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Abstract—The system of equations of gravity surface waves is considered in the case where the
basin’s bottom is given by a rapidly oscillating function against a background of slow variations of
the bottom. Under the assumption that the lengths of the waves under study are greater than the
characteristic length of the basin bottom’s oscillations but can be much less than the characteristic
dimensions of the domain where these waves propagate, the adiabatic approximation is used to pass
to a reduced homogenized equation of wave equation type or to the linearized Boussinesq equation
with dispersion that is “anomalous” in the theory of surface waves (equations of wave equation type
with added fourth derivatives). The rapidly varying solutions of the reduced equation can be found
(and they were also found in the authors’ works) by asymptotic methods, for example, by the WKB
method, and in the case of focal points, by the Maslov canonical operator and its generalizations.
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1. INTRODUCTION
In linear problems for partial differential equations, the homogenization methods work in situations

where their coefficients are rapidly oscillating functions. In numerous publications concerned with
homogenization methods, both serious theoretical mathematical problems and their applications were
considered; here we mention only [1]–[4]. As a rule, they are used to construct asymptotic solutions
of the initial equation whose leading term is already a sufficiently smooth (but not a rapidly oscillating)
function. On the other hand, in many physical problems, it is of interest to consider the situations
where the leading term of the asymptotic solution is also a rapidly varying function. In this case, the
initial problem contains several different scales, and it is reasonable to use the adiabatic approximation
to solve the problem. In the present paper, these methods are used to study surface waves in the case
where the basin’s bottom is represented by a rapidly oscillating function against a background of slow
variations in the basin’s bottom. Moreover, it is also assumed that the lengths of the waves under study
are greater than the characteristic length of the basin’s bottom oscillations but can be much less than
the characteristic dimensions of the domain where these waves propagate.

We consider an incompressible ideal vortex-free liquid in a gravity field, neglecting the temperature
and the molecular-diffusion and dissipative effects. For simplicity, we eliminate the effects caused by
wave reflection from the basin shores. We consider only a domain Ω in space with horizontal x = (x1, x2)
and vertical z coordinates and assume that the unperturbed surface of the liquid is described by the
equation z = 0 and the free surface of the liquid is determined by the equation z = η(x, t). We assume
that the basin’s bottom is given by the equation z = −H(x), H(x) > 0. In particular, such problems
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arise in the study of tsunami waves (see, e.g., [5]); then the function η, which is the excess over the free
surface, describes a long wave on the ocean surface over rapidly varying regions of the bottom.

If the function H regularly depends on x (in dimensionless variables, which will be introduced below),
then the problem solution is determined by asymptotic formulas obtained in [6]–[8] and appealing to the
Hamiltonian system in the four-dimensional phase space with Hamiltonian H|p|. Here we consider the
case where H is a rapidly oscillating function against a background of slow variations in the basin’s
bottom. In the situation under study, the theory developed in the works cited above cannot be used any
more, and it is already necessary to use homogenization type methods. In such situations, we use the
homogenization version developed in [9]–[11] (see also [12]–[14]).

In Sec. 2, we study the system of equations for the velocity potential Φ in the linear approximation
of small amplitude waves. In the corresponding dimensionless system, there is a parameter h = d/l,
where d is the characteristic depth of the basin and l is the characteristics length (in the variables x)
of slow variations in the basin’s bottom. In what follows, h is assumed to be a small parameter, which
allows us to use asymptotic methods to solve the problem. Then the problem is reduced to solving a
certain two-dimensional pseudodifferential equation for the function ψ = Φ|z=0, where Φ is the velocity
potential. In Sec. 3, the version of the homogenization method developed in [9], [11] is applied to the
equation obtained for ψ, which allows us to obtain the reduced equation to which we can apply the WKB
method, and if there are focal points, the Maslov canonical operator and its generalizations.

As was already noted, this allows us to study the waves whose length is much less than the
characteristic length of slow variations in the basin’s bottom but greater than the characteristic length
of the basin’s bottom oscillations. In Sec. 4, we obtain approximate formulas for the coefficients of the
reduced equation in the case where the function H has a small oscillating part.

2. REDUCTION OF THE PROBLEM TO SOLVING A TWO-DIMENSIONAL
PSEUDODIFFERENTIAL EQUATION

In the linear approximation of small amplitude waves, we have the following system for the velocity
potential [15]–[17]:

Φzz + ∆Φ = 0 for − H(x) < z < 0, (2.1)

(Φz + ∇xH · ∇xΦ)|z=−H(x) = 0, (2.2)

(Φt + gη)|z=0 = 0, (ηt − Φz)|z=0 = 0. (2.3)

Here ∇x = (∂/∂x1, ∂/∂x2), ∆ = ∇2
x, and g is the free fall acceleration.

We pass from the variables (x, z, t) to the dimensionless variables x′ = x/l, z′ = z/d, t′ =
√

gd t/l
and denote

H ′ =
H(lx′)

d
, Φ′(x′, z′, t′) =

Φ(lx′, dz′, lt′/
√

gd )
a
√

gd
, η′(x′, t′) =

η(lx′, lt′/
√

gd )
a

,

where d is the characteristic depth of the basin, l is the characteristic length in the variables x, and a is
the wave amplitude. Then system (2.1)–(2.3) becomes (we omit the primes on the new variables):

Φzz + h2∆Φ = 0 for − H(x) < z < 0, (2.4)

(Φz + h2∇xH

(
x,

θ(x)
ε

)
· ∇xΦ)|z=−H(x) = 0, (2.5)

(hΦt + η)|z=0 = 0, (hηt − Φz)|z=0 = 0, (2.6)

where h = d/l. In what follows, we assume that h is a small parameter and seek the approximate
(asymptotic as h → +0) solution of this system. About the behavior of the function H describing the
basin’s bottom profile (in dimensionless variables), we assume that it has the shape H(x, θ(x)/ε), where
H(x, y) is a smooth function 2π-periodic in the variables y1 and y2 (y = (y1, y2)), θ(x) = (θ1(x), θ2(x))
is a smooth vector function, and the phases θj are not collinear, i.e., the matrix θx composed of the rows
((θ1)xk

, (θ2)xk
), k = 1, 2, is nondegenerate. The fact that the phases Θx nonlinearly depend on x means

that there is a weak variation in the frequencies of spatial oscillations of the bottom profile. The one-
phase case where θ(x) is a scalar function and y is a single variable, can be considered similarly with
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several obvious changes. The parameters h and ε are assumed to be small; moreover, we assume that
they are related as h = ε2.

Problems of such type arise, in particular, in the study of tsunami waves (see, e.g., [5]); then the
function η, which is the excess over the free surface, describes a long wave on the ocean surface over
rapidly varying regions of the bottom. The condition H(x, η) > 0 means that the influence of the shore
boundaries is not considered.

To construct the solutions of system (2.4)–(2.6), we use the considerations discussed in [18], [19]
and the techniques of ordered operators [20]–[22]. In what follows, we show that system (2.4)–(2.6)
can be reduced to a single equation for the function ψ(x, t) = Φ(x, z, t)|z=0, and this is already a
pseudodifferential equation. After deriving this equation, its specific physically interesting solutions can
be obtained directly by using the homogenization procedure and the Maslov asymptotic method.

Numerous monographs and papers deal with pseudodifferential equations (with a parameter), the
techniques of ordered operators, the Maslov asymptotic theory, and their applications (see, e.g., [20]–
[22] and the references therein). But, for the reader’s convenience, we here repeat the necessary
definitions and formulas of this theory.

Recall that, in the two-dimensional case, the h-pseudodifferential operator L̂ with symbol L(x, p, h)
is determined by the formula

L̂ψ = L

(
2
x,

1

−ih
∂

∂x
, h

)
ψ =

1
(−2πih)

ˆ
R2

eipx/hL(x, p, h)ψ̃(p) dp, (2.7)

where ψ̃ is the Fourier transform of the function ψ(x):

ψ̃(p) =
1

(2πih)

ˆ
R2

e−ipx/hψ(x) dx, p = (p1, p2).

The index over an argument shows the order of application of the required operator. The existence of
such operators guarantees, for example, that the following estimates [22] are satisfied:∣∣∣∣∂|m|+|l|L(x, p, h)

∂xm∂pl

∣∣∣∣ ≤ Cm,l(1 + |x|)M (1 + |p|)M

for some integer M and arbitrary multiindices m and l.
Generalizing the approach in [18], [19], we seek the solution of Eqs. (2.4), (2.5) in the form

Φ = R̂ψ, ψ = Φ|z=0, R̂ = R

(
2
x,

1

−ih
∂

∂x
,
θ(

2
x)
ε

, z, ε

)
, (2.8)

where the function R(x, p, y, z, ε) is periodic in y1 and y2 with period 2π. The function R(x, p, y, z, ε) is
called the symbol of the operator R. The meaning of the introduced new variables y is that they allow
one to regularize the coefficients of Eq. (2.5); namely, the obtained coefficients already smoothly depend
on ε as ε → +0.

Substituting Φ in the form (2.8) into Eq. (2.4), we obtain

(
∂2

∂z2
− (ih∇x)2)

)
R

(
2
x,

1

−ih
∂

∂x
,
θ(

2
x)
ε

, z, ε

)
ψ(x) = 0. (2.9)

Let us find the symbol of the operator in the left-hand side of (2.9). The condition that this symbol is
zero is sufficient for (2.4) to be satisfied. To perform this, it is required to “pull” the operator −ih∂/∂x

through R̂. Let us explain this operation. In the general case of an h-pseudodifferential operator L̂ with
symbol L(x, p, h), we differentiate the integrand in (2.7) to obtain(

−ih
∂

∂x

)
L̂ψ =

1
(−2πih)

ˆ
R2

eipx/h

(
p − ih

∂

∂x

)
L(x, p, h)ψ̃(p) dp.

Thus, the symbol of the operator (−ih∂/∂x)L̂ has the form (p − ih∂/∂x)L(x, p, h). We note that the
obtained formula is a special case of the well-known composition formulas for h-pseudodifferential
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operators, but we need only this special case. We twice “pull” (−ih∂/∂x) through R̂ in (2.9) and obtain
the symbol of the operator (−ih∂/∂x)2R̂ in the form(

p − ih∇x − i
h

ε
θx∇y

)2

R(x, p, y, z, ε).

As a result, we see that the symbol of the operator in the left-hand side of (2.9) becomes

Rzz −
(

p − ih∇x − i
h

ε
θx∇y

)2

R(x, p, y, z, ε).

Equating this symbol with zero, as well as the symbol of the operator in Eq. (2.5) with the obvious
condition R|z=0 = 1, we obtain the boundary-value problem in the case h = ε2 (cf. [18], [19]):

Rzz − (p − ε2∇x − iεθx∇y)2R = 0 for − H(x, y) < z < 0, R|z=0 = 1, (2.10)

Rz + i〈(ε2∇x + εθx∇y)H, (p − iε2∇x − iεθx∇y)R〉|z=−H(x,y) = 0. (2.11)

We let 〈 · , · 〉 denote the real scalar product of vectors. Representing R as the asymptotic series R =
R0 + εR1 + ε2R2 + · · · and equating the coefficients of equal powers of ε with zero, from (2.10), (2.11)
we obtain a chain of ordinary differential equations in z for determining Rj . The variables (x, p, y) enter
these equations as parameters, in particular, for R0 and R1, we have

R0
zz − p2R0 = 0 for − H(x, y) < z < 0, R0|z=0 = 1, R0

z|z=−H(x,y) = 0, (2.12)

R1
zz − p2R1 = −2i〈p, θx∇yH〉R0 for − H(x, y) < z < 0, (2.13)

R1|z=0 = 0, (R1
z + i〈p, θx∇yH〉R0)|z=−H(x,y) = 0. (2.14)

Solving (2.12)–(2.14), we obtain

R0 =
cosh[(z + H)|p|]

cosh(H|p|) , (2.15)

R1 =
i〈p, θx∇yH〉
cosh3(H|p|)

[H sinh(z|p|) sinh(H|p|) − z cosh(z|p|) cosh(H|p|)]. (2.16)

The solution of the corresponding equations for R2 is rather cumbersome, but for further calculations,
it suffices to obtain R2 up to O(p2) as p → 0. With the relation R0 = 1 + O(p2) taken into account, we
can rewrite the system for determining R2 as

R2
zz = O(p2) for − H(x, y) < z < 0,

R2|z=0 = 0, R2
z|z=−H(x,y) = −i〈p,∇xH〉 + O(p2),

so that, up to O(p2), we obtain a sufficiently simple formula for R2:

R2 = −i〈p,∇xH〉z + O(p2). (2.17)

Similar argument easily shows that Rj = O(|p|) for all j ≥ 2.
Now we consider Eqs. (2.6) which imply

(h2Φtt + Φz)|z=0 = 0.

Representing Φ as Φ = R̂ψ (see formula (2.8)), we obtain the pseudodifferential equation

h2ψtt + L̂ψ = 0, (2.18)

where the h-pseudodifferential operator L̂ = R̂z|z=0 has symbol L = L0 + εL1 + ε2L2 + · · · , and

Lj(x, p, y) = Rj
z(x, p, y, z)|z=0.

With relations (2.15), (2.16), (2.17), Rj = O(|p|) for j ≥ 2, and |p| tanh(H|p|) = Hp2 + O(p4) taken
into account, we see that the symbol L has the form

L(x, p, y, ε) = Hp2 − iε〈θx∇yH, p〉 − iε2〈∇xH, p〉 + V0(x, p, y)p4
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+ ε〈θx∇yH, p〉p2V1(x, p, y) + ε2〈V2(x, p, y, ε)p, p〉 + ε3〈V3(x, p, y, ε), p〉,
where V2 is a matrix-valued symbol, V3 is a vector-valued symbol, and V0 and V1 are scalar symbols.
Now, if we pass from the operators p̂ = −ih∂/∂x = −iε2∂/∂x to the operators p̂ε = −iε∂/∂x, so that
p = εpε, then Eq. (2.18) can be written as

ψtt =
〈
∇x,H

(
x,

θ(x)
ε

)
∇x

〉
ψ − V

(
2
x,

1
−iε∇x,

θ(
2
x)
ε

, ε

)
ψ, (2.19)

where

V (x, pε, y, ε) = V1(x, εpε, y, ε)p4
ε + 〈V2(x, εpε, y, ε)pε, pε〉 + 〈V3(x, εpε, y, ε), pε〉. (2.20)

Thus, we obtain the following assertion.

Lemma 1. Solving system (2.4)–(2.6) can be reduced to solving Eq. (2.19) for the function
ψ = Φ(x, z, t)|z=0, and the symbol V (x, pε, y, ε) has the form (2.20).

We cannot determine the explicit symbols Vj , although we could find finitely many terms of their
asymptotic expansions by solving an appropriate number of equations for Rj , which would lead to very
cumbersome formulas. But, in what follows, we see that the specific form of these symbols does not
affect the leading term of the asymptotic expansions of the solutions to Eq. (2.19), which we consider
below.

A differential operator with a rapidly oscillating coefficient H(x, θ(x)/ε) is contained in Eq. (2.19).
As was already noted in the introduction, the homogenization methods, as a rule, are used to construct
asymptotic solutions whose leading term is already a sufficiently smooth (but not rapidly oscillating)
function. On the other hand, in many physically interesting problems, there are situations where the
leading term of the asymptotic solution is also a rapidly varying function. In such situations, we use the
version of the homogenization method developed in [9], [11]. The goal in the further calculations is to
obtain equations

ε2wtt = −L(
2
x,

1
−iε∇x, ε)w

or their symbols L(x, p, ε), whose coefficients already regularly depend on the parameter ε, whose
solutions w can be used to express several asymptotic solutions of Eq. (2.19), and hence of the initial
system (2.4)–(2.6). These equations will be called homogenized equations, and the procedure of their
derivation, the homogenization.

3. HOMOGENIZED EQUATIONS
3.1. General Scheme for Deriving the Homogenized Equations

We briefly describe the approach used to derive the homogenized equations, which was developed
in [12], [14], [9]. The solution of the problem is first represented as

ψ = Ψ
(

x,
θ(x)

ε
, t, ε

)
, (3.1)

where the function Ψ(x, y, t, ε) 2π-periodic in y1 and y2 satisfies the equation

ε2Ψtt = −ĤΨ, (3.2)

Ĥ = 〈(−iε∇x − i∇θ
y),H(x, y)(−iε∇x − i∇θ

y)〉 + ε2V (
2
x,

1

−iε∇x − i∇θ
y,

2
y, ε), (3.3)

where ∇θ
y from now on denotes θx∇y.

The operator V in the right-hand side of Eq. (3.3) is understood as follows. We expand the symbol
Vj(x, εpε, y, ε) in formal power series in pε and ε and then replace pε by the operators −iε∇x − iθx∇y.
After appropriate simplifications, we write the operator V as the sum of terms

V (
2
x,

1

−iε∇x − i∇θ
y,

2
y, ε) =

∑
bj,k,m(x, y)εj(−iε∇x)k(−i∇y)m,
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where k and m are multiindices, k = (k1, k2), m = (m1,m2), and n + 4 ≥ |k| + |m| (|k| = k1 + k2,
|m| = m1 + m2). Thus, we can write the operator V in the right-hand side of (3.3) as the ε-
pseudodifferential operator

V (
2
x,

1

−iε∇x − i∇θ
y,

2
y, ε) = Ṽ (

2
x,

1
−iε∇x, y,−i∇y, ε)

with an operator-valued symbol admitting the asymptotic expansion

Ṽ (
2
x, pε, y,−i∇y, ε) = Ṽ0(

2
x, pε, y,−i∇y) + εṼ1(

2
x, pε, y,−i∇y) + · · · ,

where

Ṽj(
2
x, pε, y,−i∇y) =

∑
k,m

bj,k,m(x, y)pk
ε(−i∇y)m.

Accordingly, we can write the operator Ĥ in (3.3) as the ε-pseudodifferential operator

Ĥ = H(
2
x,

1
−iε∇x, y,−i∇y, ε)

with an operator-valued symbol admitting the asymptotic expansion

H(x, pε, y,−i∇y, ε) = H0(x, pε, y,−i∇y) + εH1(x, pε, y,−i∇y) + · · · , (3.4)

and Hj(x, pε, y,−i∇y) are differential operators with respect to y.
This equation belongs to the class of equations known in the mathematical literature (see [20], [23])

as equations with operator-valued symbols. The meaning of the introduced new variables y is that they
allow one to regularize the coefficients of Eq. (2.19) so that the obtained coefficients already regularly
depend on ε as ε → 0.

The use of the adiabatic approximation in operator form [14], [23], [9] allows one to obtain several
solutions of Eq. (3.2). We seek the solutions Ψ of Eq. (3.2) in the form of action of some (so far unknown)
pseudodifferential operator on the new (also so far unknown) function

Ψ(x, y, t, ε) = χ̂w ≡ χ(
2
x,

1
−iε∇x, y, ε)w(x, t, ε). (3.5)

Here χ̂ is the “intertwining” pseudodifferential operator with symbol admiting the asymptotic expansion

χ(x, pε, y, ε) = χ0(x, pε, y) + εχ1(x, pε, y) + · · · . (3.6)

We assume that the function w satisfies the “effective” (reduced or “homogenized”) equation1:

ε2wtt = −L(
2
x,

1
−iε∇x, ε)w, (3.7)

whose symbol L admits the regular expansion in ε:

L(x, pε, ε) = L0(x, pε) + εL1(x, pε) + · · · . (3.8)

The function Heff(pε, x) = L0(x, pε) is called the (classical) effective Hamiltonian. If we obtain
L(x, pε), then the construction of (some) solutions of Eq. (3.2), and hence of the initial system of
Eqs. (2.1)–(2.3), reduces to solving Eq. (3.7). It is impossible exactly to determine both L(x, pε), and the
solution w of Eq. (3.7), and hence we deal only with the corresponding asymptotics. Our considerations
are adapted to asymptotics based on the semiclassical approximation or on its generalizations. If we
deal with real applications, then it suffices (see below and [9]–[11], [23]–[26]) to determine Lj(x, pε) and
even their expansions in pε; in this case, the algorithm for determining fast varying asymptotic solutions
is based only on operations with Lj(x, pε); the calculations use the corresponding differential equation
only because it can be reconstructed from the symbol L(x, pε) = L0(x, pε) + · · · + O(ε3).

The operators χ̂ and L̂ must be related as

Ĥχ̂ = χ̂L̂, (3.9)

1In the physical literature, the change p → −iε∇x in the function L(x, p, ε) is called the Peierls substitution [27].
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which implies the equation

χ(
2
x,

1
pε − iε∇x, y, ε)L(x, pε, ε) = H

(
2
x, pε −

1
iε∇x, y,−i

∂

∂y
, ε

)
χ(x, pε, y, ε) (3.10)

for their symbols (see Lemma 1 in [9]), where

H(x, pε, y,−i∇y, ε) = H0(x, pε, y,−i∇y, ε)

+ εH1(x, pε, y,−i∇y, ε) + ε2Ṽ (x, pε, y,−i∇y, ε),

H0(x, pε, y,−i∇y, ε) = 〈(pε − i∇θ
y),H(y, x)(pε − i∇θ

y)〉,
H1(x, pε, y,−i∇y, ε) = −〈∇x,H(y, x)∇θ

y〉 − i〈∇x,H(y, x)pε〉.

3.2. Calculation of the Symbols by Perturbation Series in the Parameter ε
and Small Momentum Variables

Equation (3.10) can be solved by perturbation theory methods. For the problems considered in the
present paper, the solution is determined as an expansion in a small parameter ε and a (small) variable pε.
As was already noted, to construct the leading term of the asymptotics, it suffices to consider finitely
many terms of the corresponding expansions.

First, we use the perturbation series in the parameter ε. For the leading terms χ0 and L0(x, pε) of
expansions (3.6) and (3.8), we obtain the following family of problems, which depend on x and pε and
are 2π-periodic in y1 and y2:

H0χ0(x, pε, y) = L0(x, pε)χ0(x, pε, y), H0 = 〈(pε − i∇θ
y),H(y, x)(pε − i∇θ

y)〉. (3.11)

Problem (3.11) has infinitely many solutions, i.e., infinitely many “modes” (eigenfunctions and eigen-
values). We are interested in the solution with the minimal eigenvalue. For such a solution, we have the
following expansions in the momentum variables pε:

L0(x, pε) = L(2)
0 (x, pε) + L(4)

0 (x, pε) + O(|pε|6), L1(x, pε) = L(1)
1 (x, pε) + O(p2

ε), (3.12)

where L(k)
j are homogeneous polynomials in pε of degree k. We write the corresponding formulas

obtained in [9], [10].
For any function f(x, pε, y) 2π-periodic in the variables y1 and y2, i.e., for a function defined on the

torus T = {y1 ∈ [0, 2π], y2 ∈ [0, 2π]}, we denote the homogenized value by

〈f〉T =
1

(2π)2

ˆ 2π

0

ˆ 2π

0
f(x, pε, y) dy1 dy2. (3.13)

In what follows, it is convenient to introduce the space L2(T) in the variables y with “normed” scalar
product by setting

(g, f)L2(T) =
1

(2π)2

ˆ
T

g(y)f(y) dy (3.14)

for any functions g(y) and f(y), where the bar denotes complex conjugation. In the one-phase case, the
integrals in (3.13) and (3.14) are taken over the circle y ∈ [0, 2π] and the multiplier (2π)−2 is replaced
by (2π)−1.

Further, we introduce the operators

∆θ
y = 〈∇θ

y,H(x, y)∇θ
y〉, D = 〈pε,∇θ

y〉
and consider the equation (the problem on the cell)

∆θ
yF = f, (3.15)

where f(x, pε, y) is a smooth 2π-periodic (in the variables yj) function with zero mean. This
equation has a unique (smooth) solution with zero mean. This solution is denoted by F (x, pε, y) =
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f(x, pε, y)/∆θ
y . Let H0(x) = 〈H(x, y)〉T and ã(x, y) = H(x, y) − H0(x). In addition to the operator D,

we introduce the operator Q = DH − HD. We let g0(x, y), g1(x, pε, y), and g2(x, pε, y) denote the
solutions with zero mean on the cell:

g0 =
1

∆θ
y

ã, g1 =
1

∆θ
y

(Dã), g2 =
1

∆θ
y

(Qg1 − 〈Qg1〉T), 〈g0,1,2〉T = 0. (3.16)

We note that g1(x, pε, y) is a linear homogeneous function of pε and g2(x, pε, y) is a second-order
homogeneous polynomial in pε.

Lemma 2. For x lying in a compact set K and for sufficiently small pε, the minimal eigen-
value L0(x, pε) of the operator H0 is nondegenerate and analytic in pε. Then the functions
χ0(x, pε, y) and χ1(x, pε, y) can be chosen to be analytic in pε, so that expressions (3.12) hold with

L(2)
0 (x, pε) = p2

εH0 − 〈HDg1〉T, L(1)
1 (x, pε)) = i〈〈∇x,H∇θ

yg1〉〉T − i〈∇x,H0pε〉, (3.17)

L(4)
0 (pε, x) = p4

ε〈g0ã〉T + 2p2
ε〈g1Qg0〉T + 〈g2

1〉T〈Qg1〉T + p2
ε〈g2

1 ã 〉T + 〈g2Qg1〉T, (3.18)

χ0 = 1 − ig1(y, x, pε) + p2
εg0(y, x) − g2(x, pε, y) − 1

2
〈g2

1〉T + O(|pε|3), (3.19)∥∥∥∥1 − ig1(y, x, pε) + p2
εg0(y, x) − g2(x, pε, y) − 1

2
〈g2

1〉T
∥∥∥∥

L2(T)

= 1 + O(|pε|3). (3.20)

Proof. Formulas (3.17) were proved in [9], and formulas (3.18)–(3.20) were proved in [10]. For the
waves whose length is greater than the characteristic length of oscillations of the basin’s bottom, we
seek the solution of the reduced equation (3.7) by using the WKB method.

3.3. WKB-Solutions of Homogenized Equations

Let w have the form

w = A(x, t)eiS(x,t)/µ, µ = εk, 1 > k > 0. (3.21)

When using the WKB method, it is convenient to pass from the operators p̂ε = −iε∇x to the operators

p̂µ = −iµ∇x so that pε = (ε/µ)pµ. In the case 0 < k ≤ 2/3, we only consider the terms L(2)
0 (x, pε),

L(4)
0 (x, pε), and L(1)

1 (x, pε) in the expansion of the symbol L by writing Eq. (3.7) in the form

µ2wtt = −L(2)
0 (

2
x,

1
−iµ∇x)w − ε2

µ2
L(4)

0 (
2
x,

1
−iµ∇x)w − µL(1)

1 (
2
x,

1
−iµ∇x)w. (3.22)

The coefficient ε2/µ2 of L(4)
0 in (3.22) is equal to µ(2−2k)/k, and (2 − 2k)/k ≥ 1 for 0 < k ≤ 2/3.

Therefore, the second term in the right-hand side of (3.22) can be taken into account in the transport
equation for A by writing it in the form

2StAt + SttA = 〈(L(2)
0 )p(x,∇xS),∇xA〉 +

1
2

ASp((L(2)
0 )pp(x,∇xS)Sxx)

+ iL(1)
1 (x,∇xS) + iµ2/k−3L(4)

0 (x,∇xS),

i.e., the term corresponding to L(4)
0 are added to the standard transport equation, where only L(2)

0 is taken
into account, and then A depends on x, t, and µ. We obtain the standard Hamiltonian–Jacobi equation
for the phase S:

S2
t = L(2)

0 (x,∇xS).

The orders (with respect to the parameter µ) of the terms of the expansion of L in pε and ε, which do not
enter the right-hand side of (3.22), are greater than one, and they are neglected when the leading term
of the WKB-approximation is calculated.
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If the second term on the right-hand side of Eq. (3.22) is neglected in the transport equation but is
taken into account in the equation for the phase, which is written in the form

S2
t = L(2)

0 (x,∇xS) + µ2/k−2L(4)
0 (x,∇xS),

then we obtain the WKB-approximation (3.21) for all 0 < k < 4/5 (in this case, A and S depend on x, t,
and µ). In the case 1 > k ≥ 4/5, the approximate equation (3.22) can no longer be used, because, for
such k, the terms with j ≥ 6 begin to play a significant role in the expansion (3.12) of the symbol L0

in homogeneous polynomials in p (the closer k to one, the greater the number of the expansion terms
to be considered). Thus, for waves with µ = εk, 0 < k ≤ 4/5, an approximate solution of the reduced
Eq. (3.7) can be obtained by using the WKB method with Eq. (3.22).

We note that a similar approach was used in [11] (also see [6], [8]) to study the waves generated by a
localized source in the initial data of the form

w|t=0 = W

(
x

µ

)
, wt|t=0 = 0,

where W (z) is a function sufficiently fast decreasing as x → ∞.

3.4. Smooth Solutions (Long Waves) and the Standard “Homogenized” Equation

In the case of “long” waves, where the solution w(x, t, ε) of Eq. (3.7) is a smooth function regularly
depending on ε (i.e., can be represented as an asymptotic power series in ε with coefficients smooth
in x and t), our approach leads to ordinary homogenized equations (see [9]). For the leading term of the

corresponding expansion of w in a power series in ε, only the terms L(2)
0 (x, pε), L(1)

1 (x, pε), and L(0)
2 (x)

are taken into account in the homogenized equation. In [9], Eq. (2.19) was considered in the case
where V is the operator of multiplication by the function V (x, θ(x)/ε), and the following formula was

obtained for L(0)
2 (x):

L(0)
2 (x) = 〈V (x, y)〉T. (3.23)

As was shown in [9], the homogenized equation has the form

wtt = −L(2)
0 (

2
x,

1
−i∇x)w − L(1)

1 (
2
x,

1
−i∇x)w − L(0)

2 (x)w. (3.24)

The proof of formula (3.23), which was given in [9], shows that the following formula for V in (2.19) can
be obtained similarly:

L(0)
2 (x) = 〈Ṽ (x, pε, y,−i∇y, ε)1〉T. (3.25)

It follows from the above definition of the operator V in (3.3) that its operator-valued symbol
Ṽ (x, pε, y,−i∇y, ε) with ε = 0 and pε = 0 satisfies the relation

Ṽ (x, 0, y,−i∇y , 0) = V1(x, 0, y, 0)(−i∇θ
y)4

+ 〈V2(x, 0, y, 0)(−i∇θ
y),−i∇θ

y〉 + 〈V3(x, 0, y, 0),−i∇θ
y〉.

Therefore, in our case, formula (3.25) implies that L(0)
2 (x) = 0 and the homogenized equation has the

form

wtt = −L(2)
0 (

2
x,

1
−i∇x)w − L(1)

1 (
2
x,

1
−i∇x)w. (3.26)

It follows from formulas (3.17) for L(2)
0 and L(1)

1 that the operators in the right-hand side of (3.26) have
the form

L(2)
0 (

2
x,

1
−i∇x) = −H0

∑
k

∂2w

∂x2
k

+
∑
k,j

〈H∇θ
ybj〉kT

∂2w

∂xk∂xj
,

MATHEMATICAL NOTES Vol. 95 No. 3 2014



HOMOGENIZATION IN THE PROBLEM OF LONG WATER WAVES 333

L(1)
1 (

2
x,

1
−i∇x) = −

∑
k

(
∂

∂xk
H0

)
∂w

∂xk
+

∑
k,j

(
∂

∂xk
〈H∇θ

ybj〉kT
)

∂w

∂xj
.

Therefore, the homogenized equation (3.26) can be written as

wtt =
∑
k,j

∂

∂xk

(
(δi,jH0 − 〈H∇θ

ybj〉kT)
∂w

∂xj

)
, where bj(x, y) =

1
∆θ

(θ1xjHy1 + θ2xjHy2); (3.27)

here 〈H∇θ
ybj〉kT is the kth component of the vector 〈H∇θ

ybj〉T, H0 = 〈H(x, y)〉T, and δi,j is the Kronecker
delta.

Thus, we arrive at the following assertion.

Theorem 1. The homogenization of Eq. (2.19) in the case of smooth solutions (long waves) leads
to Eq. (3.27).

4. THEORY OF PERTURBATIONS IN THE SMALL OSCILLATING PART
OF THE FUNCTION H

The formulas given in Lemma 2 contain the inverse of the operator ∆θ
y; for example, to determine g1,

it is necessary to solve the equation

∆θ
yg1 = Dã, 〈g1〉T = 0 (4.1)

on the torus T. Such an explicit inversion of the operator ∆θ
y is possible, but only in exceptional cases.

In the one-phase case, the obtained formulas can in principle be realized in quadratures, but they are
rather cumbersome (see [10]). Therefore, from the standpoint of asymptotic methods, we can deal only
with perturbation theory. Effective asymptotic formulas can be obtained only if the oscillating part ã is
not large as compared to the homogenized nonoscillating part H0(x); therefore, we introduce one more
parameter δ and set ã = δa. Recall that ã = H(x, y) − H0(x), H0(x) = 〈H(x, y)〉T, and H0(x) > 0.
In several problems, it is expedient to consider only the first nontrivial corrections in the expansions

in the parameter δ of the functions L(2)
0 and L(4)

0 . Such formulas were obtained in [10]. Here we
propose another method for deriving these formulas. In [10], the formulas were first obtained for the
expansions of gj in power series in δ up to O(δ2), and then these expansions were substituted into
formulas (3.17), (3.18). Here we first obtain the expansion of L0 in power series in δ,

L0 = L0,0 + δL0,1 + δ2L0,2 + O(δ3), (4.2)

and then pass in this formula to the corresponding expansions in pε. Formula (3.18) is not used in this
approach.

In the situation under study, the expansion in the parameters δ and the momentum coordinates pε

can be found by applying the perturbation methods to Eq. (3.11). We use the following well-known
elementary formulas of the perturbation theory for self-adjoint operators (see, e.g., [28]).

Let A and B be self-adjoint operators in the space H equipped with the inner product ( · , · ), and let λ
and φ be a nondegenerate eigenvalue and a normed eigenfunction of the operator A + δB:

(A + δB)φ = λφ, (φ, φ) = 1. (4.3)

If λ and φ are analytic in δ in a neighborhood of δ = 0 and

φ = φ0 + δφ1 + δ2φ2 + (δ3), λ = λ0 + δλ1 + δ2λ2 + O(δ3),

then

λ1 = (φ0,Bφ0), λ2 = (φ1, (B − λ1)φ0), (4.4)

where

φ1 = −(A− λ0)−1(B − λ1)φ0 (4.5)
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and (A− λ0)−1 is the inverse of the operator A in the subspace of the space H that is orthogonal to φ0.
In our case,

A = 〈(pε − i∇θ
y),H0(x)(pε − i∇θ

y)〉, B = 〈(pε − i∇θ
y), a(x, y)(pε − i∇θ

y)〉, λ = L0. (4.6)

For the space H we take the space L2(T) with “normed” scalar product (3.14). All eigenfunctions of
the operator A can easily be obtained and are equal to exp(i〈ν, y〉), where ν is the column vector with
integer-valued components (ν1, ν2). We are interested only in φ0 = χ0,0 = 1. Then the corresponding
eigenvalue is λ0 = L0,0 = H0(x)p2

ε . Therefore,

λ1 = L0,1 = (1, 〈(pε − i∇θ
y), a(x, y)(pε − i∇θ

y)〉1) = p2
ε〈a〉T = 0. (4.7)

It follows from (4.4) and (4.5) that

λ2 = L0,2 = −((A− λ0)−1(B − λ1)φ0, (B − λ1)φ0).

Since (B − λ1)φ0 = 〈pε − i∇θ
y, pε〉a, we have

λ2 = L0,2 = −((A− λ0)−1〈pε − i∇θ
y, pε〉2a, a). (4.8)

Here we used the fact that the operators A and 〈pε − i∇θ
y, pε〉 commute, and hence the operators

(A− λ0)−1 and 〈pε − i∇θ
y, pε〉 also commute.

Now we expand the right-hand side of (4.8) in homogeneous polynomials in pε. We represent the
operator A− λ0, where A is given by formula (4.6), in the form

A− λ0 = −H0〈∇θ
y,∇θ

y〉 + 2H0〈−i∇θ
y, pε〉 = −H0〈∇θ

y,∇θ
y〉(1 − S), S = 2

〈−i∇θ
y, pε〉

〈∇θ
y,∇θ

y〉
.

Using the standard Neumann series to invert the operator (1 − S) and the fact that the operators
〈∇θ

y,∇θ
y〉 and S commute, we obtain the expansion of the operator (A− λ0)−1 in homogeneous

polynomials in the variables pε:

(A− λ0)−1 = −H−1
0 〈∇θ

y,∇θ
y〉(1 + S + S2 + · · · ).

We substitute this expansion and the expression

〈pε − i∇θ
y, pε〉2 = (p2

ε + 〈−i∇θ
y, pε〉)2 = p4

ε + 2p2
ε〈−i∇θ

y, pε〉 + 〈−i∇θ
y, pε〉2 (4.9)

into formula (4.8), remove the brackets in the obtained product of the series 1 + S + S2 + · · · and
the polynomial in the right-hand side of (4.9), an then obtain the desired expansion of λ2 = L0,2 in
homogeneous polynomials in pε. Since any derivative of odd order in y is an antisymmetric operator, it
follows that the expansion of λ2 contains only the terms with p raised to even powers. Thus, we obtain

λ2 = L0,2 = H−1
0 (〈∇θ

y,∇θ
y〉−1(〈−i∇θ

y, pε〉2 + (p2
ε + S〈−i∇θ

y, pε〉)2)a, a) + O(|pε|6). (4.10)

We substitute the earlier obtained values L0,0 = H0(x)p2
ε and L0,1 = 0 (see formula (4.7)) and the

expression for L0,2 in (4.10) into the expansion (4.2), separate the homogeneous components of the

second- and fourth degree in (4.10), and obtain the approximate formulas for L(2)
0 and L(4)

0 :

L(2)
0 = H0p

2
ε − δ2R(x, p) + O(δ3), R = −H−1

0 (〈∇θ
y,∇θ

y〉−1〈−i∇θ
y, pε〉2a, a), (4.11)

and

L(4)
0 = −δ2M(x, p) + O(δ3), M = −H−1

0

(
〈∇θ

y,∇θ
y〉−1

(
p2

ε + 2
〈−i∇θ

y, pε〉2

〈∇θ
y,∇θ

y〉

)2

a, a

)
, (4.12)

where O(δ3) denotes a homogeneous polynomial in p of the corresponding degree with coefficients of

order O(δ3). If we consider only the terms of order of δ2, then we can rather easily express L(2)
0 and L(4)

0
in terms of the Fourier coefficients of the function a. We expand the function a in the Fourier series and
substitute it into (4.11) and (4.12). Since the exponentials exp(i〈ν, y〉) form an orthonormal system in
the space L2(T), we have the following assertion.
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Lemma 3. Assume that H(x, y) = H0(x) + δa(x, y) and H0(x) > 0 for x belonging to a compact
set K. Assume also that a(x, y) is a smooth real 2π-periodic (in the variables yj) function with
zero mean, i.e., 〈a〉T = 0, and with the following expansion in Fourier series:

a(x, y) =
∑
ν �=0

aν(x) exp(i〈ν, y〉). (4.13)

Here the column vector (multiindex) ν = (ν1, ν2) takes values on the integral lattice. Then

L(2)
0 = H0p

2
ε − δ2R(x, p) + O(δ3), R =

1
H0

∑
ν �=0

〈θxν, pε〉2
〈θxν, θxν〉 |aν |2, (4.14)

and

L(4)
0 = −δ2M(x, p) + O(δ3), M =

1
H0

∑
ν �=0

(
p2

ε − 2
〈θxν, pε〉2
〈θxν, θxν〉

)2 |aν |2
〈θxν, θxν〉

. (4.15)

In the “one-phase” case, where θ is a scalar function, y is a scalar variable, and ν is an index, the
formulas become somewhat simpler:

R =
1

H0

〈θx, pε〉2
θ2
x

∑
ν �=0

|aν |2, M =
1

H0θ2
x

(
p2

ε − 2
〈θx, pε〉2

θ2
x

)2 ∑
ν �=0

|aν |2
ν2

.

Now let us approximately calculate the symbol L(1)
1 in (3.17) and the coefficients of the homogenized

equation (3.27).

Theorem 2. Let the conditions of Lemma 2 be satisfied. Then the symbol L(1)
1 admits the

expansion

L(1)
1 = iδ2

〈
∇x,

1
H0

∑
ν �=0

θxν〈θxν, pε〉
〈θxν, θxν〉 |aν |2

〉
− i〈∇x,H0pε〉 + O(δ3), (4.16)

where O(δ3) is a linear homogeneous (in p) function with coefficients of order O(δ3). The
coefficients of the homogenized equation (3.27) admit the expansion

〈H∇θ
ybj〉kT = δ2Bk,j(x) + O(δ3), (4.17)

where

Bk,j(x) =
1

H0

∑
ν �=0

(θxν)k(θxν)j

〈θxν, θxν〉 |aν |2 (4.18)

and the superscript k or j denotes the corresponding component of the vector. Thus, up to O(δ3),
the homogenized equation (3.27) can be written as

wtt =
∑

k

∂

∂xk

(
H0(x)

∂w

∂xk

)
− δ2

∑
k,j

∂

∂xk

(
Bk,j(x)

∂w

∂xj

)
. (4.19)

Proof. Formula (4.16) can be obtained directly from the second formula in (3.17) with g1 replaced by
the expansion of g1 in a power series in δ (see [10]). Formula (4.1) shows that, in the first approximation,
we have

g1 = δH−1
0 〈∇θ

y,∇θ
y〉−1Da + O(δ2), (4.20)

where O(δ2) is a linear homogeneous (in p) function with coefficients of order O(δ2). After some obvious
transformations, we obtain

L(1)
1 = iδ2〈∇x,H−1

0 〈a∇θ
y〈∇θ

y,∇θ
y〉−1Da〉T〉 − i〈∇x,H0pε〉 + O(δ3). (4.21)
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Now, just as in the proof of Lemma 1, we expand the function a in its Fourier series and then obtain
formula (4.16) from (4.21). Equation (4.19) is obtained from (4.14) and (4.16) by transformations similar
to those used to obtain Eq. (3.27) from formulas (3.17). We can also derive formulas (4.17), (4.18) by
replacing bj in the left-hand side of (4.17) by the expansion

bj = δH−1
0 〈∇θ

y,∇θ
y〉−1(∇θ

ya)j + O(δ2),

which follows from (4.20) and g1 = b1p1 + b2p2. As a result, we obtain

Bk,j = −δ2〈a(∇θ
y)

k〈∇θ
y,∇θ

y〉−1(∇θ
y)

ja〉T. (4.22)

To obtain formula (4.18), it is now sufficient to pass in (4.22) to the expansion of a in the Fourier series.
The formulas in Lemma 3 are especially effective in the case, where a has the form of a finite sum

similar to (4.13). Formulas (4.14), (4.15), (4.16), and (4.18) also have finitely many terms, and hence
the calculation of the right-hand sides of these formulas in such cases reduces to finitely many algebraic
operations with Fourier coefficients for a and with elements of the matrix θx.

If we add the terms corresponding to L(4)
0 to the homogenized equation, then we obtain the linearized

Boussinesq equation with variable coefficients, where the so-called dispersion effects are taken into
account. An equation of such a type is obtained when studying the solutions of system (2.4)–(2.6)
with slowly varying bottom and for certain wave lengths. Then the sign of the term containing p raised

to the fourth power (or the fourth derivatives), which is similar to L(4)
0 , is positive in contrast to the sign

of L
(4)
0 . Therefore, from the standpoint of the theory of water waves, the dispersion effects due to the

fast oscillation profile of the bottom turn out to be anomalous. This problem and the consequences of
the appearance of anomalous dispersion in the case of localized solutions of the linearized Boussinesq
equation were discussed in [11], [29].
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