 
The temperature profile depends on many factors in the real atmosphere. 

We selected the altitude temperature profile following the MSIS-E-90 model 
(Hedin 1991). For example, we chose one temperature profile T(z) for 
10 August 2012 at 15:00 UT for geographic latitude 65° and longitude 45°. 
We determine the analytical function for this temperature profile (Fig. 1a) 
and kinematic viscosity profile (Fig. 1b) (Kikoin 1976) using the model val-
ues marked by boxes and stars in Fig. 1, respectively. The temperature and 
viscosity profiles were approximated by polynomials of the tenth order. 

We give in Fig. 2 the results of numerical simulation for the inhomoge-
neous plane wave with the fixed frequency 0.52ω =�  and the horizontal 
wave number 0.5k⊥ =� . Therefore, simulations are one-dimensional, and 
task is two-dimensional. These results correspond to theoretical examination 
in Section 2. Numerical calculation is conducted in much the same way as in 
papers Rapoport et al. (2004) and Bespalov and Savina (2012). 

Unauthenticated
Download Date | 2/25/16 6:14 PM



O.N. SAVINA  and  P.A. BESPALOV 
 

324

Fig. 1. Typical atmosphere temperature profile T(z) as obtained from the MSIS-E-90 
model marked by boxes and spline curve T(z) (a), and typical altitude profile of mo-
lecular kinematic viscosity ν(z) in the Earth’s atmosphere (b). 

Fig. 2. Results of numerical calculations of AGW in the atmosphere (left column) 
and near the local disturbance (right column). 
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Figure 2 shows the local disturbance at an altitude near 113 km. In the 
upper panels, the dashed dotted curves are the altitude dependence ( )sc z k⊥

��  
and the dotted lines are the frequency ω� . In the bottom panels, the solid 
curves are the altitude dependence ( )P z�  and the dashed curves are the alti-

tude dependence ( )W z� . In Figure 2 on the right bottom panel the depend-

encies ( )P z� and ( )W z�  are given in greater detail for altitudes near 113 km, 

which correspond to the local disturbance. Calculations show that in this 
case the averaged vertical energy flux 0S = . 

The local disturbance at the resonance level, which corresponds to solu-
tion 3, is limited by the atmospheric viscosity. Numerical calculations were 
carried out within the framework of the linearized system of Eq.s, which is 
correct for sufficiently small Reynolds numbers  Re = υ~L/ν, where  

~ / /E s EP cυ ρ ρ ρ=   is the disturbance of horizontal velocity, and L is a typ-
ical vertical scale of local disturbances. For conditions near the local disturb-
ances, 10 m/s,υ∼ �  20 m,L �  2300 m /s,ν �  and  Re < 1. 

4. IONOSPHERIC  RESPONSE  TO  THE  ATMOSPHERIC  WAVE  
SINGULARITY 

At the altitudes of the ionosphere, acoustic gravity waves are the reason for 
the occurrence of ionospheric irregularities. It was shown above that at the 
resonance level a singularity appears in the atmospheric gas pressure distur-
bance, knowing which one could estimate the horizontal velocity υ∼. As nu-
merical simulations show, resonance layers can be formed lower than the 
level given as an example in Fig. 2. This depends on the profile of tempera-
ture and values of k⊥ and ω. The processes occurring in the neutral medium 
influence are passed here to the electrons and ions through collisions. At the 
altitudes of the D and E layers, the frequency of the acoustic gravity wave is 
much lower than the frequencies νin and νen of the ion and electron collisions 
with neutrals (νin ≈ 103 s–1  and  νen ≈ 104 s–1  at an altitude close to 110 km). 
Then, neglecting the collisions between charged particles, for the velocity of 
drag of the electrons and ions by neutrals in the absence of external electric 
fields and sharp density gradients one can write (Gershman 1974)  

 ( )
2 2
en,in e,i e,i

e,i n n 0 0 0 n2 2 2
en,inen,in e,i en,in

,H H

H

u u u h h h u
ν ω ω

νν ω ν
⎧ ⎫⎪ ⎪⎡ ⎤= +⎨ ⎬⎣ ⎦+ ⎪ ⎪⎩ ⎭
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where e,i,nuG  are velocities of electrons, ions and neutrals, 0h
G

 is a unit vector 
along the geomagnetic field direction, and ωHe,i are the electron and ion gy-
rofrequencies values, respectively. The minus sign is chosen for the electron 
velocity and the plus sign is chosen for the ion velocity. The disturbance of 
the densities  N ≈ Ni ≈ Ne  of the ionospheric plasma, which we assume to be 
quasi-neutral, can be estimated from the continuity equation: 

 ( )i,ediv 0 .N Nu
t

∂ + =
∂

G  (5) 

At the altitudes of the D layer and in the lower part of the Е layer, where 
the conditions νen,in > ωHe,i are fulfilled, it can be assumed that the 
ionospheric plasma is completely dragged by neutrals and  i e nu u u≈ ≈

G G G . The 
time τ of onset of forced distributions of electrons and ions can be estimated 
from the formula 

 
2

i in e en

2, whereL TD
D m m

κτ
ν ν

= =
+

 

is the diffusion coefficient, κ is Boltzmann’s constant, T is the absolute tem-
perature, and me,i are the electron and ion masses, respectively. A rough es-
timate shows that for the altitudes of the D and lower E layers, the time τ is 
of the order of a few seconds, which is much less than the period of the con-
sidered atmospheric gas oscillations. This means that the disturbances of the 
ionospheric plasma density in our case have temporal and horizontal spatial 
scales corresponding to the disturbance of neutral gas. Considering that in 
the linear approximation the disturbances of the electrons and ions densities 
are small and assuming that velocities of the charged particles are close to υ∼, 
Eq. 5) leads to the following formula 

 ,E

s E

k V NPN N
c

ρ
ω ρ ρρ
⊥= = 0

0 2
 (6) 

where N0 is the basic state of the ionospheric plasma density. In the deriva-
tion of the Eq. 6 it was taken into account that the vertical velocity distur-
bances of the atmospheric gas, which are related to the effect considered in 
the previous sections, is absent in the resonance region, and the equality  
ω = csk⊥  is justified. Since the disturbance of ionospheric plasma density is 
proportional to the pressure disturbance of the neutral gas, it should be ex-
pected that thin (several ten meters) and extended (of the order of the acous-
tic gravity wave horizontal scale determined by the horizontal scales of the 
source on the Earth’s surface) ionospheric irregularities with a periodically 
varied plasma density will be generated in the ionospheric D layer with 
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a weak gradient of the background density in the resonance level. The im-
pact of this resonance effect on the plasma at the altitudes of the ionospheric 
Е layer, where  νin ∼ ωHi,νen << ωHe  (electrons are strongly magnetized) and 
there are conditions for the sporadic Е layers generation, is more difficult for 
analysis. This is due to the fact that the electron density gradient should be 
taken into account and the Whitehead force, which leads to a still greater re-
duction of the domain thickness, should play an important role. In this case 
the formation of finite mass on the resonance level (Fig. 2) must lead to the 
formation of narrow (in vertical directive) horizontal ionospheric irregulari-
ties. Irregularities of such a type can be observed on the ionograms in the 
form of mildly sloping weakly diffuse sporadic layers with a large range of 
translucency (Fatkullin et al. 1985). 

5. SUMMARY 
Local acoustic-gravity disturbance in the nonisothermal atmosphere has been 
studied. According to the analytical results, the pressure wave amplitude has 
a local wave singularity near the layer at which the horizontal phase velocity 
is equal to the sound velocity. It is shown for the real altitude temperature 
profile in the atmosphere that near this layer the wave pressure component 
has a singularity, and the vertical velocity in the disturbance becomes zero. 

In real conditions, many resonance layers (for different ω and k⊥) can ex-
ist. The fact is that the atmospheric viscosity and nonlinearity limits the pres-
sure wave singularity. We discussed the case when the viscosity influence on 
the density spike is more important. For such a situation, the vertical dimen-
sions of singularity domain will be of the order of the mean free path of the 
molecules at the resonance level. 

Estimates show that at altitudes of about one hundred kilometers the vis-
cosity limits the scales to several hundreds of meters. Ionospheric plasma at 
these altitudes and below behaves as a passive impurity and therefore 
ionospheric irregularities with the same characteristic features as the neutral 
gas disturbances should be observed, including the case where the condition 
of the resonance feature generation is fulfilled. It is shown in paper 
Erukhimov and Savina (1980) that irregularities such a structure are the main 
reason for the formation of weakly diffuse sporadic Е layers with a large 
range of translucence. In the framework of the model in question, the time of 
existence, altitude, and space scales of such layers are fundamentally de-
pendent on the parameters of the ground-based acoustic gravity waves 
sources and ionospheric conditions. 
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