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Abstract
In this paper we consider a class of structurally stable diffeomorphisms with 
two-dimensional basic sets given on a closed 3-manifold. We prove that each 
such diffeomorphism is a locally direct product of a hyperbolic automorphism 
of the 2-torus and a rough diffeomorphism of the circle. We find algebraic 
criteria for topological conjugacy of the systems.
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1. Introduction and formulation of the results

We consider a diffeomorphism f on a closed 3-manifold M3 which satisfies Smale’s axiom A  
(A-diffeomorphism). According to Smale’s spectral theorem [27], the nonwandering set 
NW(  f  ) of f can be represented as a finite union of pairwise disjoint closed invariant sets, 
called basic sets, each of which contains a dense trajectory.

It is known that the existence of a basic set with dimension 3 or 2 imposes strong con-
straints on the topology of M3 and the dynamic of f. Indeed, if NW(  f  ) contains the basic 
set B with   =Bdim 3 then f is an Anosov diffeomorphism and the manifold M3 is the torus 
T3. Topological classification of Anosov diffeomorphisms on T3 was obtained by Franks and 
Newhouse in [5, 21].
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If   =Bdim 2, then, due to [22], B is either an attractor or a repeller. It follows from [4] 
that any two-dimensional attractor (repeller) of A-diffeomorphism →f M M: 3 3 is either an 
expanding attractor (contracting repeller) or a surface attractor (surface repeller).

It follows from [11] and [18] that any manifold M3 which admits structurally stable dif-
feomorphism →f M M: 3 3 with a two-dimensional expanding attractor (contracting repeller), 
is diffeomorphic to the torus T3 and, moreover, f is topologically conjugated with the diffeo-
morphism obtained from the Anosov diffeomorphism by the generalized surgery operation. 
According to [9] each connected component of the two-dimensional surface basic set for 
A-diffeomorphism →f M M: 3 3 is homeomorphic to the torus and a restriction of some degree 
of f to this component is topologically conjugate with the Anosov diffeomorphism.

In this paper we consider class G of all A-diffeomorphisms →f M M: 3 3 such that for each 
∈f G the nonwandering set NW(  f  ) consists of two-dimensional surface basic sets. We prove 

that each f from G is an ambient Ω-conjugate with some model diffeomorphism of the map-
ping torus. It follows from the information above that any structurally stable diffeomorphism 

→f M M: 3 3 with two-dimensional basic sets automatically belongs to the class G. We prove 
that, in this case, f is topologically conjugated with the model and we give algebraic criteria 
for the topological conjugacy of two models.

Let us represent torus T2 as the factor group =T R Z/2 2 2 and denote the neutral element 
of the group T2 by ∈TO 2. Recall that an algebraic automorphism →! T TC : 2 2 of the torus 

is a map defined by a matrix = ⎜ ⎟
⎛
⎝

⎞
⎠C a b

c d
 which belongs to the set ( )ZGL 2,  of integer matri-

ces with determinant ±1, i.e. ( ) ( ) (   )! = + +C x y ax by cx dy, , mod 1 . !C  is called hyperbolic if 
the absolute value of each eigenvalue does not equal 1, herewith the matrix C is also called 

hyperbolic. Denote by C the set of the hyperbolic matrices from ( )ZGL 2, . Set = ⎜ ⎟
⎛
⎝

⎞
⎠Id 1 0

0 1
, 

− = −
−

⎜ ⎟
⎛
⎝

⎞
⎠Id 1 0

0 1
 and ( )= ∪ ∪ −J C Id Id .

One says that τM  is a mapping torus if τM , derived from [ ]×T 0, 12  by the identification of 
points (z, 1) and ( ( ) )τ z , 0 , where →τ T T: 2 2, is a homeomorphism.

The next theorem (see its proof in section 2) singles out the set of all manifolds which 
admit diffeomorphisms from G3.

Theorem 1. Let a manifold M 3 admit a diffeomorphism f from the class G. Then M 3 is  
diffeomorphic to a mapping torus !MJ , where ∈ JJ .

For description dynamics of the diffeomorphism from G let us denote by  ( )Φ Φ+ −  the set of 
all locally direct products  ( )φ ϕ φ ϕ= ⊗ = ⊗+ + + − − −

! !C C  of a hyperbolic automorphism ( )+ −! !C C  
of the 2-torus and a rough diffeomorphism of the circle ( )ϕ ϕ+ −  preserving (changing) orien-
tation, see section 3 for details. Each such difffeomorphism φ ∈ Φ+ + is uniquely defined by 
parameters + +J C n k l, , , ,{ } and each difffeomorphism φ ∈ Φ− − is uniquely defined by param-
eters { }ν− −J C q, , , . Set Φ = Φ ∪ Φ+ −.

The following result provides an algebraic criteria for topological conjugacy of the diffeo-
morphisms from Φ (see proof in section 4).

3 In [14] it was considered an irreducible manifold M3 (i.e. any cylindrically embedded 2-sphere in M3 bounds 
a 3-ball) which admits a diffeomorphism →f M M: 3 3 with an invariant Anosov torus (i.e. there exists a smooth 
f-invariant submanifold in M3 which is homeomorphic to the 2-torus and such that the induced action of f in the fun-
damental group of the 2-torus is hyperbolic). Under these assumptions the authors of [14] obtained results similar to 
those from theorem 1. Notice that in theorem 1 we don’t use the assumption on the irreducibility of M3.
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Theorem 2. 

 1.  Two diffeomorphisms φ φ ∈ Φ′+ + +;  with parameters ′ ′ ′ ′ ′+ + + +J C n k l J C n k l, , , , ; , , , ,{ } { } are 
topologically conjugated if and only if = =′ ′n n k k, , there exists a matrix ( )∈ ZH GL 2,  
such that = ′+ +C H HC  and at least one of the following assertions holds:

   = ′+ +J H H J  and = ′l l ,

   = ′+
−

+J H H J1  and either = =′l l 0 or = −′ ′l k l .

 2.  Two diffeomorphisms φ φ ∈ Φ′− − −;  with parameters { } { }ν ν′ ′ ′ ′− − − −J C q J C q, , , ; , , ,  are top-
ologically conjugated if and only if = ′− −J J , = ′q q , ν ν= ′ and there exists a matrix 

( )∈ ZH GL 2,  such that = ′− −C H HC .

 3.  There are no topologically conjugated diffeomorphisms φ ∈ Φ+ +, φ ∈ Φ− −.

Let us recall that the two diffeomorphisms f M M f M M: ,   :3 3 3 3→ ′ ′ → ′  are said 
to be ambient Ω-conjugated if there exists a homeomorphism → ′h M M: 3 3 such that 
( ( )) ( )= ′h NW f NW f  and | = |′hf f hNW f NW f( ) ( ).

Theorem 3. Any diffeomorphism from the class G is ambient Ω-conjugated to some diffeo-
morphism from the class Φ.

See section 5 for the proof of Theorem 3.
The next theorem is the main result of the paper and is proved in section 6. The main 

difficulty of the proof is the nontrivial investigation of the asymptotic behavior of invariant 
two-dimensional manifolds of the nonwandering set of a diffeomorphism ∈f G. Assuming 
structural stability, it has a surprising property: the union of closures of all arcs in the intersec-
tion of the two-dimensional manifolds forms an invariant one-dimensional foliation whose 
leaves are transversal to all basic sets. This fact is a crucial argument for the construction of a 
conjugating homeomorphism in the proof of theorem 4.

Theorem 4. Each structurally stable diffeomorphism from class G is topologically conju-
gate with a diffeomorphism from class Φ.

Notice that in class G there are diffeomorphisms which are not topologically conjugated 
to any diffeomorphism from class Φ (see section  8, where the corresponding example is 
constructed).

2. The structure of the ambient manifold admitting diffeomorphisms of class G

Let M3 be a closed 3-manifold. Recall ([27]) that a diffeomorphism →f M M: 3 3 satisfies 
axiom A if the following conditions hold: (1) the non-wandering set NW(  f  ) is hyperbolic4; 
(2) the periodic points are dense in NW( f ). By [17, 24] and [25], axiom A and the strict trans-
versality condition are necessary and sufficient conditions for the structural stability of f. The 
strict transversality condition means that all intersections of the stable and unstable manifolds 
of any nonwandering point are transversal.

4 A closed f-invariant set ⊂Λ M3 is said to be hyperbolic if there exists continuous Df-invariant decomposi-
tion of the tangent subbundle ΛT M3 into the direct sum ⊕Λ ΛE Es u  of the stable and unstable subbundles such that 
∥ ( )∥ ⩽ ∥ ∥ ∥ ( )∥ ⩽ ∥ ∥λ λ ∀ ∈ ∀ ∈ ∀ ∈−

Λ Λ NDf v C v Df w C w v E w E k, , , ,k k k k s u  for some fixed numbers C  >  0 
and λ< 1. The hyperbolicity condition implies the existence of stable and unstable manifolds denoted by W x

s  
and W x

u for each point ∈ Λx , which are defined as follows: { ( ( ) ( )) → → }= ∈ +∞W y M d f x f y k: , 0,x
s k k3 , 

{ ( ( ) ( )) → → }= ∈ −∞W y M d f x f y k: , 0,x
u k k3 , where d is the metric on Λ induced by the Riemannian metric on ΛT M3.

V Grines et alNonlinearity 28 (2015) 4081
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By [1, 2] each basic set B can be represented as a finite union   ⩾∪ ∪! BBB B k, 1k1 , of 
closed subsets such that ( )   ( )  ( )= = =+ + BB

Bf B B f B B B,k
i i i i k1 1 1 . We call the sets … BB B, , k1  

the periodic components5 of the set B; the number Bk  being their period.
Let B be a basic set of a diffeomorphism f. Set  = Ba Edim s ,  = Bb Edim u  and call the pair 

(a, b) the type of the basic set B. A basic set B of f is called an attractor if B has a closed 

neighborhood U such that ( )  ⊂f U Uint , ( )⩾ = B⋂ f Uj
j

0 . A basic set B is called a repeller 

of f if it is an attractor for the diffeomorphism f−1.
According to [22], the following facts take place for any A-diffeomorphism →f M M: 3 3 

(detailed proofs can be found in [10]).

Statement 1. 

  A basic set B of f is an attractor (repeller) if and only if B B⋃ ( )= ∈ W xx
u  = ∈ W xx

sB B( )⋃ ( ) ;

  if a basic set B of f has topological dimension 2 then it is either an attractor or a repeller;

Recall that, due to [28], an attractor B of f is said to be expanding if the topological dimen-
sion Bdim  equals the dimension of ∈ BW x,x

u . A contracting repeller of a diffeomorphism f is 
an expanding attractor of f−1. According to [7], a basic set B of a diffeomorphism →f M M: 3 3 
is called a surface basic set if it is contained in an f-invariant closed surface BM2  (not neces-
sarily connected) topologically embedded in M3. The surface BM2  is called the support of B.

The following statement on surface basic sets follows from [9].

Statement 2. For any two-dimensional surface attractor (repeller) B of A-diffeomorphism 
→f M M: 3 3 the following holds:

   B has type (2, 1) ((1, 2)) and, therefore, is not an expanding attractor (an contracting 
repeller).

   B coincides with its support and is a finite union of manifolds tamely embedded6 in M3 
and homeomorphic to the 2-torus7.

   the restriction of Bf k  to any connected component of the support is conjugated to some 
hyperbolic automorphism of the torus.

The next fact follows from [5] (see also [10]).

Statement 3. Let →T Th : 2 2 be a homeomorphism topologically conjugated with an Anos-
ov diffeomorphism, with a fixed point ∈Tx0

2 and acting in the fundamental group ( )π T x,1
2

0  by 
a hyperbolic matrix H. Then there is a unique isotopic to identity homeomorphism →T Tg : 2 2 
such that = !gh H g and g(x0)  =  O.

Let us recall that we denote by G the class of all A-diffeomorphisms →f M M: 3 3 such that 
for each ∈f G the nonwandering set NW( f ) consists of two-dimensional surface basic sets. 
Denote by A (by R) the union of all attractors (repellers) from NW( f ). The next lemma is a 

5 In [2], the sets … BB B, , k1  are called C-dense components but in our opinion, it is more natural to call them the 
periodic components (see [10]).

6 A topological embedding →λ X Y:  (a homeomorphism to the image) of an m-manifold X into an n-manifold Y 
( ⩽m n) is said to be locally flat at the point ( )  λ ∈x x X, , if the point ( )λ x  is in the domain of such a chart ( )ψU,  of 
the manifold Y that ( ( ))ψ λ∩ = RU X m, here ⊂R Rm n is the set of points for which the last n  −  m coordinates are 
equal to 0. An embedding λ is said to be tame and the manifold X is said to be tamely embedded if λ is locally flat at 
every point ∈x X. Otherwise the embedding λ is said to be wild and the manifold X is said to be wildly embedded.

7 It should be emphasized that the support of a two-dimensional surface basic set is not necessarily smooth (the 
corresponding example is given in [15]). Due to [19], 2-torus B is tamely embedded in M3 if and only if there is a 
topological embedding [ ] →η × −T M: 1, 12 3 such that ( { })η × =T B02 .

V Grines et alNonlinearity 28 (2015) 4081
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base for studying the topology of M3. This result was proved in [8], and for completeness we 
give its proof in section 2.

Lemma 1. For any diffeomorphism ∈f G the sets A, R are non-empty and the boundary of 
each connected component V of the set ( )∪A RM \3  consists of precisely one periodic com-
ponent ⊂ AA  and one periodic component ⊂ RR . Herewith  cl V  is homeomorphic to the 
manifold [ ]×T 0, 12 .

The proof of lemma 1 will follow from the propositions 1 and 2.

Proposition 1. For any diffeomorphism ∈f G the sets A, R are nonempty and the bound-
ary of each connected component of the set ∪M \3 A R( ) consists of precisely one periodic 
component of an attractor and one periodic component of a repeller.

Proof. We first show that the sets A, R are not empty. Assume the contrary: = ∅A  for 
definiteness. According to [27] (corollary 6.3 to the theorem 6.2) the manifold M3 is repre-
sented in the form ⋃ ⋃= =B BM W Wi

s
i

u3
i i

, where Bi is the basic set of diffeomorphism f from 
the decomposition B( ) ⋃=NW f i i. Then ⋃= ⊂B R BM W s3

i i
. According to [22], for any point 

∈ Rz  the stable manifold Ws(z) belongs to the set R. Therefore ⊂ RM3 , but it is impossible 
because the set R is two-dimensional. Thus the sets A, R are not empty.

Let us consider the set ( )∪A RM \3  and denote by V its a connected component. Let us 
notice that ⋃ ( )⊂ ∈AV W zz

s  and ⋃ ( )⊂ ∈RV W zz
u . Then there exist only one connected com-

ponent A of an attractor from the set A and only one connected component R of a repel-
ler from R, such that ⋃ ( )⊂ ∈V W zz A

s  and ⋃ ( )⊂ ∈V W zz R
u . Therefore   = ∪ ∪cl V A V R and 

∂ = ∪V A R.  □
The following two lemmas are used in the proof of proposition 2.

Lemma 2. Let Q and P be connected domains in an n-manifold M and the boundary of P 
consist of two disjoint sets S S,1 2, such that ⊂S Q1 , ( )∩ ∪ ∂ = ∅S Q Q2 . Then if S1 bounds a 
domain ⊂Q Q1 , then ⊂∂Q P.

Proof. Set = ∪ ∪P P Q S1 1 1. Since ∩ ≠ ∅P Q1  and the boundary S2 of domain P1 has no com-
mon points with the closure  cl Q, then ⊂∪ ∂Q Q P1. From the equality ( )∂ ∩ ∪ = ∅Q Q S1 1  it 
follows that ⊂∂Q P.  □
Lemma 3. Let P1, P2 and Q be topological spaces such that there exist homeomorphisms 

[ ] →×h Q P: 0, 11 1 and [ ] →×h Q P: 0, 12 2. Then

 (a)  if ( { }) ( { })∩ = × = ×P P h Q h Q1 01 2 1 2 , then there exists a homeomorphism 
[ ] →× ∪H Q P P: 0, 1 1 2;

 (b)  if ( { }) ( { })∩ = × = ×P P h Q h Q0, 1 0, 11 2 1 2 , then there exists a continuous map 
[ ] →× ∪H Q P P: 0, 1 1 2 such that the restrictions ( )| ×H Q 0,1 , { }| ×H Q 0  and { }| ×H Q 1  are  

homeomorphisms.

Proof. In the case (a) we define a homeomorphism →h Q Q:1,2  by the formula 
=−h h q h q, 1 , 02

1
1 1,2( ( )) ( ( ) ) for any point ∈q Q and a homeomorphism × ×H Q Q: 0, 1 0, 11,2 [ ] → [ ]  

by the formula =H q t h q t, ,1,2 1,2( ) ( ( ) ). Let = ×H h H Q P: 0, 12 2 1,2 2[ ] → . Then the required homeo-

morphism [ ] →× ∪H Q P P: 0, 1 1 2 is defined by the formula 
⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

=
∈

− ∈
H q t

h q t t

H q t t
,

, 2 , 0,

, 2 1 , , 1 .

1
1
2

2
1
2

( )
( )

( )

V Grines et alNonlinearity 28 (2015) 4081
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In the case (b) without loss of generality we can suppose that ( { }) ( { })× = ×h Q h Q1 01 2 . 
Then the map H, which was constructed in the case a), has one-to-one correspondence on the 
set [ )×Q 0, 1  and ( { }) ( { })× = ×H Q H Q0 1 . By construction, the map H is continuous and 
its restrictions ( )| ×H Q 0,1 , { }| ×H Q 0 , { }| ×H Q 1  are homeomorphisms.  □

Let B be a connected component of ∪A R. According to statement 2 the surface B is 
a torus cylindrically embedded in M3. Then there exist a closed neighborhood U(B) and a 
homeomorphism hB such that: ( ) → [ ]× −Th U B: 1, 1B

2 , and besides, ( ) { }= ×Th B 0B
2 . Set 

( ( ))= ×− TV h 0, 1B B
1 2  and ( { })= ×− TT h 1B B

1 2 . Since the number of connected components of 
∪A R is finite then there is a natural number κ such that ( ) =κf B B and ( ) ∩ ≠ ∅κf V VB B  for 

each connected component B of ∪A R. Denote by κ0 the minimum from such κ. Set

             ( )= κf f . *0
0

Proposition 2. For any diffeomorphism ∈f G the closure of each connected component 
from the set ( )∪A RM \3  is homeomorphic to [ ]×T 0, 12  .

Proof. Let V be a connected component of ( )∪A RM \3  with the boundary components A 
and R, where A is an attractor and R is a repeller of f0. Without loss of generality we can as-
sume that ⊂V VA  and ⊂V VR .

Let us show that there exists a natural number ν* such that torus ( )= ν−T f T*
A A0

*  belongs to 
VR. Indeed, each point ∈t TA is wandering for f0 and its negative iteration goes to repeller R. 
Then there is a closed neighborhood ⊂U Tt A of the point t and natural number ( )ν t  such that 

( ) ⊂ν−f U Vt R0  for ⩾ ( )ν ν t . As the set TA is compact then there is a finite subcover for cover 
{ }∈U t T,t A . Thus there is a natural number ν* such that ( ) ⊂ν−f T VA R0  for ⩾ν ν*.

Let us show that R and TR belong to the different connected components of the set 
( )cl V T\ *R A. Assume the contrary. Then according to [9]8 (lemma 3.1), T*

A is the boundary of 
some domain ⊂D VR. It follows from lemma 2, that if we denote P  =  VR, ( )= ν−Q f VA0

*  we 
get ⊂A VR. Since the surface A is f0-invariant, we get a contradiction.

Thus the set ( )cl V T\ *R A consists of two connected components. By theorem 3.3 in the 
paper [9], the closure of each component is homeomorphic to [ ]×T 0, 12 . Then the surfaces 
R, T*

A bound a closed domain in M3, which is homeomorphic to [ ]×T 0, 12 . Since the set 
( ( ))ν−f cl VA0

*  is also homeomorphic to [ ]×T 0, 12  and by the lemma 3, V is homeomorphic to 
the direct product [ ]×T 0, 12 .  □

The next statement is well known fact in topology (see, for example, [12]); we proved it 
for completeness.

Statement 4. Each mapping torus τM  is homeomorphic to mapping torus !MJ  where 
( )∈ ZJ GL 2,  is a matrix, which is defined by the action of the automorphism ( ) → ( )τ π πT T* : 1

2
1

2 .

Proof. Since the homeomorphisms τ and !J  act the same way in the fundamental 
group they are isotopic (see, for example, theorem 4 in [26]), and therefore an isotopy 

→   [ ]ξ ∈T T t: , 0, 1t
2 2  from map ξ τ= −!J0

1 to identity map ξ1 exists. Define a homeomor-
phism [ ] → [ ]× ×T TE : 0, 1 0, 1J

2 2  by the formula ( ) ( ( ) )ξ=E z t z t, ,J t . Then the homeomor-
phism ˇ →τ !E M M:J J , which maps equivalence class [(z, t)] to equivalence class [EJ(z, t)], is 
the desired.  □

8 In fact in paper [9] the objects are required to be smooth, but actually the results are true in the case when the 
objects are tame.

V Grines et alNonlinearity 28 (2015) 4081
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For ∈ JJ  let us represent the manifold !MJ  as the orbit space ( )= × Γ! T RM /J
2 , where 

{ }γΓ = ∈Zi,i  is the group of powers of the diffeomorphism →γ × ×T R T R: 2 2 , defined 
by ( ) ( ( ) )γ = −!z r J z r, , 1 . Let

→× !T Rp M: J
2

J

be the natural projection. Let us represent S1 as π π= ∈ ∈r r rcos 2 , sin2 :1 2S R R{(   ) }. Denote 
by

→π R S: 1

the projection given by formula ( ) ( )π π π=r r rcos 2 , sin 2 . Let us define a map

→π ! SM: J
1

J

by formula

( ( )) ( )π π=p z r r, .J J

The following statements 5 and 6, were proved in [6].

Statement 5. 

   Let ( )∈ ZJ GL 2, . Then the fundamental group ( )π !MJ1  is a semi-direct product of the sub-
group ≅ZRJ  and of the normal subgroup ( )= × ≅T R ZN p *J

2 2
J

, that is, any homotopy 
class [ ] ( )π∈ !c MJ1  can be uniquely written as ( )   ∈ ∈a b a R b N, , ,J J and the group opera-
tion is ( )( ) ( ( ) )= + +a b a b a a J b b, , , a

1 1 2 2 1 2 2 1
1 .

   If the homeomorphism → ′! !h M M: J J  induces the isomorphism ( ) → ( )π π ′! !h M M* : J J1 1  
such that ( ) = ′h N N* J J , then h* is uniquely defined by matrix ( )∈ ZH GL 2,  and by an ele-
ment β∈ ′NJ  such that ( ) ( ( ))= ∈Zh b H b b* 0, 0, , 2 either ( ) ( )β=h* 1, 0 1,  and = ′HJ J H, 
or ( ) ( )β= −h* 1, 0 1,  and = ′−HJ J H1 . Herewith the homeomorphism h lifts to a homeo-
morphism ˜ →× ×T R T Rh : 2 2  such that ˜ ( ) → ( )π π× ×T R T Rh* : 1

2
1

2  is defined by the 
matrix H.

Statement 6. For ( )∈′ ZJ J GL, 2,  two mapping tori !MJ  and ′!MJ  are homeomorphic if and 
only if there is a matrix ( )∈ ZH GL 2,  such that one of the following assertions holds:

  = ′JH HJ ,
  = ′−J H HJ1 .

Denote by C the set of the hyperbolic matrices from ( )ZGL 2, . For ∈ CC  denote by ( )!Z C  the 
centralizer of !C in the group { ( )}∈! ZJ J GL: 2, , that is Z( ) { ( ) }! ! !! ! != ∈ =Z C J J GL CJ J C: 2, , .

The following result is due to [23].

Statement 7. The group ( ) ∈! CZ C C,  is isomorphic to the group ⊕Z Z2.

Set = ⎜ ⎟
⎛
⎝

⎞
⎠Id 1 0

0 1
, − = −

−
⎜ ⎟
⎛
⎝

⎞
⎠Id 1 0

0 1
 and ( )= ∪ ∪ −J C Id Id . As !C  and −!C  belong to ( )!Z C  

then the next fact follows from statement 7.

Corollary 1. If ( )∈! !J Z C  for ∈ CC  then ∈ JJ . Moreover, C and J have the same forms in 
the following sense: ( ) ξ= −C Id j kC C and ( ) ξ= −J Id j kJ J where ξ∈ C, ∈Zk k,C J , { }∈j j, 0, 1C J .

Recall that we denote by τM  a mapping torus that is a space derived from [ ]×T 0, 12  by the 
identification of points (z, 1) and ( ( ) )τ z , 0 , where →τ T T: 2 2 is a homeomorphism. Thus each 
point of τM  is equivalence class [( )] ( ) [ ]∈ ×Tz t z t, , , 0, 12  with respect to τ. Let us prove that 
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the mapping torus τM  is homeomorphic to mapping torus !MJ  where ( )∈ ZJ GL 2,  is a matrix 
which is defined by the action of the automorphism ( ) → ( )τ π πT T* : 1

2
1

2 .

2.1. Proof of theorem 1

Let us recall that J  is a class of hyperbolic matrices from ( )ZGL 2,  together with Id and  −Id. 
Let us prove that the manifold M3, admitting a diffeomorphism f from the class G, is diffeo-
morphic to the manifold !MJ , where ∈ JJ .

Proof. We fix a connected component B of nonwandering set NW( f ) of diffeomorphism 
∈f G. By lemmas 1 and 3 there is a continuous map [ ] →×TE M: 0, 1f

2 3 such that maps 
( ) →( )| ×× TTE M B: 0, 1 \f 0,1

2 3
2 , { } →{ }| ×× TTE B: 0f 0

2
2 , { } →{ }| ×× TTE B: 1f 1

2
2  are ho-

meomorphisms. Set  ( ){ } { }| = | =× ×T TE E E Ef f f f0 ,0 1 ,12 2  and →τ = − T TE E :f f,0
1

,1
2 2. Then by 

construction the manifold τM  is homeomorphic to the manifold M3 by a homeomorphism Ěf , 
which maps the equivalence class [( )]  ( ) [ ]∈ ×Tz t z t, , , 0, 12  to the point Ef(z, t).

Denote by ( )∈ ZJ GL 2,  the matrix, which is defined by the action of the automorphism 
( ) → ( )τ π πT T* : 1

2
1

2 . Due to statement 4, there is a homeomorphism →ζ !M M: J
3. Thus the 

smooth manifolds !MJ  and M3 are homeomorphic by the homeomorphism ζ. By the theorem 
on smoothing homeomorphisms9 (see, for example, the corollary in [20]) they are diffeomor-
phic. Let us show that ∈ JJ .

Let f0 be a diffeomorphism definded by (*). Set →ψ ζ ζ= −
! !f M M: J J0

1
0 . Since the ho-

meomorphism ψ0 is topologically conjugated to diffeomorphism f0 and f0(B)  =  B, then 
( )ψ =N N* J J0 , and by statement 2, the action of ψ *0  is defined by a hyperbolic matrix ∈ CC0 . 

By statement 5, the matrix J commutes with the matrix C0, which means that the diffeomor-
phism !J  belongs to the centralizer ( )!Z C0  of the hyperbolic automorphism of 2-torus !C0. By 
corollary 1, ∈ JJ .  □
Remark 1. Let manifold M3 admit a diffeomorphism ∈f G whose nonwandering set 
consists of 2m periodic components. It follows from lemmas 1 and 3 and the proof of 
theorem 1 that there is a matrix ∈ JJ  and a homeomorphism →ζ !M M: J

3 such that 

( ( )){ }⋃ ( )ζ × == Tp NW fi
m i

m0
2 2

2J
.

3. Locally direct product of a hyperbolic automorphism of the 2-torus and 
rough diffeomorphism of the circle

Let ( )SMS 1  be a class of structurally stable transformations of the circle, which coincides, due 
to Mayer’s results [16], with the class of Morse–Smale diffeomorphisms on S1. Divide ( )SMS 1  
into two subclasses ( )+ SMS 1  and ( )− SMS 1 , consisting of preserving orientation and reverse 
orientation diffeomorphisms, accordingly. Below we formulate Mayer’s results on the topo-
logical classification of structurally stable transformations.

Statement 8. 

 1.  For each diffeomorphism ( )ϕ∈ + SMS 1  the set ( )ϕNW  consists of ∈Nn n2 ,  periodic orbits, 
each of them of period k.

9 Theorem on smoothing homeomorphisms. Let  X Y,  be smooth 3-manifolds. Then Diffr(X, Y) is dense in 
Diffs(X, Y) while ⩽ <s r0 .

V Grines et alNonlinearity 28 (2015) 4081



4089

 2.  For each diffeomorphism ( )ϕ∈ − SMS 1  the set ( )ϕNW  consists of ∈Nq q2 ,  periodic points, 
two of them are fixed, others have period 2.

Let ( )ϕ∈ + SMS 1 . Enumerate the periodic points from ( )ϕNW : … =−p p p p p, , , ,nk nk0 1 2 1 2 0 
starting from an arbitrary periodic point p0, clockwise, then ( )ϕ =p p nl0 2 , where l is an integer 
such that for k  =  1, l  =  0 while for k  >  1, { }∈ … −l k1, , 1  and (k, l ) are coprime10. Notice 
that number l does not depend on the choice of the point p0.

For ( )ϕ∈ − SMS 1  we set  ν ν ν= − = = +1; 0; 1 if its fixed points are sources; sink and 
source; sinks, accordingly. Notice that ν = 0 if q is odd and ν = ±1 if q is even.

Statement 9. 

 1.  Two diffeomorphisms ( )ϕ ϕ ∈′ + SMS; 1  with parameters ′ ′ ′n k l n k l, , ; , ,  are topologically 
conjugated if and only if = =′ ′n n k k,  and at least one of the following assertions holds:

   = ′l l  (herewith, if ≠l 0 then the conjugating homeomorphism is preserving orientation),
   = −′ ′l k l  (herewith, the conjugating homeomorphism is reversing orientation).

 2.  Two diffeomorphisms ( )ϕ ϕ ∈′ − SMS; 1  with parameters  ν ν′ ′q q, ; ,  are topologically con-
jugated if and only if = ′q q  and ν ν= ′.

For ∈Nn k,  and integer l such that for k  =  1, l  =  0 while for k  >  1, { }∈ … −l k1, , 1 , let us  
construct a standard representative ϕ+ in ( )+ SMS 1  with parameters n, k, l. For 

{ }ν∈ ∈ − +Nq , 1, 0, 1  let us construct a standard representative ϕ− in ( )− SMS 1  with parameter q.
Let us introduce the following maps:

→ψ R R:m  is the time-one map of the flow generated by ( )π=r mr˙ sin 2  for ∈Nm ;
→χ R R:k l,  is a diffeomorphism given by the formula ( )χ = −r rk l

l
k, ;

→χ R R:  is a diffeomorphism given by the formula ( )χ = −r r;
˜ →ϕ ψ χ= ⋅ R R:n k l n k k l, , , ;
˜ →ϕ ψ χ= R R:q q,0  for odd q;
˜ →ϕ ψ χ=+ R R:q q, 1  and ˜ ˜ →ϕ ϕ=− +

− R R:q q, 1 , 1
1  for even q.

Set ˜ { ˜ ˜ }ϕ ϕΠ = =+ + n k l, ,  and ˜ { ˜ ˜ }ϕ ϕΠ = = ν− − q, . It was verified directly that ˜ ( ) ˜ ( )ϕ µ ϕ+ =σ σr r  
for { }σ∈ + −,  and µ∈Z. Hence the following diffeomorphisms are well defined: 

˜ →ϕ πϕ π=σ σ
− S S:1 1 1. Set { }ϕΠ =+ + , { }ϕΠ =− −  and Π = Π ∪ Π+ −.

Denote by ˜ →φ × ×σ T R T R: 2 2  the product of the diffeomorphism ˜ ˜ϕ ∈ Πσ σ and automor-
phism !C , ∈ CC  that is ˜ ( ) ( ( ) ˜ ( ))φ ϕ=σ σ

!z r C z r, , .

Statement 10. The diffeomorphism φ̃σ can be projected to diffeomorphism →φσ ! !M M: J J  as 
˜φ φ=σ σ

−p p 1
J J

 if and only if

  CJ  =  JC for σ = +;
  { }∈ −J Id Id,  for σ = −.

Thus we get the descriptions of the models.
Let ∈+ JJ  and ∈+ CC  such that =+ + + +C J J C . Let { }∈ −−J Id Id,  and ∈− CC . Set 

!φ ϕ=σ σ σz r C z r, , .˜ ( ) ( ( ) ˜ ( ))  It is immediately verified that ˜ ˜φ γ γ φ=σ σ σ σ where ( ) ( ( ) )γ = −σ σz r J z r, , 1  
is the generator of the group { }γΓ = ∈σ σ Zi,i . Then the following concept is well defined.

10 Indeed, instead of number l, Mayer used number r1, which he called the ordering number, such that 
(   )⋅ ≡l r k1 mod1
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Definition 1. We say that diffeomorphism → { }φ σ∈ + −σ σ σ! !M M: , ,J J  is a locally direct 
product of σ!C  and ϕσ, if ˜φ φ=σ σ

−
σ σ

p pJ
1

J
 and write φ ϕ= ⊗σ σ σ

!C .

Let us recall (see, for example, [3] and [13]) that a diffeomorphism g on M3 is called par-
tially hyperbolic if there exists a continuous splitting of the tangent bundle = ⊕ ⊕T E E EM

s c u
3  

invariant under the derivative Dg, where      = = =E E Edim dim dim 1s c u  and the strong 
expansion of the unstable bundle Eu and the strong contraction of the stable bundle Es domi-
nate any expansion or contraction on the center Ec11. Herewith g is dynamically coherent if 
there are g-invariant foliations tangent to  = ⊕ = ⊕E E E E E E,cs s c cu c u, (and consequently 
there is g-invariant foliation tangent to Ec).

Notice that if in the construction of φ ∈ Φσ σ above we can use instead ( )π=r mr˙ sin 2  vec-

tor field ( ) ( )µ π= ⋅r ln mr˙ sin 2 , where µ λ< | | and λ| |
λ| |

, 1  are absolute values of eigenvalues of 

σC . Then the constructed model will be dynamically coherent. Thus, by theorem 2, we get the 
following result.

Corollary 2. Each diffeomorphism φ from the class Φ is topologically conjugate to a dy-
namically coherent diffeomorphism.

4. Topological classification of model diffeomorphisms

This section is devoted to the proof of theorem 2.
In section 1 we described a construction of some model diffeomorphism ! !φσ M M: ,J J→  

σ  ∈  {+,  −} from the class Φσ which is a locally direct product φ ϕ= ⊗σ σ σ
!C  of a hyperbolic 

automorphism σ!C  on T2 and a model structurally stable diffeomorphism ϕ ∈ Πσ σ on S1. Let us 
prove the auxiliary facts.

4.1. Proof of statement 10

Proof. Since ( )= × Γ! T RM /J
2  and Γ is a cyclic group with generator ( ) ( ( ) )γ = −!z r J z r, , 1  

then either ˜ ˜φ γ γφ=σ σ or ˜ ˜φ γ γφ=σ σ
−1  is a necessary and sufficient condition to project the dif-

feomorphism φ̃σ to diffeomorphism →φσ ! !M M: J J  as ˜φ φ=σ σ
−p p 1

J J
 (see, for example, [10]). 

From what follows, CJ  =  JC for σ = + and CJ−1  =  JC for σ = −. As CJ−1  =  JC implies 
=C J JC2 2 then ( )∈! !J Z C

2
, hence, due to corollary 1, { }∈ −J Id Id,  for σ = −.  □

Lemma 4. If two diffeomorphisms φ ϕ φ ϕ= ⊗ = ⊗ ∈ Φ′ ′ ′σ σ σ σ σ σ′ ′ ′
! !C C,  are topologically con-

jugated then:

 (1) there exists a matrix ( )∈ ZH GL 2,  such that = ′σ σ′C H HC ;

 (2) ϕ ϕ′σ σ′,  are topologically conjugated.

Proof. If two diffeomorphisms φ ϕ φ ϕ= ⊗ = ⊗ ∈ Φ′ ′ ′σ σ σ σ σ σ′ ′ ′
! !C C,  are topologically conju-

gated by means of a homeomorphism ! ! ′′σ σ
h M M: J J→ , then, due to statement 5, h induces the 

isomorphism ( ) → ( )! !π π ′′σ σ
h M M* : J J1 1  such that ( ) =

′′σ σ
h N N* J J  and |

σ
h* NJ

 is defined by a matrix 

( )∈ ZH GL 2,  such that = ′σ σ′C H HC .

11 More exactly a diffeomorphism f is partially hyperbolic if there is ∈NN  and a Dg-invariant continuous 
splitting = ⊕ ⊕TM E E Es c u3  into one-dimensional subbundles such that ∥ ∥ ∥ ∥ ∥ ∥| < | < |Dg Dg DgN

E
N

E
N

Ex
s

x
c

x
u  and 

∥ ∥ ∥ ∥| < < |Dg Dg1N
E

N
Ex

s
x
u  for every ∈x M3.
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Let ∈Tz0
2 be a fixed point of σ!C . Set

˜ { }= ×RS zz 00

and

( ˜ )=
σ

S p S .z zJ0 0

By the construction, Sz0 is a circle and the map ϕσ coincides with ( )π φ π |σ
−

σ σJ J S
1

z0
. The situation 

is the same for φ′σ′. As h conjugates φσ with φ′σ′ then ( ) = ′h S Sz z0 0
 where ∈′ Tz0

2 is a fixed point 
of σ!C . Thus the diffeomorphisms ϕ ϕ′σ σ′,  are topologically conjugated by means of a homeo-
morphism

η π π= | −
′′
σ σh : .J J S

1 1 1
h z0

S S( ) →
  □

4.2. Proof of theorem 2

By the construction each difffeomorphism φ ∈ Φ+ + is uniquely defined by parameters 
{ }+ +J C n k l, , , ,  and each difffeomorphism φ ∈ Φ− − is uniquely defined by parameters 
J C q, , ,{ }ν− − .

 1. Two diffeomorphisms φ φ ∈ Φ′+ + +;  with parameters { } { }′ ′ ′ ′ ′+ + + +J C n k l J C n k l, , , , ; , , , ,  are 
topologically conjugated if and only if = =′ ′n n k k, , there exists a matrix ( )∈ ZH GL 2,  
such that = ′+ +C H HC  and at least one of the following assertions holds:

  = ′+ +J H H J  and = ′l l ,

  = ′+
−

+J H H J1  and either = =′l l 0 or = −′ ′l k l .

 2. Two diffeomorphisms φ φ ∈ Φ′− − −;  with parameters { } { }ν ν′ ′ ′ ′− − − −J C q J C q, , , ; , , ,  are 
topologically conjugated if and only if = ′q q , ν ν= ′, = ′− −J J  and there exists a matrix 

( )∈ ZH GL 2,  such that = ′− −C H HC .

Proof. Necessity. Let the diffeomorphisms φ φ′σ σ,  from the class Φσ be topologically conjugated 

by a homeomorphism →! !′σ σ
h M M: J J . Then h induces an isomorphism ! !π π ′σ σ

h M M* : J J1 1( ) → ( ) 
such that ( ) = ′σ σ

h N N* J J  and according to the statement 5, |
σ

h* NJ
 is defined by the matrix 

( )∈ ZH GL 2,  such that h*(0, b)  =  (0, H(b)). From the condition of topological conjugacy, it 
follows that = ′σ σHC C H and, by the statement 5, either ( ) ( )β=h* 1, 0 1,  and = ′σ σHJ J H, or 

( ) ( )β= −h* 1, 0 1,  and = ′σ σ
−H J J H1 .

It follows from lemma 4 that the diffeomorphisms ϕσ and ϕ′σ are topologically conjugate 
by a homeomorphism ( ) →η π π= | −

′′
σ σ S Sh :J J S

1 1 1
h z0

. Herewith η
h
 preserves orientation if 

= ′σ σHJ J H and η
h
 reverses orientation if = ′σ σ

−H J J H1 . It follows from statement 9 that at 
least one of the following assertions holds:

  = ′σ σJ H H J ; σ = +; = ′n n , = ′k k ; = ′l l ,
  = ′σ σ

−J H H J1 ; σ = +; = ′n n , = ′k k ; either = =′l l 0 or = −′ ′l k l ,
  either = ′σ σ′J H H J  or = ′−J H HJ1 ; σ = −; = ′q q  and ν ν= ′.
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The necessity of the conditions of the theorem is proved in both cases 1 and 2.
Sufficiency. Let diffeomorphisms φ φ ∈ Φ′σ σ σ,  be such that the algebraic conditions of the 

theorem 2 hold. Let us construct a homeomorphism → ′σ σ
! !h M M: J J  conjugating φσ with φ′σ.

It follows from the conditions that there is a matrix ( )∈ ZH GL 2,  such that = ′σ σC H HC  
and either (i) = ′σ σJ H H J  or (ii) = ′σ σ

−J H H J1 . In the case (i), let us define diffeomorphism 
˜ →× ×T R T Rh : 2 2  such that ˜( ) ( ( ) )= !h z r H z r, , . Then ˜ ˜γ γ=+ +h h . In the case (ii) let us 
define diffeomorphism ˜( ) ( ( ) )= −!h z r H z r, , . In both cases the diffeomorphism h̃ conjugates 
the diffeomorphisms φ̃σ, φ̃′

σ and, therefore, it is projected onto homeomorphism ˜= −
′σ σ

h p h pJ
1

J
 

which conjugates the diffeomorphisms φσ and φ′σ.  □

5. Invariants of ambient Ω-conjugacy for diffeomorphisms from the class G

This section is devoted to a proof of theorem 3.
Let us prove that any diffeomorphism from the class G is ambient Ω-conjugated to a dif-

feomorphism from the class Φ.

Proof. Let ∈f G be a diffeomorphism with 2m connected components in NW( f ). 

Due to remark 1 there is a matrix ∈ JJ  and a homeomorphism →ζ !M M: J
3 such that 

( ( )){ }⋃ ( )ζ × == Tp NW fi
m i

m0
2 2

2J
. Set →ζ ζ= −

! !g f M M: J J
1  and { } = ∈T Zi,i

m2
. Since the 

homeomorphism g is topologically conjugated with the diffeomorphism f and = ×NW g p 2
J

TT( ) ( ), 
then T TT T( ( )) ( )× = ×g p p2 2

J J
. Then ( ) =g N N* J J. Denote by C the matrix, which is defined 

by an isomorphism |g* NJ
. According to statement 2, ∈ CC . By statement 5 and theorem 1, CJ  =  JC 

or CJ−1  =  JC and the diffeomorphism g is lifted up to a homeomorphism ˜ →× ×T R T Rg : 2 2 .
The homeomorphism g induces a map η

g
 on the set ( ( ))π=N NW gg J  by the formula 

η π π= −g 1
g J J

. Then there is a diffeomorphism ϕ∈ Π such that ( )ϕ =NW Ng, ( )ϕ| = |ϕ gNW Ng
 and 

( )π AJ  is the set of sinks for ϕ. The diffeomorphism ϕ has parameters n, k, l if it preserves ori-
entation and has parameter νq,  if it reverses orientation. Set φ ϕ= ⊗!C .

Without loss of generality, we assume that the lift g̃ has been chosen so that 

( )˜( ) ˜ ( )τ τ= −τg z g z, , l
k

 ( ˜( ) ( ˜ ( ) )τ τ= −τg z g z, , ) for τ∈ T . Notice that the action of the isomor-

phism ˜ ( ) → ( )π πτ T Tg * : 1
2

1
2  is determined by the matrix C.

We divide the proof into two cases: (I) ϕ preserves orientation; (II) ϕ reverses orientation.
In case (I), let us consider two subcases (Ia) k  =  1; (Ib) k  >  1.
In the subcase (Ia) we will construct a homeomorphism →× ×T R T RX : 2 2  such that 
γ γ=X X and the homeomorphism ˜ ˜ψ = −XgX 1 will coincide on the set × TT2  with the dif-

feomorphism φ̃+, completing the proof of the theorem.

We define the set ⊂T R0  by the formula T { } = = … −i n, 0, , 2 1i
n

0
2

. Since for any 

τ∈ T 0 the isomorphism ˜ ( ) → ( )π πτ T Tg * : 1
2

1
2  is defined by the hyperbolic matrix C, then 

by statement 3 there is an isotopic to the identity homeomorphism →τ T Th : 2 2 such that 
˜= τ τ τ

−!C h g h 1. Let   [ ]∈τh s, 0, 1s,  be an isotopy such that =τ τh h,0  and =τh id,1 .

For ∈ − −⎡⎣ ⎤⎦t , 1
n n
1

6
1

6
 we define a homeomorphism →T Tx :t

2 2 by the formula 

  ⩽  τ τ= | − | ∈τ τ| − | Tx h t, ,t n t n,6
1

6
0 and xt  =  id for all other t. Let us define a homeomor-

phism →× − − × − −T T⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦x : , 1 , 1
n n n n

2 1
6

1
6

2 1
6

1
6

 by the formula x(z, t)  =  (xt(z), t).  
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Notice that ( ) ( ( ) )τ τ= τx z h z, , . For ∈Rr  we denote by ( ) ∈Zm r  an integer number, such that 

)( ( ))− ∈ − −⎡⎣r m r , 1
n n
1

6
1

6
. Let ( ) ( )( ) ( )γ γ= −X z r x z r, ,m r m r  for ( ) ∈ ×T Rz r, 2 .

Any point of set T  has the form τ+ m, where τ∈ ∈m,0T Z  . By construction ˜ ( ) (!φ τ+ =+ z m C,   
(z), T   +  m). Therefore, the verification of equality ˜( ) ( ( ) )ψ τ τ+ = +!z m C z m, ,  will complete the 
proof in the case (Ia).

! ! ! ! !

! ! !! !

ψ τ τ γ γ γ γ τ γ γ τ

γ τ γ τ γ τ γ τ

τ τ τ

+ = + = + = +

= = = = =

+ = + = +
τ τ τ τ τ τ

τ τ τ

− − − − − −

− − − − − − − − −

− −

z m XgX z m x g x z m xgx z m

xgx J z xg h J z x g h J z h g h J z J

h g h J z m J CJ z m C z m

Indeed, , , , ,

, , , ,

, , ,

m m m m m m

m m m m m m m m m

m m m

1 1 1

1 1 1 1

1

˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )
˜ ( ( ) ) ˜( ( ) ) ( ( ) ) ( ( ) ) (

( ) ) ( ( ) ) ( ( ) )
.

In the case (Ib), using the results of the case (Ia), we can assume that the homeomorphism 
gk coincides with the diffeomorphism φ+ given by parameters {J, Ck, nk, 0} on their common 
nonwandering set p

J
T( ).

For = … −j k0, , 1 we define the sets   ⊂T T R,j j
0  by the formulas { κ= − +T ,j

i
nk

jl
k2

  

i n i n0, , 2 1,   ,   ,   0, , 2 1j
i
nk

jl
k

0
2} { }κ= … − ∈ = − = … −TZ . Notice, that = ∪ ∪ −!T T Tk0 1. 

Let ( ) ⋃ τ τ= − +τ∈T T
⎡⎣ ⎤⎦U ,j nk nk

1
6

1
6j

, ( ) ⋃ τ τ= − +τ∈T T
⎡⎣ ⎤⎦U ,j nk nk

0 1
6

1
6j

0 . Set   ˜ ˜= =g g g g,0 0  

and successively construct homeomorphisms ˜ ˜ ˜ →… × ×− − T R T RY g Y g Y g, , , , , , :k k0 1 1 2 2 1
2 2  

with the following properties for = … −j k1, , 1:

 (1) ˜ ˜= − − −
−g Y g Yj j j j1 1 1

1 , where Yj−1 commutes with γ and Yj−1 is the identity out of ( )TU j ;

 (2) for any τ∈ T  on the set { }τ×T2  the homeomorphism g̃j has the form g z g z˜ , ˜ ,j j
l
k,( )( ) ( )τ τ= −τ , 

where ˜ =τ !g Cj,  for τ∈ −T j 1 and =τ τ τ− − +
−!g g g C˜ ˜ ˜j j j, 1, 1,

1
l
k

 for τ∈ T j.

From the properties (1) and (2) it follows that ˜ =τ−
!g Ck 1,  for ( )τ∈ ∪ ∪ ∪ −!T T Tk0 1 2  and 

g g g C g g g C g g g g C˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜k k k k k
k

1, 2, 2,
1

0, 3, 3,
2

0, 0, 0, 0,
1

l
k

l
k

l
k

l
k

k l
k

k l
k

2 2 1
( )

( ) ( )= = = = …τ τ τ τ τ τ τ τ τ τ− − − +
−

− + − +
−

+ + +
− −

− −!" " "  

for τ∈ −Tk 1. Since the homeomorphism gk
0 coincides with the diffeomorphism from Φ+ 

defined by parameters {Ck, nk, 1, 0} on their common nonwandering set T( )p
J

 then 

˜ ˜ ˜ ˜( ) ( )… =τ τ τ τ+ + +− − !g g g g C
k

0, 0, 0, 0,l
k

k l
k

k l
k

2 1  and, therefore, ˜ =τ−
!g Ck 1,  for τ∈ −Tk 1. Since ˜ ( )φ τ =+ z,  

! τ−C z , l
k

( ( ) ) for any τ∈ T  then the construction of homeomorphisms with the described 

properties will complete the proof, since the homeomorphism gk−1 coincides with the diffeo-
morphism φ+ on their common nonwandering set p

J
T( ) and is topologically conjugated with 

the diffeomorphism g.
Let us show how to construct a homeomorphism Yj−1 for = … −j k1, , 1, assuming that the 

homeomorphism ˜ −gj 1 is already constructed.
Let τ∈ −T j 1

0 . Since the homeomorphism ˜ τ−gj 1,  is isotopic to the diffeomor-
phism !C , then the homeomorphism ˜ τ−

−!C g j 1,
1  is isotopic to the identity map. Let 

→   [ ]∈τ− T Th s: , 0, 1j s1, ,
2 2  be an isotopy, such that ˜=τ τ− −

−!h C gj j1, ,0 1,
1  and =τ−h idj 1, ,1 . 

For ∈ − − − +⎡⎣ ⎤⎦t , 1jl
k nk

jl
k nk

1
6

1
6

 we define a homeomorphism →− T Ty :j t1,
2 2 by the formu-

la   ⩽τ= | + − |τ− − | + − |y h t,j t j i nk t
l
k nk1, 1, ,6

1
6

l
k

 and yj−1, t  =  id for all other t. Let us define a  
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homeomorphism →× − − − + × − − − +− T T⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦y : , 1 , 1j
jl
k nk

jl
k nk

jl
k nk

jl
k nk1

2 1
6

1
6

2 1
6

1
6

 by 

the formula ( ) ( ( ) )=− −y z t y z t, ,j j t1 1, . Notice that ( ) ( )˜ ( )τ τ− = −τ− −
−!y z C g z, ,j

l
k j

l
k1 1,

1 .

For ∈Rr  we denote by ( ) ∈Zm r  an integer number, such that r m r ,jl
k nk

1
6

( ( )) ⎡⎣− ∈ − −   

)− +1 jl
k nk

1
6 . For ( ) ∈ ×T Rz r, 2  let ( ) ( )( ) ( )γ γ=−

−
−Y z r y z r, ,j

m r
j

m r
1 1 . Set ˜ ˜= − − −

−g Y g Yj j j j1 1 1
1 .

Since any point of the set  ( )−T Tj j1  has the form ( ) τ τ+ + −m m l
k

, where  τ∈ ∈−T Zm,j 1
0 ,  

then the checking equalities ( )˜ ( ) ( )τ τ+ = + −!g z m C z m, ,j
l
k

 and ( )τ + − =g z m˜ ,j
l
k

 

g g C z m˜ ˜ ,j m j m
l

k1, 1,
1 2

l
k( )( ) τ + −τ τ− + − − +

−!  will complete the proof in the case (b).

g z m Y g Y z m Y g z m y g z m

y g z m y g J z y g J z C

g g J z J CJ z m C z m

Indeed, ˜ , ˜ , ˜ , ˜ ,

˜ , ˜ , ˜ ,

˜ ˜ , , , .

j j j j j j
m

j
m

j

m
j j

m m
j j

m m
j j

m l
k

m

j j
m l

k

m m l
k

l
k

1 1 1
1

1 1 1 1

1 1 1 1 1 1,

1,
1

1,

( ) (
) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ( ) ) ( )

( ) ( ) ( )

τ τ τ γ γ τ

γ γ τ γ τ γ τ γ

τ τ τ

+ = + = + = +

= + = = − =

− = + − = + −

τ

τ τ

− − −
−

− −
−

− −

−
− −

−
− −

−
− −

−

−
−

−
−! !

!

! !

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) (
) ( ) (

)

( ) ( )

( ) ( )

( ) ( )

( )

τ τ τ γ

γ τ γ τ γ τ

τ τ

τ τ

τ

+ − = + − = + − =

+ − = − = − =

+ − = + − =

+ − = + − =

+ −

τ

τ τ τ τ

τ τ τ τ

τ

− − −
−

− −
−

−
−

−
−

−
−

−
−

−
−

−
− −

−

−
−

− −
− + −

−
−

− −
− + −

−
−

− −
− + −

−
− +

− −
− + −

− +
−

! !

! ! !

! ! ! !

!

! !

! !

!

g z m Y g Y z m g Y z m g

y z m g y J z g g C J z g

J g C J z m g J g C J z m g

J g J C z m g J J g C z m g

g C z m

Further, ˜ , ˜ , ˜ , ˜

, ˜ , ˜ ˜ , ˜

˜ , ˜ ˜ , ˜

˜ , ˜ ˜ , ˜

˜ , .

j
l
k j j j

l
k j j

l
k j

m

j
m l

k j
m

j
m l

k j
m

j
m l

k j

m
j

m l
k j m

m
j

m l
k j m

m
j

m l
k j m

m m
j m

l
k j m

j m
l

k

1 1 1
1

1 1
1

1

1
1

1 1
1

1 1,
1 1

1

1,
1 1

1, 1,
1 1 2

1,

1,
1 1 2

1, 1,
1 1 2

1,

1,
1 2

l
k

l
k

l
k

l
k

In the case (II), due to theorem 1, = ±J Id. Using the results of the case (Ia), we can as-
sume that the homeomorphism g2 coincides with the diffeomorphism φ+ given by parameters 
{J, C2, q, 0} on their common nonwandering set p

J
( )T .

Set = = … −i q, 0, , 2 1i
q

0
2

T { }   and T Z{ } = ∈i,i
q2

. Let us construct homeomorphism 

→× ×T R T RY : 2 2  such that γ γ=Y Y  and ˜ ˜ψ = −
−YgY j 1

1  coincides on the set × TT2  with the 
diffeomorphism φ̃−.

Let τ∈ T 0. Since the homeomorphism ˜τg  is isotopic to the diffeomorphism !C , then, 
due to statement 3, there is an isotopic to identity homeomorphism →τ T Th : 2 2 such that 

˜= τ τ τ
−!C h g h 1. Let   [ ]∈τh s, 0, 1s,  be an isotopy such that =τ τh h,0  and =τh id,1 .

For τ∈ T 0 and ∈ − −⎡⎣ ⎤⎦t , 1
q q
1

6
1

6
 we define a homeomorphism →T Ty :t

2 2 by the for-

mula   ⩽τ= | − |τ| − |y h t,t i q t q,6
1

6
 and yt  =  id for all other t. Let us define a homeomorphism 

→× − − × − −T T⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦y : , 1 , 1
q q q q

2 1
6

1
6

2 1
6

1
6

 by the formula y(z, t)  =  (yt(z), t). Notice, that 

( ) ( )τ τ= τy z h, , .

For ∈Rr  we denote by ( ) ∈Zm r  an integer number, such that )( ( ))− ∈ − −⎡⎣r m r , 1
q q
1

6
1

6
. 

For ( ) ∈ ×T Rz r, 2  let ( ) ( )( ) ( )γ γ= −Y z r y z r, ,m r m r .
Any point of set T  has the form τ+ m, where  τ∈ ∈T Zm,0 . By construction ( )φ τ + =− z m˜ ,   

C z m,( ( ) )τ− −! . Therefore, the verification of equality ˜( ) ( ( ) )ψ τ τ+ = − −!z m C z m, ,  will 
complete the proof in the case (II).
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z m YgY z m Yg y z m Yg y J z Yg

h J z Yg J h J z m Y g J h J z m y g J

h J z m y J g J h J z h J g J h J z

J h J g J h J z m J Jh J g h J z m J h g h J

z m J CJ z m C z m

Indeed, ˜ , ˜ , ˜ , ˜ , ˜

, ˜ , ˜ , ˜

, ˜ , ˜ ,

˜ , ˜ , ˜

, , ,

m m m m

m m m m m m m m m

m m m m m m m m m

m m m m m m m m

m m

1 1 1

1 1 1 1

1 1 1 1 1
1

1 1

1
1

1 1
1

1 1 1

( ) ( ) ( ) ( ( ) )
( ( ) ) ( ( ) ) ( ( ) ) (

( ) ) ( ( ) ) ( ( ) )
( ( ) ) ( ( ) ) (
( ) ) ( ( ) ) ( ( ) )

ψ τ τ γ γ τ γ τ

γ τ τ τ γ γ

τ γ τ γ τ

τ τ

τ τ τ

+ = + = + = =

= + = − − =

− − = − = − =

− − = − − =

− − = − − = − −

τ τ τ τ τ

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ

− − − − −

− − − − − + − − −

− + − − − − +
−

− − − −

+
−

− − − −
−

− − −

! !
  □

6. Asymptotic behaviour of two-dimensional invariant manifolds of  
nonwandering points of structurally stable diffeomorphism from G

Let ∈f G be a structurally stable diffeomorphism. By theorem 3, f is ambient Ω-conjugated 
with some diffeomorphism →φ ! !M M: J J  from the class Φ by means of a homeomorphism 

→ ∈! Jh M M J: ,J
3 . Set →ψ = −

! !hfh M M: J J
1 . Then we will apply to homeomorphism ψ 

the notions and denotations of (local) stable and (local) unstable manifolds of nonwandering 
points, understanding this as pre-image under h of the similar objects for diffeomorphism f. 
Using the construction, ψ and φ coincide on nonwandering sets and, by proof of theorem 3, 
there is a lift ˜ →ψ × ×T R T R: 2 2  of ψ coinciding with lift φ̃ of φ on the set ( )⋃× ∈T Zi

i
nk

2
2

.

Due to structural stability, two-dimensional invariant manifolds of different stabilities have 
transversal intersection which forms one-dimensional foliation ψİ  on ( )ψ!M NW\J .

Lemma 5. The closures of the leaves of the foliation ψİ  form one-dimensional foliation ψI  
on !MJ  such that each connected component Ĩ  of the pre-image with respect to p

J
 of each leaf 

∈ ψII  has the property ( )˜ ∩ × = ×TI zi
nk

i
nk

2
2 0 2

 for some ∈Tz0
2 and all ∈Zi .

Proof. Let us divide the proof into steps.

Step 1. To prove lemma 5 it is enough to assume that homeomorphism ψ is such that φ 
belongs to Φ+ and is defined by parameters ∈ CC , ∈ = =Nn k l, 1, 0 (in the opposite case, we 
can take some power of ψ).

Denote by →R Tp : 2 2 universal cover such that ( ) ( (   ) (   ))=p x y x y, mod 1 , mod 1 . Let map 

→! T TC : 2 2 given by matrix = ⎜ ⎟
⎛
⎝

⎞
⎠C a b

c d
 and →η ×R T R: 3 2  be a cover given by formula 

( ) ( ( ) )η =x y z p x y z, , , , . Denote by ˇ →ψ R R: 3 3 a lift of ψ̃ with respect to η. As ψ̌ is a lift of 

ψ̃ and ˜ →ψ Z Z* : 2 2 given by matrix C then ˇ ˇψ ψ=′ −
b b

1
, where →R Rb : 3 3 given by formula 

( ) ( )  ( )ν ν ν ν= + + ∈Zb x y z x y z, , , , , ,1 2 1 2
2 and ( ) ( )ν ν ν ν= + + + +′b x y z x a b y c d z, , , ,1 2 1 2 . 

Thus diffeomorphism ˇ( ) ( ˇ ( ) ˇ ( ) ˇ ( ))ψ ψ ψ ψ=x y z x y z x y z x y z, , , , , , , , , ,1 2 3  has the form

ˇ ( ) ( )
ˇ ( ) ( )           ( )
ˇ ( ) ( )

ψ
ψ
ψ

= + +

= + +

=

x y z ax by h x y z

x y z cx dy h x y z

x y z h x y z

, , , , ,

, , , , , *

, , , , ,

1 1

2 2

3 3

where ν ν+ + = =h x y z h x y z j, , , , , 1, 2, 3j j1 2( ) ( )  for each ν ν ∈Z,1 2 .
As any lift ˇ →R RC : 2 2 of the diffeomorphism !C  has the form α= + +C x y ax by, ,ˇ ( ) (  cx + 

dy + β) for some α β∈Z,  then the homeomorphism ψ̌ has exactly one fixed saddle point Pi 
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belonging to plane { }Π = ×Ri
i
n

2
2

 for each ∈Zi . It can be directly verified that ( )ˇ=P z ,i
i
n0 2

 

for some ˇ ∈Rz0
2.

Step 2. Set →η η= ! !!
Rp M:J J

3
J

. For stable (unstable) manifold ( ) ( ( ))W x W xs u  of non-
wandering point ( )ψ∈x NW  of homeomorphism ψ we will denote by ( ˇ) ( ( ˇ))w x w xs u  
the connected component of set ( ( ))  ( ( ))η η− −

! !W x W xJ
s

J
u1 1  passing through the point 

ˇ ( )η∈ −
!x xJ

1 . For local stable (unstable) manifold ( ) ( ( ))γ γW x W xs u , γ> 0 denote ( ˇ) ( ( ˇ))γ γw x w xs u  

the connected component of set ( ( ))  ( ( ))η ηγ γ
− −
! !W x W xJ

s
J

u1 1  passing through the x̌. Notice that 
homeomorphism ψ̌|Πi

 possesses two transversal one-dimensional ψ̌-invariant foliations 
F F,i

s
i
u on Πi consisting of parallel straight lines with different irrational slopes µs and µu. Let 

{( ˇ) ( ) ( ˇ) ( ˇ) {( ) ( ˇ)}µ µ= ∈ Π = + = ∈ Π = +L x x y z y x b x L x x y z y x b x, , : , , , :i
s

i s i
s

i
u

i u i
u  be leaves 

of foliations F F,i
s

i
u passing through the point ˇ ∈ Πx i. Further, it is useful to look at figure 1.

Set ( ) ⋃ ( ˇ)ˇ ( )=γ γ∈N P w xu
x L P

u
0 u

0 0
 ( ( ) ⋃ ( ˇ)ˇ ( )=γ γ∈N P w xs

x L P
s

1 s
1 1

) for some fixed γ> 0. In this 

step we show that there are numbers b b b b, , ,u u s s
1 2 1 2 such that the closed box Bu (Bs) bounded 

by planes {( ) }   {( ) }µ µΠ Π = ∈ = + = ∈ = +− R RQ x y z y x b Q x y z y x b, , , , : , , , :u
u

u u
u

u
1 1 1

3
1 2

3
2  

( Q x y z y μ x b Q x y z y μ x b, , , , : ,   , , :s
s

s s
s

s
0 2 1

3
1 2

3
2{( ) } {( ) }Π Π = ∈ = + = ∈ = +R R  ) contains 

( )γN Pu
0  ( ( )γN Ps

1 ) in its interior. Let us construct the box Bu, for the box Bs construction is 
similar.

Let us fix ε> 0 and for each point ˇ ( )∈x L Pu
0 0  construct a box ( ˇ)D xu  bounded by planes 

Q x x y z y μ x b x x Q x x y z y μ x b x x, , ˇ , , : ˇ ˇ ,   ˇ , , : ˇ ˇu
u

u u
u

u
1 1 1

3
0 2

3
0( ) {( ) ( ) ( )} ( ) {( ) ( ) ( )}ε εΠ Π = ∈ = + − = ∈ = + +− R R , 

( ) {( ) ( ) ( )} ( ) {( ) ( ) ( )}ε ε= ∈ = + − = ∈ = + +R RQ x x y z y μ x b x x Q x x y z y μ x b x xˇ , , : ˇ ˇ ,   ˇ , , : ˇ ˇs
s

s s
s

s
1

3
0 2

3
0  such 

that ( ( ˇ) ( ˇ)) ε∂ >γw x D xdist ,u u . Due to the C1-closeness of unstable manifolds on the compact 
set (for the diffeomorphism f) there is δ> 0 such that the set ( ˇ) ⋃ ( ˇ)ˇ ( ˇ ˇ)= δ γ∈Π <U x w yy x y

u
:dist ,0

 

is a subset of ( ˇ)D xu . Set ( )η= Π
!

T0 0J
 and ( ) ⋃ ( )= γ∈N T W xx T

u
0 0

. As ( ( ))η
!

L Pu
0 0J

 is dense eve-

rywhere on the torus T0 then { ( ( ˇ)) ˇ ( )}η ∈
!

U x x L P, u
0 0J

 is a cover of a neighbourhood N(T0) 
of the torus T0. Thus it has a finite subcover { ( ( ˇ )) ( ( ˇ ))}η η…

! !
U x U x, , n1J J

. Hence ( )γN Pu
0  

is obtained by integer shifts along the x-axis and the y-axis from discs ( ˇ)γw xu  belonging to 

Figure 1. Illustration of the proof of lemma 5.
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( ˇ ) ( ˇ )∪ ∪!U x U xn1 . Set { ( ˇ ) ( ˇ )}ε ε ε= …x x* max , , n1 . Then the box Bu bounded by planes 
Q x y z y μ x b P Q x y z y μ x b P, , , , : 2 * ,   , , : 2 *

u
u

u u
u

u
1 1 1

3
0 0 2

3
0 0{( ) ( ) } {( ) ( ) }ε εΠ Π = ∈ = + − = ∈ = + +− R R  

is required.

Step 3. In this step we show that ( ) ( )∩ ≠ ∅w P w Pu s
0 1 .

By the construction there is a homeomorphism [ ] → ( )× − γRh N P: 1, 1u
u

0  
( [ ] → ( )× − γRh N P: 1, 1s

s
1 ) such that ( { }) ( )× =Rh L P0u

u
0 0  ( ( { }) ( )× =Rh L P0s

s
1 1 ) and 

( ( ))( ( )) ⊂× ×R Rh 0, 1 0,u n
2 1

2
 ⊂× − ×h 1, 0 0,s n

2 1
2

R R( )( ( ))( ( )) . Moreover, for curves 

( { })= ×Rl h 1u u  and ( { })= × −Rl h 1s s  there are numbers ( )∈z z*, * 0,
n0 1
1

2
 such that planes 

{( ) } {( ) }Π = ∈ = Π = ∈ =R Rx y z z z x y z z z* , , : * , * , , : *0
3

0 1
3

1  divide domain ( )×R 0,
n

2 1
2

 on 

three open sets V V V, ,0 1 with properties (   ) (   )= Π ∪ Π = Π ∪ Πcl V V cl V V\ *, \ *0 0 0 0 1 1 1 1  and 

⊂l l V,u s . Let us show that there is a number ∈Nk*  such that curve ˜ ˇ ( )ψ=l lu
k

u
*  is a subset of V1.

Indeed, (   ) [ ]η = ×Tcl V z z*, *2
0 1  and each point (   )η∈t cl V  is wandering for ψ̃ and its posi-

tive iterations go to attractor ( )η= ΠT1 1 . Then there is neighbourhood ( )⊂ ×TU 0,t n
2 1

2
 of the 

point t and natural number k(t) such that ˜ ( ) ( )⊂ψ ηU Vk
t 1  for ⩾ ( )k k t . As set (   )η cl V  is compact 

then there is a finite subcover for cover { (   )}η∈U t cl V,t . Thus there is natural number k* such 

that ˜ ( (   )) ( )⊂ψ η ηcl V Vk
1  for ⩾k k*. Hence, ˇ (   ) ⊂ψ cl V V

k
1 for ⩾k k* and also ˜ ⊂l Vu 1.

Due to the form (*), the set ˇ ( ( ))ψ γN P
k u*

0  belongs to box B̃u bounded by planes 

{( ) ˜ } {( ) ˜ }µ µΠ Π ∈ = + ∈ = +− R Rx y z y x b x y z y x b, , , , : , , , :u
u

u
u

1 1
3

1
3

2  for some numbers ˜ ˜b b,
u u
1 2. 

As ̃lu is situated in ˜ ∩B Vu
1 and intersects any plane of the form {( ) }µ∈ = + ∈R Rx y z y x b b, , : ,s

3  
then ˜ ∩ ≠ ∅l Bu

s  and, moreover, there is an arc (˜ )⊂ ∩c l Bu
s  which has end points 

∈ ∈a Q a Q,s s
1 1 2 2. Since ⊂l Vs  then ( )∩ ≠ ∅γc N Ps

1 . Thus ( ) ( )∩ ≠ ∅w P w Pu s
0 1 . As the original 

diffeomorphism f is structurally stable then the intersection ( ) ( )∩w P w Pu s
0 1  is topologically 

transversal. So c is topologically transversal to ( )w Ps
1 . Since in a neighbourhood of P1 homeo-

morphism ψ̌ is topologically conjugated with a hyperbolic saddle point then, due to λ-lemma, 

( )( )   ⋃ ˇ ( )⩾⊂ ψw P cl cu
n

n
1 1 . Hence ( ) (   ( ))⊂w P cl w Pu u

1 0 .

Step 4. Let us show that (   ( )) ( )∩ Π =cl w P w Pu u
0 1 1 .

Due to the hyperbolicity of the basic sets of the diffeomorphism f there is a γ such 
that (   ( )) ( ( ))⊂ψ ψγ γcl W x W xs s  for any ( )η∈ Π

!
x 1J

 and diameter of (   ( ))ψ γcl W xk s  tends to 

0 as → +∞k . Set ( ( )) ⋃ ( ˇ)ˇ ( )=γ γ∈N w P w xu
x w P

s
1 u

1
. Then ˇ(   ( ( ))) ( ( ))⊂ψ γ γcl N w P N w Pu u

1 1  

and ˇ ( ( ( ))) ( )ψ =γ∈N⋂ N w P w Pk
k u u

1 1 . For positive number γ<d  let us denote by Bd
s  a box 

bounded by planes { } { }( ) ( )Π = ∈ = − Π = ∈ = +− +R Rx y z z d x y z z d, , : , , , :d n d n
3 1

2
3 1

2
, 

Q x y z y μ x b P d Q x y z y μ x b P d, , : , , , :d u
u

d u
u3

1 1
3

1 1{( ) ( ) } {( ) ( ) }= ∈ = + − = ∈ = + +− +R R . By the 

construction ( ( ))⊂ γB N w Pd
s u

1  and hence ˇ ( ) ⊂ψ B B
i

d
s

d
s  for some ∈Ni . Without loss of general-

ity we can assume that i  =  1.

Set { }( ) ⩽ ⩽= ∈ −RV x y z d z, , :d n n
3 1

2
1

2
. Similarly to step 3, we can find a number  

∈Nk*  such that the set ˇ ( ( ))ψ γN P
k u*

0  belongs to box B̌u bounded by planes Π−1, Π1 {(x, y, z)  

y μ x b x y z y μ x b: ˇ , , , : ˇ
u

u
u

u3
1

3
2} {( ) }∈ = + ∈ = +R R  for some numbers ˇ ˇb b,

u u
1 2 and the set  
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( ( ))( ˇ ( ( )) ˇ ( ( )))ψ ψ= ∩ ×γ γ
− RK N P N P\ 0,u

k u k u
n

*
0

* 1
0

2 1
2

 belongs to ˇ ˇ= ∩V B Vd
u

d. Let us choose  

a box V̌ containing Ku and bounded by planes Q x y z y μ x b P, , , , :d d u
u3
1 1{( ) ( )Π Π = ∈ = +− + − R  

} {( ) ( ) }− = ∈ = + +−
+

+Rd Q x y z y μ x b P d, , , : u
u3
1 1  where  ( )− +Q Q  is obtained from  ( )− +Q Qd d   

by integer shifts along the x-axis and the y-axis and the line ˇ( )ψ ∩ Π−Q 1 ( ˇ( )ψ ∩ Π+Q 1) has  

form x y y μ x b P D, , :
n u

u1
2

3
1 1( ){ }( )∈ = + − −R  R( )( ){ }( )µ∈ = + + +x y y x b P D, , :

n u
u1

2
3

1 1   

with | − | >− −D d d (| − | >+ +D d d). As ˇ( ) ( )  ( ˇ( ) ( ) )ψ ψ∩ ∩ ∩ = ∅ ∩ ∩ ∩ = ∅− − + +Q B Q B Q B Q Bd d
s

d d
s

d d
s

d d
s  

then ˇ( ˇ ) ( ˇ )  ( ˇ( ˇ ) ( ˇ ) )ψ ψ∩ ∩ ∩ = ∅ ∩ ∩ ∩ = ∅− − + +Q V Q V Q V Q Vd . Hence ˇ(   ˇ ) ˇ⊂ψ cl V V .

Set ( ))( ) ( )= ∩ ×+ R ⎡⎣w P w P 0,u u
n0 0

2 1
2

. Let us represent the set ( )+w Pu
0  as the union 

( ( )))( ) ˇ ( ( )) ⋃ ˇ ( )ψ ψ= ∩ × ∪γ+ ∈R N
⎡
⎣⎢w P N P K0,u k u

n i
i u

0
*

0
2 1

2
. Herewith ˇ ( ( )) ˇ⊂ψ γN P B

k u u*
0  and 

⋃ ˇ ( ) ˇ⊂ψ∈N K Vi
i u . Thus ( )(   ( ) ( )) ˇ⊂ ∩ Π+ +cl w P w P B\u u u

0 0 1 . Since   ( ) ( )+ +cl w P w P\u u
0 0  is ψ̌- 

invariant and ( )w Pu
1  is a unique ψ̌-invariant subset of ˇ ∩ ΠBu

1 then (   ( )) ( )∩ Π =cl w P w Pu u
0 1 1 .

Step 5. Let us show that for any point ∈ Πx 0 there is a point ∈ Πy 1 such that 
(   ( )) ( )∩ Π =cl w x w yu u

1  and inversely, for any point ∈ Πy 1 there is a point ∈ Πx 0 such that 
(   ( )) ( )∩ Π =cl w y w xs s

0 .

On the set )×R ⎡⎣0,
n

2 1
2

 there is a ψ̌-invariant two-dimensional foliation R0, each leaf of 

which is homeomorphic to the semi-plane and coincides with ( ))( ) ∩ ×R ⎡⎣w x 0,u
n

2 1
2

 for some 
point ∈ Πx 0. Since ( )ψ|η Π

!J
0
 is hyperbolic automorphism then projection with respect to η

!J
 of 

an arbitrary point with the rational coordinates on Π0 is a periodic point of ( )ψ|η Π
!J

0
. As each 

periodic point of ψ is the fixed point for some power of ψ then for arbitrary leaf G0 of folia-
tion R0 passing through a point with the rational coordinates on Π0, due to step 4, we have that 

 ( ) {( ) }µ∩ Π = ∈ Π = +cl G x y z y x b, , : u G0 1 1 0  for some ∈RbG0 .

For ∈Zk  let us set ˇ ( ) ( ˇ ( ) ˇ ( ) ˇ ( ))ψ ψ ψ ψ=x y z x y z x y z x y z, , , , , , , , , ,
k

k k k1, 2, 3, . Notice that 
ˇ ( )ψ x y z, ,

k
 is a lift of ˜ ( )ψ x y z, ,k  with respect to η and it has exactly one fixed saddle point 

Pi belonging to the plane Πi. As any lift ˇ →Ψ R R: 3 3 of the diffeomorphism ψ̃k has the form 
ˇ ( ) ( ˇ ( ) ˇ ( ) ˇ ( ))ψ α ψ β ψΨ = + +x y z x y z x y z x y z, , , , , , , , , ,k k k1, 2, 3,  for some α β∈Z,  then ≠ ′b bG G0 0

 
if G0 and ′G0 are different leaves of the foliation R0 passing through a point with the rational 
coordinates on Π0. By continuity, we have that  ( ) {( ) }µ∩ Π = ∈ Π = +cl G x y z y x b, , : u G0 1 1 0  
for some ∈RbG0  for arbitrary leaf G0 of foliation R0.

Analogously, on the set (×R ⎤⎦0,
n

2 1
2

 there is the ψ̌-invariant two-dimensional foliation, R1, 

each leaf of which is homeomorphic to the semi-plane and coincides with ( ))( ) ∩ ×R ⎡⎣w x 0,s
n

2 1
2

 
for some point { }∈ ×Tx

n
2 1

2
. Similarly, for arbitrary leaf G1 of foliation R1 we have that 

 ( ) {( ) }µ∩ Π = ∈ Π = +cl G x y z y x b, , : s G1 0 0 1  for some ∈RbG1 .
Thus the intersection = ∩Y G G0 1 is not empty for each of the leaves ∈ ∈G R G R,0 0 1 1 and 

 ( )cl Y Y\  consists of two points ∈ Π ∈ ΠP P,G G G G,
0

0 ,
1

10 1 0 1
.

Step 6. Let us show that Y consists of one open curve z such that cl z  ∩  (Π0  ∪  Π1)  = 

∪P PG G G G,
0

,
1

0 1 0 1
.

Notice that  cl Y  is compact as G0 and G1 belong to boxes which have compact in-
tersection. As f is structurally stable and it is topologically conjugated with ψ then the  
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set ( )( )= ∪Z cl Y P P\ G G G G,
0

,
1

0 1 0 1
 consists of curves. Any curve z from Z has one of four  

types: (1)   ( )∩ Π ∪ Π = ∅cl z 0 1 ; (2) ( )  ∩ Π ∪ Π =cl z PG G0 1 ,
0

0 1
; (3) ( )  ∩ Π ∪ Π =cl z PG G0 1 ,

1
0 1

; 

(4) ( )  ∩ Π ∪ Π = ∪cl z P PG G G G0 1 ,
0

,
1

0 1 0 1
. Let us show that cases (1)–(3) are impossible.

Indeed, in case (1) the curve z bounds closed 2-disc ⊂D G0 whose each point ∈d D is an 
intersection point of G0 with some leaf from R1. As origin diffeomorphism f is structurally sta-
ble then the intersection is topologically transversal. So D is foliated by closed curves, which 
are the intersection of the leaves of foliation R1 with D. That is impossible.

In case (2) the curve z bounds closed 2-disc ⊂D G0 whose each point ∈d D is an intersec-
tion point of G0 with some leaf from R1. As origin diffeomorphism f is structurally stable then 
the intersection is topologically transversal. So D is foliated by closed curves, which are the 
intersection of the leaves of foliation R1 with D. Due to (1), Dint   is foliated by open curves z̃ 
such that the closure of z̃ in D is ˜ ∪z PG G,

0
0 1

. This means that ( )⊂ ∩D G G0 1 . This is a contradic-
tion of the transversality condition.

Case (3) is similar to case (2).
Thus, each curve in Z is an open arc with two boundary points PG G,

0
0 1

 and PG G,
1

0 1
. Let us 

show that for each pair of leaves G G,0 1 the set Z consists of a unique curve. Suppose the 
contrary: there is more than one curve in Z. That there are two curves ⊂z z Z,1 2  such that they 
bound an open 2-disc. Here we get contradiction as in case (2).  □

7. Topological conjugacy of a structurally stable diffeomorphism from  
G to a model

This part is devoted to the proof of theorem 4.
Let ∈f G be a structurally stable diffeomorphism. By theorem 3, f is ambient Ω-conjugated 

with some diffeomorphism →φ ! !M M: J J  from the class Φ by means of a homeomorphism 
→ ∈! Jh M M J: ,J

3 . Set →ψ = −
! !hfh M M: J J

1 . In lemma 6 we construct one-dimensional 
foliation ψI . Set ( )= ψ

−I Ihf
1 .

Lemma 6. Let V be a connected component of the set ( )∪A RM \3 , such that ∂ = ∪V A R, 
where ∈ AA , ∈ RR . Then on the set  cl V  there is a two-dimensional f0-invariant foliation PV, 
each of whose leaves is a torus, which intersects each leaf of the foliation If  at exactly one 
point.

Proof. We denote by IV one-dimensional foliation on  cl V , each of whose leaves is the 
closure of a connected component of the intersection of a leaf of foliation If  with V. Since 
IV is a one-dimensional foliation, each of whose leaves intersects A at one point, then there 
is a 2-torus ⊂T V , which also intersects each leaf of the foliation IV at one point. Denote by  
U a closed subset of the set  cl V , which is bounded by tori A and T. Two cases are possible: 
(a) ( ) ∩ = ∅f T T0 ; (b) ( ) ∩ ≠ ∅f T T0 .

In case (a), ( )  ⊂f T Uint0  and the set ( )=K U f U\ 0  is a fundamental domain of the restric-
tion of f0 on V, which means that ⋃ ( )[ ] =∈ ∈Z f K Vi t

i
, 0,1 0  and ( ) ( )∩ = ∅f K f Ki j

0 0  for ≠i j. 
We introduce a parameterization for each leaf ℓ of the foliation  ∩I cl KV , associating a pa-
rameter [ ]∈t 0, 1  to a point ℓ∈x , where t is the ratio of the length of the arc ℓ ℓ⊂x , which 
is bounded by points x and ℓ∂ ∩U , to the length of the arc ℓ. Denote the parameterization 
by   → [ ]ρ cl K: 0, 1 . For [ ]∈t 0, 1  let ( )ρ= −T tt

1 . Then ⋃ ( )[ ] ∪ ∪∈ ∈Z f T A Ri t
i

t, 0,1 0  is a required 
foliation PV.
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In case (b) we show that a modification of the torus T to the torus T̃  which intersects each 
leaf of the foliation IV at one point and has the property ( ˜ ) ˜∩ = ∅f T T0 , exists.

Since A is an attractor of the diffeomorphism f0, then there is a number n  >  0, such that 
( )  ⊂f U Uintn

0 . Let m be the smallest positive integer, for which ( ) ∩ = ∅f T Tn
0  for any 

n  >  m. We divide the construction of the desired torus into steps.

Step 1. Let us prove the lemma in the case m  =  1, that is, in the case when ( ) ∩ ≠ ∅f T T0 , 
( ) ∩ = ∅f T Tn

0  for n  >  1.
Let ˜ ( )= ∪U U f U0 . Then ( ˜ ) ˜⊂f U U0  since, by construction, ( ) ˜⊂f U U0  and by assumption 

of step 1, ( ) ˜⊂f U U0
2 . Therefore the required torus T̃  is obtained by a small perturbation of the 

boundary component of the set Ũ, which is different from A. A small perturbation is a pushing 
up of points in the set f0(T) from the set Ũ along the leaves of the foliation IV.

Step 2. Let us construct a required torus in the case m  >  1. We choose a natural number r, 
such that ⩽ < +m2 2r r 1. Let =g fr 0

2r

. Then ( ) ∩ = ∅g T Tr
n  for all n  >  1. Using the technique 

of step 1, we construct a required torus for the diffeomorphism gr. Continuing the process, we 
construct a required torus for the diffeomorphism f0.  □

7.1. Proof of theorem 4

Let us prove that if a diffeomorphism from the class G is structurally stable then it is topologi-
cally conjugate with a diffeomorphism from the class Φ.

Proof. Let →f M M: 3 3 be a diffeomorphism from the class G. By theorem 3, f is topologi-
cally conjugated with a homeomorphism →ψ ∈! ! JM M J: ,J J , which coincides with some 
diffeomorphism →φ ! !M M: J J  from the class Φ on their common nonwandering set and its lift 
˜ →ψ × ×T R T R: 2 2  coincides with φ̃ on the set ( ){ }( ( )) ⋃ψ = ×−

∈ TZp NWJ i
i
m

1
2

2, where 

m  =  nk in the case φ∈ Φ+ and m  =  q in the case φ∈ Φ−. Let us construct a homeomorphism 
˜ →× ×T R T Rh : 2 2 , which conjugates the maps ψ̃, φ̃ and commutes with γ.

By lemma 6, the homeomorphism ψ̃ has a pair of transversal ψ̃-invariant foliations  ˜ ˜ψ ψI P, . 
The foliation ψ̃I  is one-dimensional and each of its leaves is homeomorphic to a straight line. 
The foliation ψ̃P  is two-dimensional and each leaf is homeomorphic to 2-torus.

We will index a leaf of the foliation ψ̃I  by its intersection point with { }×T 02  in the fol-
lowing way: Ĩz0 is a leaf of the foliation ψ̃I  passing through the point { }×z 00 . Let O be the 
neutral element of the group T2 and ˜ { }= ×RS O . We will index a leaf of the foliation ψ̃P  
by its intersection point with ĨO in the following way: P̃a0 is a leaf of the foliation ψ̃P  passing 
through point ˜∈a IO0 . Due to statements 8 and 9, there is a homeomorphism ˜ ˜ → ˜h S I: O1  such 
that ˜ ( { }) { }× = ×h O O0 01  and ˜ ˜ ˜ ˜ψ φ=h h1 1 1 1, where ˜ ˜ ˜ψ ψ= |I1 O

 and ˜ ˜ ˜φ φ= |S1 .

Set ¯ {( ) }= ∈ × =T RI z r z z, :z
2

00 , ¯ {( ) }= ∈ × =T RP z r r r, :r
2

00  and denote by Ī  fo-
liation consisting of leaves ¯ ∈TI z,z 0

2
0  and by P̄ foliation consisting of leaves ¯ ∈RP r,r 0

1
0 . By 

the construction, the foliations Ī  and P̄ are φ̃-invariant. Let us define the homeomorphism 
˜ →× ×T R T Rh : 2 2  by the formula

˜( ) ˜ ˜ ˜ ( )= ∩h z r I P, .z h r1

Let us check that (a) ˜ ˜ ˜ ˜ψ φ=h h  and (b) ˜ ˜γ γ=h h .

 (a) is verified in the following way:
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  ( )˜( ˜( )) ˜ ˜ ˜ ˜( ˜ ) ˜( ˜ ) ˜( ˜ ) ˜˜ ( ) ˜ ( ) ˜ ( ˜ ( ))ψ ψ ψ ψ ψ= ∩ = ∩ = ∩ ψh z r I P I P I P, z h r z h r z h r1 1 1 1 . In the other side 

( ( )) ( ( ) ( )) ( ) ( ( ))φ φ= = ∩ φ! !h z r h C z r I P˜ ˜ , ˜ , ˜ ˜ ˜C z h r1 ˜ ˜1 1
. Since ˜( ˜ ) ˜ ( )ψ = !I Iz C z  by lemma 6 and ˜ ˜ ˜ ˜ψ φ=h h1 1 1 1  

by the construction, then ˜ ˜ ˜ ˜ψ φ=h h .
 (b) is verified in the following way:

  ( )( ˜( )) ˜ ˜ ( ˜ ) ( ˜ ) ( ˜ ) ˜˜ ( ) ˜ ( ) ˜ ( )γ γ γ γ γ= ∩ = ∩ = ∩ −h z r I P I P I P, z h r z h r z h r 11 1 1 . In the other side 
˜( ( )) ˜( ( ) ) ˜ ˜( ) ˜ ( )γ = − = ∩ −!h z r h J z r I P, , 1 J z h r 11 . Since ( ˜ ) ˜ ( )γ = !I Iz J z  by lemma 6 and 
˜ ( ) ˜ ( )− = −h r h r1 11 1  by the construction, then ˜ ˜γ γ=h h .  □

8. Construction of a diffeomorphism from G which is not structurally stable

Theorem 5. There is a diffeomorphism →T Tf : 3 3 from class G whose nonwandering set 
consists of two tori and f is not structurally stable.

Proof. Set ( )=C 2 1
1 1

. It can be verified directly that !C  has a unique fixed point which 

we denote by O. Let us define diffeomorphism d on {( ) }= ∈ + =S Rx y x y, : 11 2 2 2  by for-

mula ( )( )ϕ =
−

−
−

x y, ,x
y

y
y

4
5 3

5 3
5 3

. By the construction, ϕ is a Morse–Smale diffeomorphism 

whose nonwandering set consists of one source (0, 1) and one sink (0,−1). Define diffeo-
morphism →φ T T: 3 3 by formula ( ) ( ( ) ( ))φ ϕ= !z x y C z x y, , , , . Then φ∈ Φ and the nonwan-
dering set of diffeomorphism φ consists of one repeller {( )}= ×TR 0, 12  and one attractor 

{( )}= × −TA 0, 12 . Set ( )= ×O O 0, 1R  and ( )= × −O O 0, 1A .

Denote by ⊂ Sl 1 a closed arc on a circle bounded by points ( ),3
5

4
5

 and ( ),3
4

5
13

 and such 

that ( ) ∉ l0, 1 . Set = ×TK l2 , {( ) }= ∈ >+S Sx y x, : 01 1  and = ×+
+T SV 2 1 . By the construc-

tion, K is the fundamental domain for diffeomorphism φ| +V . Set ( )= ×O O* ,7
10

51
10

. By the 

construction  ∈O K* int  and ( ( ) ( ))∈ ∩O W O W O*
s

A
u

R . Let ⊂B Kint   be a 3-ball containing O*. 
Denote by DA and DR connected components of ( ) ∩W O Bs

A  and ( ) ∩W O Bu
R , respectively, 

containing O*. By the construction, the discs DA and DR have transversal intersection. Let 
→θ T T: 3 3 be a diffeomorphism which is an identity out of B and such that discs DA and ( )θ DR  

have a tangency. Then →θφ= T Tf : 3 3 is required of the diffeomorphism.
Indeed, by the construction, ( ) ( )φ=NW f NW  and ( ) ( )φ| = | φf NW f NW . Thus, diffeomor-

phism f satisfies axiom A and, hence, ∈f G. Denote by ′OA and ′OR the fixed points of f.  

Denote by + +V V,A R the connected components of +V K\  such that  ⊂ +A cl V A and  ⊂ +R cl V R. 
Then ( ) ( )∩ = ∩′ + +W O V W O Vu

R R
u

R R and ( ) ( ( ) )θ∩ = ∩′W O K W O Ku
R

u
R . On the other hand 

( ) ( ) ( ) ( )∩ ∪ = ∩ ∪′ + +W O V K W O V Ks
A A

u
R A . It follows that the invariant manifolds ( )′W Os

A  and 
( )′W Ou

R  are not transversal.  □
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