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• We partly solve the problem of existence of separators of a magnetic field in plasma.
• We suggest a method for studying plasma movements of special kind.
• We prove the existence of null points of a magnetic field in plasma under certain conditions.
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a b s t r a c t

In this paper we partly solve the problem of existence of separators of a magnetic field in plasma. We
single out in plasma a 3-body with a boundary in which the movement of plasma is of special kind which
we call an (a–d)-motion. We prove that if the body is the 3-annulus or the ‘‘fat’’ orientable surface with
two holes then the magnetic field necessarily has a heteroclinic separator. The statement of the problem
and the suggested method for its solution lead to some theoretical problems from Dynamical Systems
Theory which are of interest of their own.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Thepaper is about the topological structure ofmagnetic fields in
electrically conducting fluids (collision-dominatedplasmas such as
stellar interiors). Suchmagnetic fields are common in the Universe
and the problem of their origin and evolution is important for the
understanding of many astrophysical and geophysical processes.
It is probably safe to say that a magnetic field is a normal
accompaniment of any cosmic body that is both fluid (wholly or in
part) and rotating. The interactions between amagnetic field and a
given conducting fluid are adequately described by the equations
of magnetohydrodynamics (MHD). The velocities considered are
orders ofmagnitude smaller than the speed of light c. The evolution
of a magnetic field H⃗ in a moving conductor is described by the
induction equation

∂H⃗
∂t

= rot

v⃗H⃗


+ η∇

2H⃗
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where v⃗ is the velocity of the conducting fluid andη is themagnetic
diffusivity of the medium (for more details see [1–3]). Literature
on MHD often uses the magnetic induction B⃗, for which B⃗ = µH⃗
where µ is the magnetic permeability of the free space.

Hannes Alfvén [4] showed that in a fluid with a large magnetic
Reynolds number 1

η
the field lines move as though they are

‘‘frozen’’ into the medium. As a consequence the topological struc-
ture of the magnetic field preserves under a short-time steady
motion, though it can bifurcate under a long-time and turbulent,
in sense, motion of the medium. The concept of frozenness implies
the existence of locations where the magnetic field changes
in either directions or magnitude or both (so called x-points).
According to Ampére’s law µj⃗ = ∇ × B⃗, the density of the
electric current j⃗ is high in the neighborhood of the x-points and
this gives rise to special configurations of the current such as
current lines and current sheets. These current configurations may
include points in which the magnetic field vanishes (null points or
neutral points). Null points can occur if the magnetized medium
is either a conducting plasma or a neutral gas. In plasmas, null
points typically give rise to current sheets [5,6]. Linear null points
in three dimensions typically look like a saddle of the vector field
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Fig. 1. The structure of null point (a), and heteroclinic separator (b).

H⃗ . Moreover, such a saddle is a conservative one with nonzero
eigenvalues λ1, λ2, λ3 that satisfy the condition λ1 + λ2 + λ3 =

0, due to ∇ · H⃗ = 0. Two quite distinct families of field lines
pass through a null point. The null spine is the isolated field line
which approaches or recedes from the null. Its neighboring field
lines form two bundles which spread out as they move away from
the null and approach a surface which constitutes the null fan,
see Fig. 1(a). Thus, from the point of view of Dynamical Systems
Theory, a spine and fan are one-dimensional and two-dimensional
separatrices respectively and the term ‘‘separatrix’’ means either
of them. A magnetic line joining two nulls and representing the
intersection of two fans is called a separator [5,6]. A separator is
heteroclinic if it is a transversal intersection of the fans, see Fig. 1(b).

The topological structure of a magnetic field is defined by null
points, spines, fans and separators, the union of those forming the
so-called skeleton of the magnetic field. To study the global mag-
netic topology we have to consider first the problem of the exis-
tence of null points and separators. Experiments and observations
show that the evolution of the structure of the magnetic field is
similar to relaxation processes. At first plasma evolves slowly for
some considerable time but at some point there occurs a topo-
logical restructuring of the magnetic configuration (reconnection)
[5,6].We consider the problemof the globalmagnetic topology un-
der steady fluids when the skeleton is invariant (before reconnec-
tion).

We suggest to approach this problem in the following way. We
consider a body in plasma (i.e. a part of plasma) of special kind and
we study movements of plasma such that all the boundary com-
ponents of the body move inside or outside of the body so that af-
ter some time interval all the boundary components are parallel
to the initial boundary components (see exact definitions below).
The statement of the problem implies that during the movement
the topological structure of themagnetic field remains unchanged,
therefore it is natural to assume the skeleton of the magnetic field
to be invariantwith respect to themovement of plasma.Notice that
we do not demand all the points of the skeleton to be fixed, we just
assume that the points on the skeleton, while moving, remain on
the skeleton.We also assume (and this is the only essential restric-
tion) that the null points are not only null hyperbolic points of the
magnetic field but they also are null hyperbolic points of themove-
ment of plasma. Taking into consideration that the Kupka–Smale
theorem from Dynamical System Theory states that for every typi-
cal movement all periodical points (including fixed points) are hy-
perbolic [7], we consider only the class of typical movements of
plasma. The suggested approach lets us apply methods and results
of Dynamical Systems Theory because it turns out to be possible to
extend the motion of plasma to some 3-manifold in such a way
that one gets a classical dynamical system. Though doing so we
loose information on the structure of the magnetic field outside
the considered body, on the other hand we get an instrument to
study its structure in some part of space. Besides, the global struc-
ture on the considered manifold sheds light on possible real struc-
tures of themagnetic field. The suggested approach to the problem
and the method lead to theoretical issues of Dynamical Systems
Theory whose solution is of interest in its own.
2. Formulation of the main results

LetM2
p be an orientable closed surface of genus p ≥ 0 smoothly

embedded in R3. Two surfacesM2
p1,1

,M2
p2,2

⊂ R3 are called parallel
if they bound the set which is homeomorphic to M2

p × (0; 1). As
a consequence, p1 = p2 = p and M2

p,1 ∩ M2
p,2 = ∅. The closure of

M2
p ×[0; 1], in short a fat surface, is a 3-manifoldwith the boundary

M2
p,1 ∪ M2

p,2. In particular, S = S2
× [0; 1] is a fat sphere where S2

is the 2-sphere. One of its boundary 2-spheres, say S2 × {0} = Sint ,
bounds an open 3-ball in R3 which is disjoint from S. We call Sint
interior while the sphere S2 × {1} = Sext is called exterior. Let Bint
and Bext be the 3-balls bounded by Sint and Sext respectively.

Let Gp be a fat surface bounded by parallel surfaces M2
p,1 and

M2
p,2 of genus p ≥ 1 and let it contain two 2-spheres S1 and S2 such

that S1 ∩ S2 = ∅ and the balls B1 and B2, bounded by S1 and S2
respectively, do not intersect. Denote by M the fat surface Gp with
two holes, i.e. the set Gp \ {B1 ∪ B2}.

Let M be either S or M which is smoothly embedded into R3.
Suppose M be a part of space with plasma of some astrophysical
object with a magnetic field B⃗. Denote by B⃗0 the restriction of B⃗ to
M and let all the null points of B⃗ be typical (i.e. hyperbolic). As a
consequence we have thatM has only finitely many null points.

We assume that

1. the separatrices of the null points intersect transversally (if at
all);

2. if M is the fat surface with holes M the separatrices intersect
the components S1 and S2 transversally (if intersect at all).

A map f0 : M → f0(M) ⊂ R3 is said to be an (a–d)-motion if it
satisfies the following conditions:

(a) f0 is an orientation preserving diffeomorphism to its image.
The non-wandering set of f0 consists of fixed hyperbolic points
which coincide with the null points of the vector field B⃗0.

(b) The boundary components of f0(M) are pairwise disjoint from
the boundary components ofM .

(c) IfM is the fat sphere S then the interior boundary spheremaps
inside S while the external boundary sphere maps outside S,
i.e. f0(Sint) ⊂ S and f0(Sext) ⊂ R3

\ (S ∪ Bint) (see Fig. 2).
IfM is the fat surfacewith holesM then one of the boundary

spheres, say S1, maps inside M while the other boundary
sphere S2 maps outside M, one of the boundary surfaces M2

p,i,
sayM2

p,1, maps insideM while the other boundary surfaceM2
p,2

maps outside M and the restriction f0|M2
p,i

: M2
p,i → f0(M2

p,i) is

homotopy trivial for each i = 1, 2. Moreover, every x ∈ M2
p,1

which does not belong to a separatrix leaves M through S2,
i.e. f k0 (x) ∈ B2 for some k > 1 whereas for the reverse motion
every x ∈ M2

p,2 which does not belong to a separatrix leaves M

through S1, i.e. f −k
0 (x) ∈ B1 for some k > 1.

(d) The fans and the spines are invariant with respect to f0 and the
fixed points of f0 are of the same type as the null points of the
field B⃗0.

Some explanation on homotopy triviality. Unlike sphere for
which there is only one homotopy class of orientation preserving
diffeomorphisms, surfaces of genus greater than zero have a count-
able family of such classes. Since the surfaces M2

p,i, i = 1, 2 are
parallel, the generators of their fundamental groups are naturally
isomorphic. The homotopy triviality then means that the restric-
tions f0|M2

p,i
are homotopy identical.

Notice thatwe do not assume that themagnetic lines of the field
B⃗0 intersect the boundary components of M transversally. There-
fore, the fans and the spines can, in general, intersect the boundary
components of M by several connected components. This math-
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Fig. 2. (a–d)-motion of the fat sphere S.

ematical model physically means that we consider a motion of
plasma in a period during which the singular points and their fans
and spins are preserved. If follows from these properties that the
separators (if they exist) are invariant with respect to f0 and their
number (including zero) does not change during this time period.

Our main results for an (a–d)-motion of a fat sphere of plasma
are the following.

Theorem 1. Let f0 : S → f0(S) ⊂ R3 be an (a–d)-motion of a fat
sphere S of plasma with a magnetic field B⃗0. Let B⃗0 have in S null
points. Then the number of these points is even (and there are at least
two of them), their fans intersect and there are finitelymany (not zero)
heteroclinic separators.

Corollary 1. Let the assumptions of Theorem 1 hold and assume that
the spines of the magnetic field B⃗0 do not intersect the fans in S. Then
the fan of each null point contains at least one heteroclinic separator
in S.

For an (a–d)-motion of a fat surface M of plasma the results are
the following.

Theorem 2. Let f0 : M → f0(M) ⊂ R3 be an (a–d)-motion of a fat
surface M which belongs to some domain of plasma with a magnetic
field B⃗0. Then the field B⃗0 has in M at least two null points such
that their fans intersect and there are finitely many (more than zero)
heteroclinic separators.

Corollary 2. Let the assumptions of Theorem 2 hold and assume that
the spines of the null points of the vector field B⃗0 do not intersect the
fans in M. The fan of each null point has in M at least one heteroclinic
separator.

3. Proof of the main results

We now recall some notions and facts about Morse–Smale dif-
feomorphisms. More detailed explanations can be found for ex-
ample in [7–10]. Denote the set of the non-wandering points of a
diffeomorphism f by NW (f ). For p ∈ NW (f ) denote by W s(p) (by
W u(p)) the stable (respectively unstable) manifold of the point p.
A diffeomorphism f is said to beMorse–Smale if its non-wandering
set NW (f ) is hyperbolic, NW (f ) consists of finitely many points
and for any two distinct points p, q ∈ NW (f ) the invariant man-
ifolds W s(p), W u(q) intersect transversally (if intersect at all). A
Morse–Smale diffeomorphism is said to be gradient-like, if for any
two periodic points p, q ∈ NW (f ) from W u(p) ∩ W s(q) ≠ ∅ it
follows that dimW s(p) < dimW s(q). A point x ∈ M is said
to be heteroclinic if x is the point of transversal intersection of
invariant manifolds W s(p), W u(q) where p, q ∈ NW (f ) and
dimW s(p) = dimW s(q). It is proved that a Morse–Smale dif-
feomorphism is gradient-like if and only if it has no heteroclinic
points [10]. A Morse–Smale diffeomorphism is said to be polar if
its non-wandering set consists of exactly one source and one sink.

If W u(p) ∩ W s(q) ≠ ∅ and dim W s(p) < dim W s(q) then a
connected component of W u(p) ∩ W s(q) is said to be heteroclinic
submanifold. If the dimension of the manifold equals 3 then every
heteroclinic submanifold is either a simple closed curve (which is
homeomorphic to the circle) or a non-closed curve without self-
intersections (homeomorphic to the open interval). We call such
curves heteroclinic.

Let p be a periodic point of an orientation preserving Morse–
Smale diffeomorphism f . TheMorse index u(p) of p is the topologi-
cal dimension of the unstable manifoldW u(p), u(p) def

= dimW u(p).
The Kronecker–Poincaré index of p is ind (p, f )

def
= (−1)u(p).

Denote by S3 the 3-sphere. The following lemma is of key
importance for the proof of Theorem 1.

Lemma 1. There is an embedding S ⊂ S3 and there is an extension
of f0 to a polar Morse–Smale diffeomorphism f : S3 → S3 such that
the non-wandering set NW (f ) is the union of a source, a sink and the
fixed points of f0.
Proof. Glue the balls Bint , Bext to the respective boundary compo-
nents Sint , Sext of the fat sphere S. Then we get the closed mani-
fold S3 = S ∪ Bint ∪ Bext diffeomorphic to the 3-sphere and we
get the natural embedding S ⊂ S3. From the properties of the
diffeomorphism f0 : S → f0(S) it follows that the 2-sphere Sint
maps inside the fat sphere S. Therefore f0 can be extended to Bint
in such away that a hyperbolic source appears in the interior of Bint .
Analogously f0 can be extended to the ball Bext so that a hyperbolic
sink appears in the interior of Bext . Denote this extension of f0 by
f : S3 → S3. Clearly f0 can be extended in such a way that f would
be a diffeomorphism whose non-wandering set is the union of the
non-wandering set of the diffeomorphism f0 and the two new fixed
points.

Thus, the non-wandering set of the diffeomorphism f is finite
and it consists of hyperbolic fixed points. Since the separatrices of
the fixed points intersect transversally by the assumption, the dif-
feomorphism f is Morse–Smale. Moreover, f is polar because it has
only two node fixed points. �

The following lemma is the base for the proof of Theorem 2. Re-
call that S1 denotes the circle andM2

p denotes the closed orientable
surface of genus p. Everywhere below we assume p ≥ 1.

Lemma 2. There is an embedding M ⊂ M2
p × S1 and there is an ex-

tension of f0 to a polar Morse–Smale diffeomorphism f : M2
p × S1 →

M2
p × S1 such that the non-wandering set NW (f ) is the union of a

source, a sink and the non-wandering points of the diffeomorphism f0.
Proof. Glue balls B1, B2 to the respective boundary components S1,
S2 of the fat surface M. Then we get the body M ∪ B1 ∪ B2 and the
natural embedding M ⊂ M ∪ B1 ∪ B2. By the condition (d) the
2-sphere S1 maps inside M. Therefore f0 can be extended to the
ball B1 in such a way that a hyperbolic source appears inside B1.
Analogously f0 can be extended to the ball B2 so that a hyperbolic
sink appears inside B2. The body M ∪ B1 ∪ B2 is homeomorphic
to the direct product M2

p × [0; 1] with the boundary components
T1 = M2

p × {0}, T2 = M2
p × {1}, therefore below we identify

M ∪ B1 ∪ B2 and M2
p × [0; 1]. It is known that from homotopy

triviality of the restrictions f0|T1 , f0|T2 it follows that each of these
restrictions is isotopic to the identity map. Hence, there is ε > 0
and there is an extension of f0 to the body M2

p × [−ε; 1 + ε] such
that the restrictions f0|M2

p×{−ε} and f0|M2
p×{1+ε} are the identities on

the first coordinate.Without loss of generality one can assumeeach
of f0|M2

p×{−ε}, f0|M2
p×{1+ε} to be a shift along the second coordinate

{·}× {−ε} → {·}× {−ε + δ} and {·}× {1+ ε} → {·}× {1+ ε + δ}
respectively.

Having glued the boundary componentsM2
p ×{−ε},M2

p ×{1+ε}

by the identity map we get the manifold M2
p × S1 from M2

p ×

[−ε; 1 + ε]. It follows from the previous construction that there
is the desired extension of the diffeomorphism f0 toM2

p × S1. �

The result below follows from the finiteness of every hetero-
clinic chain, so called ‘‘beh’’ (see also [11], details of the proof we
leave to the reader).
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Fig. 3. The curves Cα and Cω .

Lemma 3. Let M3 be a closed orientable 3-manifold and let f : M3

→ M3 be a polar Morse–Smale diffeomorphism with a nonempty set
of saddle periodic points of Morse indexes 1 and 2. Let α be the source
and ω be the sink of f . Then there are saddle periodic points σ1, σ2 of
Morse indexes u(σ1) = 1 and u(σ2) = 2 respectively such that the
following inclusions hold

W u(σ1) \ {σ1} ⊂ W s(ω), W s(σ2) \ {σ2} ⊂ W u(α).

Lemma 4. Let the assumptions of Lemma 3 be satisfied. Then the sets

Cω
def
= {ω} ∪ W u(σ1) and Cα

def
= {α} ∪ W s(σ2)

are embeddings of the circles.

Proof. We prove the lemma only for Cω because for Cα the proof
is analogous. There is a C1-immersion ϕ : R → W u(σ1), where
ϕ(0) = σ1, which is a one-to-one map to its image. We now show
that the immersion ϕ extends to a homeomorphism

ϕ : S1 ∼= R ∪ {∞} → W u(σ1) ∪ {σ1},

if we set ϕ(±∞) = ω. Since W u(σ1) \ σ1 ⊂ W s(ω) the desired
assertion follows from the fact that the ω-limit set of every point
from the setW u(σ1) \ σ1 is the point ω, see Fig. 3. �

LetM3 be a smooth orientable closed 3-manifold. A 2-sphere S2
in M3 is said to be cylindrical or cylindrically embedded into M3, if
there is a topological embedding h : S2

× [−1, 1] → M3 such that
h(S2

×{0}) = S2. A manifoldM3 is said to be irreducible, if every 2-
sphere, cylindrically embedded intoM3, bounds a 3-ball inM3. The
manifolds S3 and M2

p × S1 are known to be irreducible. Therefore,
to prove themain results we have to answer the question if a polar
Morse–Smale diffeomorphism on an irreducible orientable closed
3-manifold can have heteroclinic curves.

It follows from [12] that every Morse–Smale diffeomorphism
on any irreducible 3-manifold except the sphere necessarily
has heteroclinic curves (compact or noncompact). The following
theorem generalizes this result for polar diffeomorphisms.

Theorem 3. Let f : M3
→ M3 be a polar Morse–Smale diffeomor-

phism on an irreducible closed orientable 3-manifold M3 and let f
have at least one saddle point. Then there is a saddle periodic point
such that its invariant 2-manifold contains non-compact heteroclinic
curve.

Proof. Denote the source, the sink and a saddle of the diffeomor-
phism f by α, ω and σ respectively. Without loss of generality the
point σ = σ1 can be assumed to satisfy the conditions of Lemma 4
(i.e. the manifold W s

σ can be assumed to be of dimension 2, other-
wise one can consider a suitable degree of f ). We now show that
W s

σ contains a non-compact heteroclinic curve. Assume the con-
trary, that either the manifold W s

σ contains no heteroclinic curves
or all these curves are compact. Then there is a simple smooth
closed curve γ ⊂ W s

σ which is disjoint from the heteroclinic curves
and which bounds a 2-disk dγ ⊂ W s

σ such that the point σ lies in
its interior. According to [10], M3

=


p∈Ωf
W u

p =


p∈Ωf
W s

p and
therefore γ ⊂ W u

α . By assumption cl W u
σ = W u

α ∪ ω and cl W u
σ is

a topologically embedded circle while W u
σ is a smooth curve. Now

making use of the disk dγ we are going to prove that inM3 there is
Fig. 4. Illustration to the proof of Theorem 3.

a cylindrically embedded 2-sphere S which contains dγ and which
transversally intersects the circle cl W u

σ at the unique point σ . This
would contradict the fact that the intersection cl W u

σ ∩ S must con-
sist of even number of points because the sphere S bounds a 3-ball
in the irreducible manifoldM3.

Construction of the sphere S. Consider in W u
α a smooth 3-ball

B̃ containing α. Since γ ⊂ W u
α there is a natural k for which

f −k(γ ) ⊂ int B̃. Set γ̃ = f −k(γ ) and Q = f −k(dγ ). Pick a
natural k0 such that the 3-ball B0 = f −k0(B̃) is inside the ball B̃.
Set γ0 = f −k0(γ̃ ) and Σ = f −k0(Q ). Without loss of generality
the 2-disk Σ can be assumed to be transversal to the 2-spheres
S̃ = ∂ B̃ and S0 = ∂B0. By construction the smooth ball B0 satisfies
the following conditions:

(*) B0 ⊂ B̃ ⊂ W u
α ,α ∈ B0, B0∩Q = ∅, the 2-sphere S0 is transversal

to Σ .

There are two cases: (1) every curve in the set Σ ∩ S0 separates
γ0 andσ inΣ; (2) there is a curve inΣ∩S0 which does not separate
γ0 and σ inΣ . We now construct the desired sphere S in each case.

(1) If every curve in the set Σ ∩ S0 separates γ0 and σ in Σ

then by construction the number of such curves is odd. Denote
themby {c1, . . . , cm}. Up to renumeration of ci one can assume that
Σ \ (c1 ∪ . . .∪ cm) consists of finitely many connected components
∆1, ∆2, . . . , ∆k+1 such that ∆1 is homeomorphic to the 2-disk
bounded by c1 and such that σ ∈ ∆1; for 2 ≤ i ≤ k the component
∆i is homeomorphic to the 2-annulus bounded by ci−1 and ci; the
annulus ∆k+1 is bounded by the curves ck and γ0. Let d1 ⊂ S0 be
the 2-disk bounded by the curve c1. Then S = ∆1∪d1 is the desired
sphere.

(2) Let there be a curve in Σ ∩ S0 which does not separate γ0
and σ in Σ . Denote by CB0 the set of the curves in the intersection
Σ ∩S0 and denote byC+

B0
(C−

B0
) the curves fromCB0 which separate

(do not separate) γ0 and σ in Σ . Construct a ball B1 such that it
satisfies (∗) and such that the number of the curves in C−

B1
is less

than the number of the curves in the set C−

B0
.

Every curve of the set C−

B0
bounds on Σ a disk which contains

neither γ0 nor σ . Let c ∈ C−

B0
be the innermost curve, i.e. c bounds

on Σ the disk dc that contains neither γ0 nor σ and besides int dc
contains no curves of the set C−

B0
. Since c ∩ Q = ∅ and σ ∈ Q we

have dc ∩Q = ∅ and therefore dc ⊂ B̃. On the other hand c bounds
on S0 2-disks δ′ and δ′′. Notice that S ′

= dc ∪ δ′ and S ′′
= dc ∪ δ′′

are tamely embedded 2-spheres lying inside B̃. Denote by B′ and B′′

the 3-balls which are contained in B̃ and which are bounded by S ′

and S ′′ respectively (see Fig. 4). Since S ′
∩ Q = ∅, S ′′

∩ Q = ∅ and
y0 ∈ Q we have B′

∩ Q = ∅, B′′
∩ Q = ∅. And since (B′

∪ B′′) ⊃ B0
we have α ∈ B′ or α ∈ B′′.

To be definite let α ∈ B′. Then we can pick a smooth ball B1
which is arbitrarily close to B′, which satisfies (∗) and such that
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C−

B1
= C−

B0
\ c. We continue this process and get a ball B which

satisfies (∗) and for which C−

B = ∅. �

Corollary 3. The invariant 2-manifold of every saddle point of a polar
gradient-like diffeomorphism on an irreducible manifold contains a
non-compact heteroclinic curve.

Proof. The assertion is immediate from the proof of Theo-
rem 3 and the fact that every one-dimensional separatrix of a
gradient-like diffeomorphism is disjoint from the 2-dimensional
separatrices. �

Proof of Theorem 1. Taking into account Lemma 1, to prove that
the number of null points is even it is enough to show that a
Morse–Smale diffeomorphism f : M3

→ M3 necessarily has even
number of periodic points on the closed 3-manifold M3. Since f
preserves orientation of the ambient manifold by condition (a),
we can assume it to preserve orientation of all separatrices of the
saddle fixed points (otherwise we consider a suitable iteration of
f ). Such polar diffeomorphism of the 3-sphere has the Lefschetz
number equal to zero. From this and from the Lefschetz formula it
follows that the number of the saddle fixed points of Morse index
1 equals the number of the saddle fixed points of Morse index 2.
Hence, f has even number of the periodic points. Notice that we
have also proved that f necessarily have saddle points of distinct
Morse index. Now Theorem 1 follows from Theorem 3. �

Proof of Theorem 2. First we show that f has at least one saddle
point. Suppose the contrary, then f is a diffeomorphism of
‘‘source–sink’’ type. According to [13] the ambientmanifold is then
homeomorphic to the 3-sphere. This contradiction proves that f
has at least one saddle point.

Since f preserves orientation of the ambientmanifold by condi-
tion (a), we can assume it to preserve orientation of all separatrices
of the saddle fixed points (otherwise we consider a suitable itera-
tion of f ). According to the condition (d) for f0 : M2

p ×S1 → f0(M2
p ×

S1) the diffeomorphism f is homotopy trivial (i.e. it induces the
identity map of the fundamental group of the torus). Therefore, its
Lefschetz number equals to zero. The sum of the Morse indexes of
the source and of the sink equals to zero, (−1)0+(−1)3 = 0. From
this and from the Lefschetz formula it follows that existence of one
saddle fixedpoint courses existence of another fixedpointwith dif-
ferent Morse index. Now Theorem 2 follows from Theorem 3. �

Corollaries 1 and 2 follow from the proofs of Theorems 1 and 2
and Corollary 3.
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